
Chapter 1. Getting started in PostScript

PostScript is a rather low level computer language developed by Adobe Systems. Its primary purpose is to produce
high quality graphics from computers, and even to output computer graphics on printers. It is nonetheless a
convenient computer language for doing geometry. In this course we shall use a program called ghostscript,
as well as one of several programs which in turn call on ghostscript, to serve as our PostScript interpreter and
interface. All the programs we shall use are available without cost through the Internet, as is explained elsewhere.

Be careful—the language we are writing our programs in is PostScript, and the program we will use to interpret
them is ghostscript.

The interpreter ghostscript has by itself a relatively primitive user interface which will turn out to be too
awkward to use for very long, but learning this interface will give you a valuable feel for the way PostScript
works. Furthermore, it will have a function later on when we produce simple animations. We shall begin in
this chapter by showing how ghostscript works, and then later on explain a more convenient way to produce
pictures with PostScript.

1. Simple drawing

Start up ghostscript. On Unix networks this is usually done by typing gs, and on other systems it is usually
done by clicking on the icon for ghostscript. What you get when it starts up are two windows, one a kind of
terminal window into which you type commands and from which you read plain text output, and the other a
graphics window in which things are drawn.

The graphics window—which I shall often call the page—opens up with a default coordinate system. When we
start up, the origin of the coordinate system on a page is at the lower left, and the unit of measurement—which
is the same in both horizontal and vertical directions—is equal to a point, exactly equal to 1/72 of an inch. (This
Adobe point is almost, but not quite, the same as the classical printer’s point, which measures 72.27 to an inch.)
Usually the size of the graphics window is 8.5′′ × 11′′, or 612 × 792 points2. As we shall see in a moment, the
coordinate system can be easily changed so as to arrange x and y units to be anything you want, with the origin
anywhere in the plane of the page.

When we start up running my local version of ghostscript in a terminal window we get a display like this:

Initializing... done.

Ghostscript 2.6.1 (5/28/93)

Copyright (C) 1990-1993 Aladdin Enterprises, Menlo Park, CA.

All rights reserved.

Ghostscript comes with NO WARRANTY: see the file COPYING for details.

GS>

In short, we are facing the ghostscript prompt GS>, and we are expected to type in commands. Let’s start off
by drawing a line in the middle of the page. Here is what the terminal window looks like when we do this:

GS>newpath

GS>300 400 moveto

GS>400 500 lineto

GS>stroke

GS>



Getting started in PostScript 2

The machine produces the prompts here, and everything else is typed by you. The graphics window displays the
diagonal line in the figure on the right; I have added a grey grid to make the picture clearer.

You draw things in PostScript by constructing paths. Any path in PostScript is a sequence of lines and curves. At
the beginning, we shall only work with lines. In all cases, first you build a path, and then you actually draw it.

• You begin building a path with the command newpath. This is like picking up a pen to begin drawing on a
piece of paper. In case you have already drawn a path, the command newpath also clears away the old path.

• You start the path itself with the command moveto. This is like placing your pen at the beginning of your
path. In PostScript, things are generally what you might think to be backwards, so you first write down the
coordinates of the point to move to, then the command.

• You add a line to your path with the command lineto. This is like moving your pen on the paper. Again
you place the coordinates first, then the command.

• So far you have just built your path. You draw it with the command stroke. You have some choice over
what colour you can draw with, but the colour that is used by default is black.

From now on I will usually leave the prompts > out.

You would draw a square 100 points on a side with the command sequence

newpath

300 400 moveto

400 400 lineto

400 500 lineto

300 500 lineto

300 400 lineto

stroke

If you type this immediately after the previous command sequence, you will just put the square down on top of
the line you have already drawn:

I will tell you later how to start over with a clean page. For now, it is important to remember that PostScript
paints over what you have already drawn, just like painting on a canvas. There is no command that erases stuff
already drawn.



Getting started in PostScript 3

There are often lots of different ways to do the same thing in PostScript. Here is a different way to draw the
square:

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

stroke

Here rmoveto and rlineto mean motion relative to where you were before. The command closepath closes
up your path back to the last point to which you applied a moveto.

A very different effect is obtained with:

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

fill

This just makes a big black square in the same location. Whenever you build a path, the operations you perform
to make it visible are stroke and fill. The first draws the path, the second fills the region inside it.

You can draw in colour with two different commands, setgray and setrgbcolor:

0.5 setgray

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

fill

will make a grey square, and

1 0 0 setrgbcolor

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

fill

will make a red one. The rgb here stands for Red, Green, Blue, and for each colour you choose a set of three
parameters between 0 and 1. Whenever you set a new colour, it will generally persist until you change it again.
Note that 0 is black, 1 white. The command x setgray is the same as x x x setrgbcolor. You can remember
that 1 is white by recalling from high school physics that white is made up of all the colors put together.

Exercise 1.1. How would you set the current colour to pink? Yellow? Violet? Orange?

If you want to draw a red square with a black outline you type



Getting started in PostScript 4

1 0 0 setrgbcolor

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

fill

0 setgray

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

stroke

We shall see later a way to produce this figure without redundant typing.

Exercise 1.2. Run ghostscript and draw an equilateral triangle near the centre of the page, instead of a square.
Make it 100 points on a side, with one side horizontal. First draw it in outline, then fill it in black. Next, make it
in turn red, green, and blue with a black outline. (You will have to do a few calculations first. In fact, as we shall
see later, you can get PostScript to do the calculations.)

2. Simple coordinate changes

Working with points as a unit of measure is not for most purposes very convenient. For North Americans, since
the default page size is 8.5′′ × 11′′, working with inches usually proves easier. We can change the basic unit of
length to an inch by typing

72 72 scale

which scales up the x and y units by a factor of 72. Scaling affects the current units, so scaling by 72 is the same
as scaling first by 8, then by 9. This is the way it always works. The general principle here is this:

• Coordinate changes always affect the current coordinate system.

You can scale the x and y axes separately, but it is usually a bad idea, since one effect will be that the thickness of
a line will depend on its direction. To be sure to get both scale factors the same, you can also type 72 dup scale.
The command dup duplicates the previous entry.

When you scale, you must take into account the fact that the default choice of the width of lines is 1 unit. So if
you scale to inches, you will get lines 1 inch wide unless you do something about it. It might be a good idea to
add

0.01 setlinewidth

when you scale to inches. This sets the width of lines to a hundredth of an inch. A linewidth of 0 is also
allowable—it just produces the thinnest possible lines which do not actually vanish. You should realize, however,
that on a device of high resolution, such as a 1200 DPI printer, this will be nearly invisible. This contradicts the
general principle that you should always aim in PostScript to produce figures which do not in any way depend
directly on the particular device on which it will be reproduced.

Exercise 2.1. How would you scale to centimeters?

You can also shift the origin.



Getting started in PostScript 5

1 2 translate

moves the coordinate origin to the right by 1 unit and up by 2 units. The combination

72 72 scale

4.25 5.5 translate

moves the origin to the centre of an 8.5′′ × 11′′ page.

One more simple coordinate change rotates things.

72 72 scale

0.01 setlinewidth

4.5 5.5 translate

30 rotate

newpath

0 0 moveto

1 0 rlineto

0 1 rlineto

-1 0 rlineto

closepath

stroke

Note that PostScript works with angles in degrees. This will cause us some trouble later on, but for now it is
probably A Good Thing.

3. Doing arithmetic in PostScript

PostScript is a complete programming language. But with the goal of handling data rapidly, it has only limited
built-in arithmetical capabilities. Integers must lie in the range [−32784, 32783], and real numbers are only
accurate to about 7 significant places. This is where the language shows its graphic roots, since normally drawing
a picture on a page of reasonable size does not have to be extremely accurate. This limited accuracy is not usually
a problem, but it does mean you have to be careful.

At any rate, with arithmetical operations as with drawing operations, the sequence of commands is backwards
from what you might expect. To add two numbers, first enter the numbers, followed by the command add. The
result of adding numbers is also not quite what you might expect. Here is a sample run in the ghostscript

interpreter:

GS>3 4 add

GS<1>

What’s going on here? What does the <1> mean? Where is the answer?

PostScript uses a stack to do its operations. This is an array of arbitrary length which grows and shrinks as
programs move along. The very first item entered is said to be at the bottom of the stack, and the last item entered
in is said to be at its top. This is rather like manipulating dishes at a cafeteria. Generally, operations affect only
the things towards the top of the stack, and compute them without displaying results. For example, the sequence
3 4 add does this:



Getting started in PostScript 6

Entry What happens What the stack looks like
3 The number 3 goes onto the stack 3

4 The number 4 goes above the 3 on the stack 3 4

add The operation add goes above 4 . . . 3 4 add

. . . then collapses the stack to just a single number 7

You might be able to guess now that the <1> in our run tells us the size of the stack. To display the top of the
stack we type =. If we do this we get

GS>3 4 add

GS<1>=

7

GS>

Note that = removes the result when it displays it (as does the similar command ==). An alternative is to type
stack or pstack, which displays the entire stack, and does not destroy anything on it.

GS>3 4 add

GS<1>stack

7

GS<1>

The difference between = and == is too technical to explain here, but in practice you should always use ==.
Similarly, you should always use pstack, which is a bit more capable than stack. There is a third and slightly
more sophisticated display operator called print. It differs from the others in that it does not automatically put
in a carriage return, and can be used to format output. The print command applies basically only to strings,
which are put within parentheses. For example,

(x = ) print x =

will display "x = " plus the current value of x on a single line. Implicitly the value of x here is converted to a
string. One feature of print is that its output will normally appear in the graphics window rather than in the
terminal window.

Other arithmetic operations are sub, mul, div. Some of the mathematical functions we can use are sqrt, cos,
sin, atan. For example, here is a command sequence computing and displaying

√
3 ∗ 3 + 4 ∗ 4.

GS>3 3 mul

GS<1>4 4 mul

GS<2>add

GS<1>sqrt

GS<1>=

5.0

GS>

Exercise 3.1. Explain what the stack holds as the calculation proceeds.

Exercise 3.2. Use ghostscript to calculate and display
√

92 + 72.

Exercise 3.3. Use ghostscript to calculate and display
√

30, 1672 + 21, 0532. You will have to be a bit clever
to get all the accuracy possible, since even when N isn’t too large for PostScript, N 2 may well be.

Here is a list of nearly all the mathematical operations and functions.

x y add puts x + y on the stack
x y sub puts x − y on the stack
x y mul puts xy on the stack
x y div puts x/y on the stack
x neg puts −x on the stack
y x atan puts the polar angle of (x, y) on the stack (in degrees)



Getting started in PostScript 7

x sqrt puts
√

x on the stack
x sin puts sinx on the stack (x in degrees)
x cos puts cosx on the stack (x in degrees)
y x exp puts yx on the stack
x ln puts ln x on the stack
x abs puts |x| on the stack

Exercise 3.4. Recall that acos(x) is the unique angle between 0◦ and 180◦ whose cosine is x. Use ghostscript
to find acos(0.4). (This will require thinking a bit about the geometry of angles.) (Note: some newer versions of
PostScript will have acos built in. Do not use it, but restrict yourself to getting by with atan.)

4. Errors

You will make mistakes from time to time. The default method for handling errors inghostscript (and indeed in
all PostScript interpreters I am familiar with) is pretty poor. This is not an easy problem to correct, unfortunately.
Here is a typical session with a mistake signaled. If I enter

GS>5 0 div

this is what I get spilled out on the screen:

Error: /undefinedresult in --div--

Operand stack:

5 0

Execution stack:

%interp_exit --nostringval--

--nostringval-- --nostringval--

%loop_continue --nostringval--

--nostringval-- false --nostringval--

--nostringval-- --nostringval--

Dictionary stack:

--dict:592/631-- --dict:0/20-- --dict:34/200--

Current allocation mode is local

GS<2>

Holy cow! What the $%#?! are you supposed to do now? Don’t worry too much about it. The important thing
here and in just about all error messages from ghostscript is that you can ignore all but these first lines:

Error: /undefinedresult in --div--

Operand stack:

5 0

which shows you the general category of error and what the stack was like when the error occurred. Here it is
division by 0. It never pays to try too hard to interpret ghostscript error messages. The only way to deal with
them is to try to figure out where the error occurred, and examine your input carefully. There is one trick you
can use to find out where the error occurred: put lines like (1) = or (location #1) = at various points
in your program and try to trace how things go from the way output is displayed. Simple, but often it helps.
The way this works is that (1) denotes the string "1", and = will display it on the terminal. If you are running
ghostscript, then to recover from an error you probably want to clear the stack completely and start over, with
the single command clear.

Incidentally, the way errors are handled by your PostScript interpreter can be modified by suitable embedded
PostScript code. In particular, there is a convenient error handler called ehandler.ps available from Adobe via
the Internet, at www.adobe.com. If you have a copy of it in your current directory, you can use it by putting



Getting started in PostScript 8

(ehandler.ps) run

at the top of your file. You can also arrange for ghostscript to use it instead of its default error handling, but
exactly how depends on which computer you are using. If you do import ehandler.ps you must remove all
reference to it before sending your work to a printer.

5. Working with files and ghostview or GSView

Using the ghostscript interpreter directly shows interesting things, and you should be ready and willing to
do it occasionally, but it is an extremely inefficient way to produce pictures, mostly because data entered cannot
be changed easily, and errors will usually force you to start all over again. What is much better is the following
sequence of things to do (gview is either ghostview or GSView depending on your system):

• Start up gview.

• Start up a text editor.

• Create or open up in your text editor the file you want to hold your PostScript program. Be sure your file
is to be saved as plain text, as opposed to one of the special formats word processors semm to prefer. On
Windows machines, this is the default with the simple editing program Notepad.

• Open up that file from gview.

• As you make up your program inside the editor, save it from time to time and reopen it in gview, where
your picture and possibly other messages will be displayed.

There are some new features of using files for PostScript programs that you’ll have to take into account, but
otherwise this works well—indeed, almost painlessly.

• At the very beginning of your file you must have the two characters %!. This tells your computer that the
file is a PostScript file.

• At the end of your file you should have a line with showpage on it.

Neither of these is usually absolutely necessary, but there will be times when both are required. They will
definitely be required if you want to print out your picture on a printer.

The command showpage displays the current page, at least in some situations, and then starts a new page. Later
on you will want to make up files with several pages in them, and each page must have a showpage at the end.
There is one tricky feature of showpage, however.

• Scaling must be done over again on each page.

There are better and worse ways to deal with this. The best is to put the commands gsave at the beginning and
grestore at the end of each page. We will see later exactly what these commands do, but roughly speaking they
save and restore the graphics state. Using them as I suggest here just means that every page starts all over in the
original graphics environment.

Here, for example, is a complete two-page program:

%!

gsave

72 72 scale

0.01 setlinewidth

4 5 translate

newpath



Getting started in PostScript 9

0 0 moveto

1 0 lineto

0.5 1 lineto

closepath

stroke

grestore

showpage

gsave

72 72 scale

0.01 setlinewidth

4 5 translate

newpath

0 0 moveto

1 0 lineto

1 1 lineto

closepath

stroke

grestore

showpage

Exercise 5.1. What does this program do?

6. Some fine points

Here are a few lines that produced the figure on the right, after scaling to inches.

0.1 setlinewidth

newpath

0 0 moveto

1 0 lineto

0 1 lineto

closepath

stroke

newpath

2 0 moveto

0 1 rlineto

stroke

If I add a single line like the following, near the beginning, I get something very slightly different.



Getting started in PostScript 10

1 setlinecap

Another possibility:

1 setlinejoin

There is nothing wrong with any of these pictures, but in some circumstances you will want to use something
other than the default, which is the first one. This is particularly true, for example, in drawing three dimensional
figures.

Exercise 6.1. Draw in PostScript the following picture, taken from the proof of Proposition I.47 in the standard
edition of Euclid’s Elements. Of course you might want to look up Euclid’s argument first. You might also want
to make several pictures to illustrate different parts of the proof.

You should think about also using colours in an intelligent way to help explain the proof.

Here and elsewhere, when you are asked to reproduce a picture, you are almost always expected to reproduce
its dimensions as closely as you can.

You should take it as dogma in this course that

• The ideal proof has no words and no labels on the figures.

A good proof is a good narrative.

Exercise 6.2. Draw a picture of the French flag (blue, white, and red vertical stripes). Do two versions, one with
and one without thin black lines separating the different colours and outlining the flag. (I do not know the official
aspect ratio.)



Getting started in PostScript 11

Exercise 6.3. Try a Canadian flag, too. This is much more difficult, but you ought to be able to produce a
schematic maple leaf.

7. A trick for eliminating redundancy

I mentioned before that if we want to fill a path with one colour and then stroke it with another, it is not necessary
to build the path a second time. Instead, we can use gsave and grestore in a tricky way. These two operators
save and restore the graphics state, but the graphics state includes any current paths unfinished, as well as the
current colour. Therefore we can do this:

1 0 0 setrgbcolor

newpath

300 400 moveto

100 0 rlineto

0 100 rlineto

-100 0 rlineto

closepath

gsave

fill

grestore

0 setgray

stroke

to get a red square outlined in black.

8. Summary

The basic commands necessary to draw in Postscript are pretty simple. The commands

newpath

moveto

lineto

rmoveto

rlineto

closepath

stroke

fill

are used to build and draw paths. The commands

translate

scale

rotate

allow us to make simple coordinate changes. The commands

setlinewidth

setrgbcolor

setgray

setlinejoin

setlinecap

allow us to change the attributes of paths drawn. Finally



Getting started in PostScript 12

showpage

lets us put together several pages of drawings.

Remember that in PostScript you put data on the stack before you say what to do with those data.

These are the basic drawing commands. However, constructing interesting things to draw can take a lot of work.
To help us here we have so far seen only a small set of mathematics functions like cos, etc. Next we need to learn
how to get PostScript to do more sophisticated things for us.


