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0.1 Functoriality and related matters. The notion of L­group and the principle of functoriality

appeared in [L] and were explained at more length in [Cor] and elsewhere. The principle of functoriality,

which is now widely believed but is very far from being established in general, can be roughly stated

as follows.

(I) If H and G are two reductive groups over the global field F and the group G is quasi-split then

to each homomorphism

φ : LH −→ LG

there is associated a transfer of automorphic representations of H to automorphic representations

of G.

A second problem that arose some time after functoriality is that of associating to an automorphic

representation π, now on the group G, an algebraic subgroup λHπ of LG that would at best be defined

up to conjugacy, although even that might often fail, and would have the following property.4

(II) If ρ is a representation of LG then the multiplicity mH(ρ) of the trivial representation of λHπ

in the restriction of ρ to λHπ is the order mπ(ρ) of the pole of L(s, π, ρ) at s = 1. Once again, this

is not intended as an absolutely precise statement.

1
Dedicated to Joseph Shalika on the occasion of his sixtieth birthday.

2 I would like to thank James Arthur, who once again guided me through the subtleties of weighted
orbital integrals, Erez Lapid and Peter Sarnak for useful conversations related to the material of this

paper and Werner Hoffmann for his comments on [H] and on Appendix C and D.
3 There is available at http://SunSITE.UBC.CA/DigitalMathArchive/Langlands the text of a

lecture Endoscopy and beyond that can also serve as an introduction to this paper. It has the advantage
of being informal, but there are misprints and some suggestions towards the end are red herrings. The

present paper may well turn out to have the same defects!
4 I use the notation λH to stress that we are dealing with a subgroup of the L­group LG that may

not itself be an L­group, but is close to one. Although there is not yet a group H attached to λH , I

use, for simplicity, in the next statement and subsequently, the notation mH(ρ) or mHπ
(ρ) rather than

mλH(ρ) or mλHπ
(ρ)
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0.2 Some touchstones. There are three. The first two form a part of functoriality. The third does not.

It is a question raised by a theorem of Deligne­Serre ([DL]). I take for expository purposes the ground

field F to be an arbitrary number field (of finite degree).

(T1) Take H to be GL(2), G to be GL(m+1) and φ to be the mth symmetric power representation.

(T2) Take H to be the group consisting of a single element and G to be GL(2). Then LH is

a Galois group and problem (I) is that of associating an automorphic form to a two-dimensional

Galois representation.

(T3) Take G to be GL(2) and π to be an automorphic representation such that at every infinite

place v of the πv is associated to a two-dimensional representation not merely of the Weil group

but of the Galois group over Fv. Show that Hπ is finite.

A positive solution of the first problem has as consequence the Ramanujan­Petersson conjecture

and the Selberg conjecture in their strongest forms; the Artin conjecture follows from the second. As is

well­known, all these problems have been partially solved; some striking results for the first problem

are very recent. For various reasons, the partial solutions all leave from a methodological point of view

a great deal to be desired. Although none of these problems refer to the existence of λHπ , I am now

inclined to the view that the key to the solution of the first two and of functoriality in general lies in the

problem (II), whose ultimate formulation will include functoriality. Moreover, as I shall observe at the

very end of the paper, the problem (T3) can be approached in the same spirit.

I by no means want to suggest that I believe the solution to (II) is imminent. What I want to

suggest rather, and to establish on the basis of the concrete calculations in this paper, is that reflecting

on the problem of attacking (II) with the help of the trace formula, in my opinion the only analytic

tool of any substantial promise available for either (I) or (II), one is led to concrete problems in analytic

number theory. They are difficult; but an often successful strategy, even though slow and usually

inglorious, for breaching an otherwise unassailable mathematical problem is to reduce some aspect

of it to a concrete, accessible form on which at least small inroads can be made and some experience

acquired. The calculations, tentative as they are, described in the third part of this paper are intended

as a first step in this direction for problems (I) and (II). I concentrate on (T2), for which G is GL(2) and

on π for which λHπ is finite. The same approach applied to (T1) would entail dealing with GL(m+ 1)

and π for which λH was the image of GL(2) under the mth symmetric power. This would require
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the use of the trace formula for GL(m + 1), much more sophisticated than that for GL(2) although

perhaps not completely inaccessible to numerical investigation for very small m.

Part I: Formal structure

1.1 The group λHπ. We might take (II) as a definition of λHπ, but there are several difficulties. It

is, first of all, perhaps best not to try to define λHπ for all π. Arthur in his study of the trace formula

has been led to a classification of automorphic representations that in spite of its apparent reliance on

objects whose existence is not established can, in fact, in the context of the trace formula usually be

formulated in decidable terms. The classification is above all a separation into representations that are

of Ramanujan type and those that are not. It is of conceptual significance that one expects to prove

ultimately that the representations of Ramanujan type are exactly those that satisfy the general form

of the Ramanujan conjecture, but that is not essential to the classification. The point is that a given

trace formula will give a sum over both types of automorphic representation but the contribution

to the formula of the representations that are not of Ramanujan type will be expressible in terms of

traces from groups of lower dimension, so that the remainder can be regarded as the sum over the

representations of Ramanujan type. We shall see a simple application of this principle to GL(2). If π

is not of Ramanujan type, it will be natural to define λHπ as the product λHπ′ × S of a group λHπ′

defined by an ancillary π′ of Ramanujan type with an image S of SL(2,C), but this is a matter for

which any great concern would be premature.

The other difficulties are more severe. The first is that even though we may expect that when π is

of Ramanujan type the functions L(s, π, ρ) are analytic on Re(s)≥ 1 except perhaps for a finite number

of poles on Re(s) = 1 we are in no position to prove it. So an alternative definition of mπ(ρ) is called

for, even though, as must be stressed, the definition need at first only be used operationally – as a

guide to the construction of various algebraic and analytic expressions whose meaning will be clear

and unambiguous.

There are two more difficulties: given π (implicitly of Ramanujan type) why should there exist an

λH (implicitly a reductive, but often not a connected, group) such that

mH(ρ) = mπ(ρ)

for all ρ; even if there is such an λH , why should it be unique, or rather why should its conjugacy class

under Ĝ be unique? Recall that the L­group is the semidirect product of its connected component Ĝ
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with the Galois group Gal(K/F ) of a finite Galois extension of F that has to be allowed to be arbitrarily

large, so that theL­group is really an inverse sequence of groups with a common connected component.

It normally suffices, however, to fix a K large enough for the purposes at hand.

The second of these difficulties is easily resolved. The conjugacy class may not be unique and there

may be several groups to be denoted λHπ. This is related to the multiplicity problem for automorphic

representations. It will, however, be important to establish that if the function ρ→ mH(ρ) is given then

there are only finitely many possibilities for the conjugacy class of λH . Jean­Pierre Wintenberger has

pointed out to me that as a consequence of a theorem of Larsen­Pink ([LP]) the group λH is uniquely

determined by the numbers mH(ρ) if LG is GL(n,C), thus if G is GL(n) over F and the Galois

extension of F used to define the L­group is F itself.5

In so far as the condition that the function mπ be an mH is a linear condition – thus in so far as

(in some sense!) mπ(ρ) = trπ(f ρ), where fρ is some kind of generalized function on G(AF ) – the

existence of λHπ is something to be verified by the trace formula. In the simplest of cases, there would

be a linear form

(1)
∑

αρmπ(ρ), αρ = αH
ρ ,

which is 0 if λHπ is not conjugate to a given λH but is 1 if it is. The trace formula will, with any luck,

yield an expression for the sum over all π with appropriate multiplicities of (1) and will thus select

exactly those π attached to λH , but a similar sum that selected exactly, perhaps with multiplicity, those

π such that λHπ lies in a given λH would be better. Thus
∑

αρmπ(ρ) is to be 0 if none of the possible

λHπ is conjugate to a subgroup of λH but is otherwise to be βH
π 6= 0, where βH

π depends only on the

collection of possible λHπ and is to be 1 if λHπ = λH .

If we admit the possibility that there is a second group λH ′ such that mH′(ρ) = mH(ρ) for all ρ,

then we see that we are demanding too much from the form (1). We might rather introduce a partial

ordering on the collection of λH , writing

λH′ ≺LP λH

if mH′(ρ)≥mH(ρ) for all ρ. Then we could at best hope that (1) would be different from 0 only if

λHπ ≺LP
λH and that it would be 1 if λHπ ∼LP

λH , thus if mHπ
(ρ) = mH(ρ) for all ρ. We would

then, for each λHπ, try to obtain from the trace formula an expression for

(2)
∑

λHπ≺LP
λH

∑

ρ

αH
ρ mπ(ρ).

5 There are certain supplementary conditions to be taken into account even in this case.
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It is best, however, to admit frankly that the first of the two difficulties, which amounts to under­

standing the conditions on the linear form ρ→ m(ρ) that guarantee it is given by a subgroup λH and

to showing that mπ satisfies these conditions, is a very serious problem that is not broached here. I

content myself with a basic example or two that suggest it is prudent to keep an open mind about the

properties to be possessed by (1) and about the final structure of the arguments. So (1) and (2) are at

best provisional approximations to what is to be investigated.

1.2 A simple observation. Not only is the L­group an inverse sequence but so is, implicitly, each λH .

If the occasion arises to distinguish the group in the sequence that lies in LGK = Ĝo Gal(K/F ), we

denote it λHK . If K ⊂ K ′, there is a surjective map

λHK′ → λHK .

Among the representations ρ are those that factor through the projection of LG on the Galois group,

Gal(K/F ). Since L(s, π, ρ) is, for such a representation, equal to the Artin L­function L(s, ρ), the

number mπ(ρ) = mHπ
(ρ) is just the multiplicity with which the trivial representation occurs in ρ.

If H is the image of λHπ in G = Gal(K/F ), it is also mH(ρ), calculated with respect to G. This is

clearly possible for all ρ only if H = G. Thus if λHπ exists it will have to be such that its projection

on Gal(K/F ) is the full group. We shall implicitly assume throughout the paper that any group λH

appearing has this property.

1.3 Calculation of mH(ρ) in some simple cases. In the second part of the paper, I shall consider only

the group G = GL(2) and it only over the base field Q. I have not reflected on any other cases. I shall

also often consider only π whose central character is trivial, so that π is an automorphic representation

of PGL(2). Then mπ(ρ) will not change when ρ is multiplied by any one­dimensional representation

ofGL(2,C) and λHπ will lie in SL(2,C) or, to be more precise, in the family {SL(2,C)×Gal(K/Q)}.

It is instructive to compute mH(ρ) for a few λHK in SL(2,C) × Gal(K/Q) and a few ρ. We may as

well confine ourselves to the standard symmetric powers σm, m = 1, 2, . . . of dimension m+ 1 and to

their tensor products with irreducible Galois representations τ .

If λH ⊂ SL(2,C) × Gal(K/Q), the multiplicity mH(σ1) is 2 if the projection of λH on the first

factor is {1} and is 0 otherwise. Thus if we confine ourselves to groups λH that project onto Gal(K/Q),

then

(A) a1mH(ρ1), a1 =
1

2
, ρ1 = σ1,
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is 1 if λH = {1} × Gal(K/Q) and 0 otherwise. On the other hand,

(B) a1mH′(ρ1), a1 = 1, ρ1 = det,

is 1 for all subgroups λH ′ of λH = SL(2,C) × Gal(K/Q) but 0 for groups that are not contained in

λH . When and if the occasion arises for a precise reference, we denote the groups in these two cases

by λHA and λHB .

In general, as in (1) and (2), given λH , we would like to find a collection ρ1, . . . , ρn of representa­

tions and a collection a1, . . . , an of real numbers such that

∑

k

akmH′(ρk) = 1

if λH ′ ⊂ λH and 0 if it is not. We will normally want to consider only λH and λH ′ defined with

respect to a given K . To make clear to which group given collections are associated I sometimes write

as before ρk = ρH
k , ak = aH

k .

If the kernel of the projection of λH to Gal(K/Q) is infinite, it is either SL(2,C), a trivial case

already treated, or contains the group

Ĥ = {
(

a 0
0 a−1

)

| a ∈ C×}

as a normal subgroup of index 1 or 2. The group of outer automorphisms of Ĥ , through which the

action of λH on Ĥ factors, is of order two and the image of λH in it may or may not be trivial. If it is

trivial, then λH = Ĥ × Gal(K/Q) and mH(σm ⊗ τ) is 1 if m is even and τ is trivial and otherwise 0.

We take

(C) a1 = 1 ρ1 = σ2,

and denote the pertinent group by λHC .

If the image of λH in the group of outer automorphisms, identified with Z2, is not trivial the map

λH → Z2 may or may not factor through the Galois group. If it does not then Ĥ\λH is isomorphic

to Z2 × Gal(K/Q) and λH contains the normalizer of Ĥ in SL(2,C). Moreover mH(σm ⊗ τ) = 0

unless m ≡ 0 (mod 4) and τ is trivial, when it is 1. If the map λH → Z2 factors through the Galois

group then Ĥ\H is isomorphic to Gal(K/Q) and mH(σm ⊗ τ) is 1 if and only ifm ≡ 0 (mod 4) and

τ is trivial or m ≡ 2 (mod 4) is even and τ is the one­dimensional representation τ0 of Gal(K/Q)
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obtained by projecting onto the group Z2 and then taking the nontrivial character of this group, which

is of order two. Otherwise mH(σm ⊗ τ) is 0. We take in these two cases:

a1 = 1, ρ1 = σ4;(D)

a1 = 1, ρ1 = σ2 ⊗ τ0.(E)

The two groups will of course be denoted by λHD and λHE .

If λH ′ and λH are each one of the five groups just described, then

∑

k

aH
k mH′(ρH

k )

is different from 0 only if λH ′ is conjugate to a subgroup of λH and is 1 if λH ′ = λH . Observe as well

that in each of these cases,mH(σm ⊗ τ), depends only on τ and on m modulo 4.

The only remaining possibility is that λH projects to a finite nontrivial subgroup in SL(2,C). The

projection is either abelian, dihedral, tetrahedral, octahedral or icosahedral. For the last three cases, the

numbers mH(σm) are calculated for m = 1, . . . , 30 to be the following.

Tetrahedral : 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 0, 2, 0, 2, 0, 3;

Octahedral : 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1;

Icosahedral : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1.

As a consequence, if we take K to be Q and let λHT , λHO and λHI be the three subgroups of

SL(2,C) corresponding to the regular solids and if we set

aT
1 = 1, aT

2 = −1, ρT
1 = σ6, ρT

2 = σ2,

aO
1 = 1, aO

2 = −1, ρO
1 = σ8, ρO

2 = σ4,

aI
1 = 1, aI

2 = −1, ρI
1 = σ12, ρI

2 = σ8,

then, for λH ′ infinite or equal to one of the same three groups,

∑

k

aH
k mH′(ρH

k )

is 0 if λH ′ is not conjugate to a subgroup of λH and is 1 if λH ′ = λH .

On the other hand, if the projection on SL(2,C) is abelian of order l, then mH(σm) is the number

N of integers in {m,m− 2, . . . ,−m} divisible by l, and if it is dihedral with center of order l ≥ 3 then

mH(σ) is N/2 if m is odd and (N + 1)/2 if m ≡ 0 (mod 4) and (N − 1)/2 if m ≡ 2 (mod 4).
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Suppose, for example, that it is dihedral with center of order 6. Then N = 3 for m = 6 and N = 1 for

m = 2. Thus

aT
1 mH(ρT

1 )− aT
2 mH(ρT

2 ) = 1 6= 0,

but the group H is not contained in the tetrahedral group. If we try exclude the group H by adding

other representations to the sequence ρT
1 , ρT

2 , for example σ10, then we will introduce other groups,

like the abelian group of order 10, that should be, but will not be, subgroups of the tetrahedral group.

So we are still hoping for too much from the form (1). It looks as though we will have to accept in (2)

groups that are not subgroups of the tetrahedral group, but that are finite dihedral groups or abelian.

Since λHπ is abelian only if π is associated to Eisenstein series, we can envisage treating them by first

treating the infinite dihedral groups along the lines of (1) and (2), and then treating dihedral λH as

subgroups of the L­group of the group defined by the elements of norm 1 in a quadratic extension.

This is clumsier than one might hope.6

Suppose the group λHQ = λH = λHπ is defined and finite for K = Q. Then for an extension K

the projection of the group λHK on SL(2,C) will be λHQ and

λHK ⊂ λHQ × Gal(K/Q).

There are two possibilities: there exists a K such that the projection of λHK onto Gal(K/Q) is an

isomorphism or there does not, so that the kernel is never trivial. If our definitions are correct, it should

be possible to decide which from the behavior of the mH(ρ) as K and ρ vary.

Take as an example the case that λHQ is a cyclic group of odd prime order l, a possibility that will

certainly arise. Then λHK will be a subgroup of Z/lZ × Gal(K/Q). If it is a proper subgroup, then

its projection to Gal(K/Q) is an isomorphism. If it is not, the case to be considered, then it is the full

product. In both cases,mH(σl) = 2, mH(σl−2) = 0 and mH(ρa) = 2 if

ρa = σl − σl−2

is defined as a virtual representation.

The numbers

l − 2, l − 4, . . . , 1,−1, . . . , 2 − l

6 On the other hand, we would be using these arguments in combination with the trace formula,
in which there is always an implicit upper bound on the ramification of the π that occur. Since π with

large finite λHπ would, in all likelihood, necessarily have large ramification, we can imagine that these

two contrary influences might allow us to remove the unwanted groups from (2).
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run over all the nonzero residues of l, so that every nontrivial character of Z/lZ = λHQ appears exactly

once in the restriction of the representation σl−2 to λHQ. Suppose that τ is a character of the Galois

group of order l and consider the representation,

ρb = σl−2 ⊗ τ.

If λH is the full group λHQ × Gal(K/Q), then mH(ρb) = 0 because ρb does not contain the trivial

representation of λH . If, on the other hand, it is not the full group and τ factors through Gal(K/Q) '
λHK → λHQ, then it contains the trivial representation exactly once and mH(ρb) = 1. Thus

(3)
1

2
mH(ρa) −mH(ρb) 6= 0

if λHK is the full group, but can be 0 if it is not.

The question with which we began is very difficult but an obvious hypothesis lies at hand.

1.4 A splitting hypothesis. Suppose that for some automorphic representation π of Ramanujan type

the group λHπ = λHK
π ⊂ Ĝ o Gal(K/F ), whose existence is only hypothetical, were finite. Then I

expect – and there is no reason to believe that I am alone – that for a perhaps larger extension L and the

group λHL
π in Ĝo Gal(L/F ) the projection of λHL

π to Gal(L/F ) will be an isomorphism and that this

will then continue to be true for all Galois extensions of F that contain L. Moreover if π is unramified

outside a finite set S it is natural to suppose that L can also be taken unramified outside of S and of a

degree that is bounded by an integer determined by the order of the intersection of λHπ with Ĝ. Thus

L could be chosen among one of a finite number of fields.

In general, even when λHπ ∩ Ĝ is not finite, we can expect that for some sufficiently large L,

the group λHL
π ∩ Ĝ will be connected and that L can be taken unramified where π is unramified and

of a degree over K bounded by an integer determined by the number of connected components of

λHK
π ∩ Ĝ. The observations at the end of the previous section indicate what, at least from the point of

view of this paper, the proof of the hypothesis will entail in a special case: it must be shown that the

expression (3), which we still do not know how we might calculate, is 0 for at least one of the finitely

many cyclic extensions of Q of order p unramified outside a finite set that depends on the original π.

One might expect that the general hypothesis, or rather each case of it, reduces to similar statements.

1.5 Alternative definition of mπ. The integersmπ(ρ) have been defined by residues of the logarithmic

derivatives of automorphic L­functions at a point s = 1 outside the region at which they are known
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to be absolutely convergent. So it is not clear how this definition might be implemented. Since these

integers have been introduced in the hope of broaching the problem of functoriality and thus that

of analytic continuation, an alternative definition has to be found that better lends itself to harmonic

analysis and to numerical investigation. For this purpose, I recall some familiar basic principles of

analytic number theory. Since the extension of the principles and the definitions to other number fields

will be patent, I confine myself for simplicity to the rationals.

If c > 0 is sufficiently large and X > 0, then

(4) − 1

2πi

∫ c+i∞

c−i∞

L′

L
(s, π, ρ)Xs ds

s

is equal to

(5)
1

2πi

∑

p

∑

ln(p)

∫ c+i∞

c−i∞

tr(ρ(A(πp)
k))

pks
Xs ds

s
.

This expansion shows that the integral (4) converges at least conditionally. Those terms of (5) for which

X < pk are 0 as is shown by moving the contour to the right. The finite number of terms for which

X > pk are calculated by moving the integral to the left as a residue at s = 0. So (5) is equal to

∑

pk<X

ln(p) tr(ρ(A(πp)
k))

On the other hand, if theL­function can be analytically continued to a region containing the closed

half­plane Re(s)≥ 1 where it has no poles except for a finite number at points 1 + iρl, l = 1, . . . , n and

if its behavior in Im(s) permits a deformation of the contour of integration in (4) to a contour C that

except for small semi­circles skirting these points on the left runs directly from 1 − i∞ to 1 + i∞ on

the line Re(s) = 1, then (4) is (morally) equal to

∑

l

m1+iρl

1 + iρl
X1+iρl + o(X).

As a consequence

(6) mπ(ρ) = m1 = lim
M→∞, X→∞

1

M

∫ X+M

X

∑

pk<Y ln(p) tr(ρ(A(πp)
k))

Y
dY.

If, for whatever reason, we know that the only possible pole is at 1, then this may be simplified to

(7) mπ(ρ) = lim
X→∞

∑

pk<X ln(p) tr(ρ(A(πp)
k))

X
.
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The possible appearance of other poles and thus the introduction of M are simply nuisances that we

could well do without.

For summation over primes, the sums ([Lan])

ϑ(X) =
∑

p<X

ln(p)

are the analogues of the sums over all positive integers

∑

1 ≤ n<X

1.

In particular, ϑ(X) = X + o(X). Moreover,

ψ(X) =
∑

pk<X

ln(p) = ϑ(X) + o(X).

Since it is expected that for π of Ramanujan type the eigenvalues of ρ(A(πp)) all have absolute value

equal to 1, it is therefore not unreasonable in a tentative treatment to replace (6) and (7), both nothing

but possible definitions, by

(8) mπ(ρ) = lim
M→∞, X→∞

1

M

∫ X+M

X

∑

p<Y ln(p) tr(ρ(A(πp)))

Y
dY

and by

(9) mπ(ρ) = lim
X→∞

∑

p<X ln(p) tr(ρ(A(πp)))

X
.

We want to see to what extent these definitions can be given real content and how.

We could modify (5) by replacing the denominator s by s(s + 1). The residues at s = 1 + iρl

become 1/(1 + iρl)(2 + iρl) and the residue at s = 0 is replaced by residues at s = 0 and s = 1. The

result is that

(6′) mπ(ρ) = lim
M→∞, X→∞

2

M

∫ X+M

X

∑

pk<X ln(p)(1− p/X) tr(ρ(A(πp)
k))

X
dX,

or in the favorable case that there is only a pole at s = 1,

(7′) mπ(ρ) = lim
X→∞

2
∑

pk<X ln(p)(1− p/X) tr(ρ(A(πp)
k))

X
.

The two formulas (8) and (9) can be similarly modified. Some of the experiments have been made using

(7′), on the somewhat doubtful and certainly untested assumption that this improves convergence.
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1.6 The role of the trace formula. As we have already stressed, in the general theory of automor­

phic forms it is usually unwise to attempt to calculate directly any invariant associated to individual

automorphic representations. Rather one calculates the sum – often weighted as, for example, in en­

doscopy – of the invariants over all automorphic representations of one group and compares them with

an analogous sum for a second group, establishing by a term­by­term comparison their equality. For

present purposes, what we might hope to calculate from the trace formula is7

(10)
∑

π

µπmπ(ρ)
∏

v∈S

tr(πv(fv)).

(We have to expect that it will at first be unknown whether the mpi(ρ) are integers. To show that

they are integers comparisons like those envisaged in (15) will very likely be necessary.) The finite­

dimensional complex­analytic representation ρ of LG is arbitrary. The set S is a finite set of places of

the base field F , including all archimedean places and all places where the group G is not quasi­split

and split over an unramified extension, and fv is a suitable function on G(Fv). Implicitly we also fix

a hyperspecial maximal compact subgroup at each place outside of S. The coefficient µπ is usually a

multiplicity; the sum is over automorphic representations of Ramanujan type unramified outside of S,

ultimately perhaps only over the cuspidal ones, although it is best not to try without more experience

to anticipate exactly what will be most useful – or the exact nature of µπ .

For the base field F = Q, at this stage an adequate representative of the general case, to arrive at

(10) we choose, for each a given prime p 6∈ S, fq, q 6∈ S and q 6= p to be the unit element of the Hecke

algebra at q and we choose fp in the Hecke algebra to be such that

(11) tr(πp(fp)) = tr(ρ(A(πp)))

if πp is unramified. Then we take fp(g) =
∏

v fv(gv), where fv, v ∈ S, is given in (10). If R is the

representation of G on the space of cuspidal automorphic forms of Ramanujan type and if we can get

away with (9), then (10) is equal to

(12) lim
X→∞

∑

π

µπ

∑

p<X ln(p) tr(R(f p))

X
.

If we use (7′) then (12) is replaced by

(12′) 2 lim
X→∞

∑

π

µπ

∑

p<X ln(p)(1− p/X) tr(R(f p))

X
.

7 We have to expect that it will at first be unknown whether the mπ(ρ) are integers. To show that

they are integers, comparisons like those envisaged in (15) will very likely be necessary.
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Not only is it not clear at this stage whether it is the representation on the space of cuspidal automor­

phic forms that is most appropriate or whether it might not be better to include some noncuspidal

representations but it is also not clear whether it is best to take the ordinary trace or the stable trace.

Such questions are premature. The important questions are whether we can hope to prove that the

limit of (12) exists and whether we can find a useful, concrete expression for it.

We shall address some very particular cases of this question in the second part of this paper. Grant

for the moment that we have such a representation for representations ρk, 1≤ k ≤n. Then for any

coefficients ak we also have an expression for

∑

π

µπ

n
∑

k=1

akmπ(ρk)
∏

v∈S

tr(πv(fv))

If we could find ak such that

(13)
∑

k

akmπ(ρk)

is equal to 1 if and only if λHπ is IP­dominated by a given group λH and is otherwise 0. Then we

would have an expression for

(14)
∑

λHπ≺λH

µπ

∏

v∈S

tr(πv(fv)),

the sum being over automorphic representations of G unramified outside of S, principally over cuspi­

dal but perhaps with some noncuspidal terms present as well. The multiplicities µπ could be ordinary

multiplicities, but they will more likely be stable multiplicities and may even depend on λHπ . As we

observed, we will have to content ourselves with satisfying the conditions imposed on (13) approxi­

mately; some of the representations for which it is not zero may have to be dealt with separately by an

iterative procedure or the argument modified.

The existence of coefficients ak for which (13) has the desired properties, exactly or approximately,

is an algebraic question that I have not broached except for GL(2). The group GL(2) has a center,

so that the representation of GL(2,A) on the space of cusp forms is not the direct sum of irreducible

representations. To achieve this it is necessary, as usual, to consider the cusp forms transforming

under a given character of Z+ = R+ and there is no good reason at this stage not to suppose that

this character is the trivial character. So we treat the representation on the space of functions on

GL(2,Q)Z+\GL(2,A). Then f∞ will be a smooth function of compact support on Z+\GL(2,R) and

the only π to be considered are those for which π∞ is trivial on Z+. This implies that the central
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character of π is trivial on R+. If in addition we suppose that S consists of the infinite place alone –

this is an assumption to be made purely for convenience as it removes inessential complications from

the preliminary algebra and from the experiments – then we conclude that the only π to be considered

are those whose central character is trivial on R+ and unramified and thus trivial. Since the central

character controls the group det(Hπ), this means that we are taking only π with λHπ ⊂ SL(2,C), or,

more precisely, λHπ ⊂ SL(2,C) × Gal(K\Q). These are the very simple groups that we considered

in a previous section and for which we are in a position to find – insoar as they are available – the

coefficients of (13).

1.7 Comparison. If we managed by a combination of the trace formula with various limiting processes

to obtain a formula for (14), then we would want to compare it with the trace formula on λH itself,

except that λH may not be an L­group, for it may not be defined by a semidirect product. When,

however, the kernel of λHK → Gal(K/Q) is connected, it is possible as a consequence of, for example,

Prop. 4 of [L1] to imbed the center Ẑ of Ĥ , the connected component of the identity in λH , in the

connected dual T̂ of a product of tori, T =
∏

iK
×
i , where each Ki is a field over F , and to imbed it

in such a way that LH̃ , the quotient of the semidirect product T̂ o λH by the diagonally imbedded Ẑ

becomes anL­group.8 Notice that the Galois group Gal(K/Q) acts on T̂ , so that λH does as well. Maps

φ into λH may be identified with maps into LH̃ that correspond to automorphic representations of H̃

whose central character is prescribed by the structure of λH . They can be presumably be identified in

the context of the trace formula.

Then to make use of (14), we would have to introduce a transfer f → fH from functions onG(AF )

to functions on H(AF ) (if λH = LH is an L­group but to functions on H̃(AF ) in the general case) and

compare (14) with

(15)
∑∏

v∈S

tr(π′
v(f

H
v )),

the sum being over automorphic representations of H of, say, Ramanujan type unramified outside of

S, so that there will also be a formula for (15) which is to be compared with that for (14). The difference

between IP ­domination and inclusion will undoubtedly complicate this comparison.

There is no reason not to admit the possibility that (14) is replaced by a sum over groups λH ,

(14′)
∑

λH

∑

λHπ≺λH

µπ

∏

v∈S

tr(πv(fv)).

8 The L­group may have to be defined by the Weil group and not by the Galois group, but that is of

no import.
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Then (15) would be replaced by a similar sum (15′).

It is perhaps well to underline explicitly the differences between the comparison envisaged here and

endoscopic comparison. For endoscopy the transfer f → fH is defined in terms of a correspondence

between conjugacy classes. In general, the transfer f → fH , which is defined locally, will be much

less simple. There will already be much more knowledge of local harmonic analysis, especially of

irreducible characters, implicit in its definition. Secondly, there will be difficult analytic problems to

overcome in taking the limit of the trace formula onG. Thirdly, the groups λH that occur are essentially

arbitrary subgroups of LG, not just those defined by endoscopic conditions.

1.8 Further concrete cases. I consider GL(2) and icosahedral representations but in two different

ways. The ground field F may as well be taken to be Q. Suppose K/Q is a Galois extension and

Gal(K/Q) admits an imbedding τ in GL(2,C) as an icosahedral representation. Thus Gal(K/Q) is

an extension of the icosahedral group by Z2. Take LG = LGK and consider ρ = σ1 ⊗ τ̃ , where τ̃ is

the contragedient of τ . If mH(ρ) 6= 0, then σ1 and τ define the same representation of λH . Therefore

the kernels of λH → Gal(K/Q) and λH → GL(2,C) are the same and thus {1}. So the projection of

λH to Gal(K/Q) is an isomorphism; λH is an L­group, that attached to the group H = {1}; and σ1

restricted to λH is τ , or rather the composition of τ with the isomorphism λH → Gal(K/Q).

Thus we can expect that mπ(ρ) 6= 0 if and only if π = π(τ) is the automorphic representation

attached to τ by functoriality. To compare (14), provided we can find such a formula, and (15) we will

need to define the local transfer fv → fH
v by means of the characters of πv(τ).

On the other hand, define the L­group LG to be LGQ and take ρ = σ12 − σ8. We have seen that

mH(ρ) is nonzero only if λH is a subgroup of the icosahedral group or perhaps a finite abelian or

dihedral group that can be treated independently. Then mπ(ρ) will be nonzero only if λHπ is such a

subgroup. There will be many such π and although (15) will not have to take them all into account, it

will have to contain a sum over all icosahedral extensions unramified outside a given set of places.

So the first approach has at least one advantage: it singles out a unique π. It may have another.

Numerical experiments involving σ1 are manageable. Those for σm quickly become impossible as

m grows. Even m = 3 is very slow. On the other hand, the first approach alone cannot, so far as I

can see, assure us that if λHπ ⊂ LGQ is an icosahedral group, then π is associated to an icosahedral

representation of the Galois group. No matter what τ we choose, it necessarily overlooks π for which

this is false.

1.9 A cautionary example. Take the group G to be GL(1) over Q and take λH to be the finite group

of order m in LG = C×. If ρ is the representation z → zm, then mH′(ρ) = 1 if λH ′lies in λH and
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is otherwise 0. Let S be, as usual, a finite set of places containing the infinite places. In order to

have a discrete spectrum under the action ofG(A), we consider functions, thus automorphic forms, on

R+Q×\I , I being the group of idèles. This is the space R+G(Q)\G(A). The function f =
∏

v fv will

be such that f∞ is in fact a function on R+\R× = {±1}. The function fp is the characteristic function

of the set of integral γ with |γ| = p−m.

If we take the measure on R+\G(A) to be a product measure, with the measure of G(Zp) and of

R+\R+ equal to 1, then µ(R+G(Q)\G(A)) is equal to 1 and

(16) trR(f) =
∑

π

trπ(f) =
∑

γ∈Q×

f(γ).

The element γ must be equal to apm, where

(17) a = ±
∏

q∈S

qαq .

Thus the expression (16) is equal to g(pm), where g is the function on
∏

q∈S Zq given by g(x) =
∑

f(ax),

the sum being over all a of the form (17).

Thus (12) is

lim
X→∞

∑

p<X ln(p)g(pm)

X
,

which is equal to
∑

xmodM g(xm)

ϕ(M)
,

where M is a positive integer that is divisible only by primes in S and that depends on the collection

of functions fq, q ∈ S, each of them being smooth. The number ϕ(M) is the order of the multiplicative

group of Z/MZ. In terms of f , this is

(18)

∫

R+QSIm
S
f(x)dx

∫

R+QSIm
S
dx

.

where QS is the set of nonzero rational numbers that are units outside of S and IS is the product
∏

v∈S Qv , the first regarded as a subgroup of the second.

The expression (18) is certainly in an appropriate form and is equal to

∑

χ

χ(f),
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where χ runs over all characters of R+QSIS of order dividing m. This, however, is pretty much the

point from which we began. We are still left, as in class­field theory, with the problem of showing that

these characters can be deduced from characters of the Galois group. Thus we cannot expect that the

trace formula will spare us the arithmetical investigations. It will, at best, make it clear what these must

be.

Part II: Preliminary analysis

2.1 Measures and orbital integrals. In this part of the paper, we shall review the trace formula for

GL(2), the only group with which we are seriously concerned at present, and examine the possibility of

obtaining an expression for (14) or (15’). It would be worthwhile to undertake a similar study of the trace

formula for other groups. If the general trace formula admits a similar analysis and transformation, it

will be an encouraging sign.

To obtain expressions that can then be used for numerical purposes, we have to be clear about

the conventions. As we already observed, we shall consider automorphic forms on G(Q)Z+\G(A),

A = AQ and G = GL(2). The functions whose trace is to be calculated are functions on Z+\G(A)

and are taken to be products f(g) =
∏

v fv(gv). The measure on Z+\G(A) is to be a product measure

as is the measure on Z+\Gγ(A) if γ is regular and semisimple. The group Gγ is then defined by the

multiplicative group of a ringEγ , the centralizer of γ in the ring of 2×2 matrices. At a nonarchimedean

place p, the subgroup Gγ(Zp) has a natural definition and we normalize the local measures by the

conditions:

µ(Gγ(Zp)) = 1, µ(G(Zp)) = 1.

At infinity, the choice of measure on Z+\G(R) is not important, nor is that on Z+\Gγ(R). It is not

necessary to be explicit about the first, but it is best to be explicit about the second.

(a) Elliptic torus. Here I mean that the torus is elliptic at infinity and thus that E = Eγ is an imaginary

quadratic extension. I assume, for simplicity, that it is neither Q(
√
−2) nor Q(

√
−3). An element in

Gγ(R) is given by its eigenvalues, σeiθ and σe−iθ. The value of σ > 0 is irrelevant and I take the

measure to be dθ. The volume of

(19) Z+Gγ(Q)\Gγ(A) = Z+E
×\IE

is the class number CE times the measure of

±Z+\C× ×
∏

p

Gγ(Zp),



18

which, according to the conventions chosen, is the measure of ±Z+\C× or

∫ π

0

dθ = π.

(b) Split torus. Once again, the torus is only to be split at infinity, so that Eγ is a real quadratic field. If

the eigenvalues of an element δ are α and β, set

(20)

r = α+ β,

N = 4αβ,

r
√

|N |
=

1

2
(sgnα

√

|α|
|β| + sgnβ

√

|β|
|α| ) = ±1

2
(λ± λ−1),

λ =

√

|α|
|β| , σ =

√

|αβ|,

α = ±σλ, β = ±σ
λ
.

The value of σ is irrelevant and I take the measure to be dλ
λ

. Notice that

(21) d(
r

√

|N |
) =

1

2
(1 ∓ λ−2)dλ =

1

2
(1− β

α
)dλ.

The upper sign is that of N . The parameters r = tr δ and N = 4det δ can also be defined when the

torus is elliptic at infinity or globally or at any other place. When the torus is elliptic at infinity,

(22) d(
r

√

|N |
) = d cos θ =

i

2
(1 − λ−2)dλ, λ = eiθ.

The fundamental unit ε can be taken to be the unit with the smallest absolute value |ε| > 1. Thus

ln |ε| is the regulator as it appears in [C]. The measure of the quotient (19) is now the class number

times the measure of

(23) ±R+\R× × R×/{εk|k ∈ Z}.

Since ±R+\R× × R× can be identified with R× by projecting on the first factor, the measure of (23) is

2 ln |ε|, in the notation of [C], 2h(D)R(D) if D is the discriminant of the field Eγ .

There is a very small point to which attention has to be paid when computing with the trace

formula. Locally there are two measures to be normalized, that on Gγ(Qv)\G(Qv) and that on

Z+\Gγ(R) or Gγ(Qp). They appear in two ways in the measure on G(Qv): once when fixing it, as
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dδdḡ, by the measure on the subgroup Gγ(Qp) (or Z+\Gγ(R)) and the measure on the quotient space

Gγ(Qv)\G(Qv); and once, as in the Weyl integration formula, when fixing the measure on

{g−1δg | δ ∈ Gγ(Qv), g ∈ G(Qv)}

by means of the map

(24) (δ, g) → g−1δg, Gγ(Qv)× (Gγ(Qv)\G(Qv)) → G(Qv).

Since (24) is a double covering, the measure to be used in the Weyl integration formula is

1

2

∏

α

|1 − α(δ)|dδdḡ,

the product over α being a product over the two roots of the torus.

If m is a nonnegative integer, let Tm
p be the characteristic function of

{X ∈ Mat(Zp)
∣

∣ |detX| = p−m},

where Mat(Zp) is the algebra of 2× 2­matrices over Zp. If ρ = σm, then Tm
p /pm/2 is the function fp of

(11). In other words,

trπp(T
m
p ) = pm/2

m
∑

k=0

αm−k(πp)β
k(πp)

if πp is unramified and α(πp) and β(πp) are the eigenvalues of A(πp). I recall the standard calculation.

Take πp to be the usual induced representation, so that the vector fixed byGL(2,Zp) is the function

φ(ntk) = |a|−s1+1/2|b|−s2−1/2, t =

(

a 0
0 b

)

,

and {α(πp), β(πp)} = {ps1 , ps2}. Then

∫

φ(g)Tm
p (g)dg =

m
∑

k=0

p(m−k)s1+ks2p(2k−m)/2

∫

|x|≤ pm−k

dx = pm/2
m
∑

k=0

p(m−k)s1+ks2 .

We shall need the orbital integrals of the functions Tm
p /pm/2 for all m, but m = 0 is particularly

important as it is the unit element of the Hecke algebra. The pertinent calculations can be found in [JL]

but there is no harm in repeating them here. If γ is a regular semisimple element in G(Qp), set

(25) Um(γ) =

∫

Gγ(Qp)\G(Qp)

Tm
p (g−1γg).

Denote the two eigenvalues of γ by γ1 and γ2 and extend the usual norm on Qp to Qp(γ1, γ2) or to

Ep = Eγ ⊗ Qp, which we identify, taking γ1 = γ. The ring of integral elements in Ep is of the form

Zp⊕Zp∆. If ∆̄ is the conjugate of ∆, so that ∆+∆̄ = tr(∆), set δγ = p|∆−∆̄|. Let γ1−γ2 = b(∆−∆̄)

with |b| = p−k, k = kγ .
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Lemma 1. Um(γ) is 0 unless γ1 and γ2 are integral and |γ1γ2| = p−m, when it is given by the

following formulas.

(a) If γ is split then (25) is

pk =
1

|γ1 − γ2|
.

(b) If γ is not split and Eγ is unramified then (2) is

pk p+ 1

p− 1
− 2

p− 1
.

(c) If γ is not split and Eγ is ramified then (25) is

pk+1

p− 1
− 1

p− 1
.

The proof is familiar and easy. As the lemma is basic to our calculations, I repeat it. The value of

the characteristic function Tm
p (g−1γg) is 1 if and only if g−1γg takes the lattice L0 = Zp ⊕Zp into itself

and has determinant with absolute value p−m, thus only if it stabilizes the lattice and |det(γ)| = p−m.

Thus, assuming this last condition, if and only if γ stabilizes L = gL0. Knowing L is equivalent to

knowing g modulo G(Zp) on the right. Multiplying g on the left by an element of Gγ(Qp) = E×
p is

equivalent to multiplying L by the same element.

If Ep is split, then we can normalize L up to such a multiplication by demanding that

L ∩ {(0, z) | z ∈ Qp} = {(0, z) | z ∈ Zp}

and that its projection onto the first factor is Zp. Then the x such that (1, x) lies in L are determined

modulo Zp by L. Multiplying by

(

α 0
0 β

)

, |α| = |β| = 1,

we replace (1, x)by (1, βx/α), so that only the absolute value |x| counts. The measure inGγ(Qp)\G(Qp)

of the set of g giving the lattice L is the index in Gγ(Zp) of the stabilizer of L. This is just the number

of y modulo Zp with the same absolute value as x (or with |y|≤ 1 if |x|≤ 1), thus the number of lattices

that can be obtained from the given one by multiplying by an element of Gγ(Zp). The condition that

L be fixed by γ = (γ1, γ2) is that γ1 and γ2 be integral and that

(γ1, γ2x) = γ1(1, x) + (0, (γ2 − γ1)x)

lie in L, thus that (γ1 − γ2)x be integral. We conclude finally that (25) is equal to 1/|γ1 − γ2|.
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The argument is the same in the remaining cases. Identifying G(Qp) with the automorphisms of

the vector space Ep, we identify the quotient G(Qp)/G(Zp) with the lattices in Ep. Modulo the action

of Gγ(Qp), these can be put in the form Zp + Zpp
j∆, j ≥ 0. Such a lattice is fixed by γ if and only

if k ≥ j. In the unramified case, the stabilizer of the lattice in Gγ(Zp) has index 1 if j = 1 and index

pj(1 + 1/p) otherwise. So (25) is equal to

1 +
k
∑

j=1

pj(1 +
1

p
) = pk p+ 1

p− 1
− 2

p− 1
,

as asserted by (b). If Ep is ramified, the stabilizer has index 1 if j = 0 and index pj otherwise. So (25)

is now equal to

1 +
k
∑

j=1

pj =
pk+1

p− 1
− 1

p− 1
.

This is (c).

This lemma provided us with the orbital integrals that we need outside of S. The discussion inside

of S is quite different. Since we are going to take, for the present purposes, S = {∞}, I confine myself

to this case. The same principles apply in all cases. Over the field R = Q∞, the necessary information

is in the discussion of HCS­families in Chap. 6 of [L2] although it is not elegantly expressed. Let

ch(γ) = (4Nm(γ), tr(γ)). For any γ in GL(2,R),

(26)

∫

f∞(g−1γg)dg = ψ(ch(γ)) = ψ′
∞(ch(γ)) + ψ′′

∞(ch(γ))
|Nm γ|1/2

|γ1 − γ2|

where ψ′
∞ and ψ′′

∞ depend on f∞. The second is a smooth function on the plane with the y­axis

removed. The first is0outside the parabola y2−x≤ 0, but inside and up to the boundary of this parabola,

it is a smooth function of x and y2 − x. The functions ψ′ and ψ′′ are not uniquely determined. Since

we have taken f positively homogeneous, the function ψ is positively homogeneous, ψ(λ2N,λr) =

ψ(N, r) for λ > 0. Thus it is determined by the two functions ψ(±1, r) on the line. The function

ψ− = ψ(−1, r) is smooth; the function ψ+ = ψ(1, r) may not be. They are both compactly supported.

If θ(γ) = θ(ch(γ)) is any positively homogeneous class function on G(R), the Weyl integration

formula and formulas (21) and (22) give

(27)

∫

Z+\G(R)

θ(g)f(g)dg =
1

2

∑

∫

Z+\T (R)

θ(ch(γ))ψ(ch(γ))|1− α

β
||1 − β

α
|dλ|λ|

= 4
∑

∫ ∞

−∞
ψ±(r)θ(±1, r)

√

|r2 ∓ 1|dr
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because

|1 − α

β
||1 − β

α
|dλ|λ| = 2|1 − α

β
||λ| dr
√

|N |
,

λ(1 − α

β
) = λ∓ λ−1,

r2

N
− 1 = ±(λ± λ−1)2 − 1 = ± (λ∓ λ−1)2

4
,

and

2|λ∓ λ−1| dr
√

|N |
= 4

√

|r
2

N
− 1| dr

√

|N |
.

The sums in (27) are over the two tori and then, in the last line, over the two possible signs. The elliptic

torus corresponds to the region −1 < r < 1, N = 1; the split torus to the rest. The factor 1/2 is

removed in the passage from the first to the second line of (27) because the map γ → ch(γ) from each

of the tori to the plane is also a double covering.

The formula (27) is applicable if θ is a one­dimensional representation of G(R), in particular if it

is identically equal to 1, and then (27) yields

(28) tr(θ(f)) = 4
∑

∫ ∞

−∞
ψ±(r)

√

|r2 ∓ 1|dr

Another possibility is to take θ to be the character of the representation πχ unitarily induced from

a character

χ :

(

α 0
0 β

)

→ sgnαk sgnβl

of the diagonal matrices. Only the parities of k and l matter. The character is 0 on the elliptic elements,

where N > 0 and r2 < N . Otherwise it is constant on the four sets determined by fixing the signs of

N and r, where it is given by

(29.a) (sgnN + 1)
sgn(r)

√

|1 − α/β||1 − β/α|

if k 6= l and by

(29.b) 2
sgn(N)l

√

|1 − α/β||1 − β/α|

otherwise. The eigenvalues α and β of γ with ch(γ) = (N, r) are of course one­half the roots of

x2 − 2rx+N = 0. Since

|γ1 − γ2|2
|Nm γ| = |1 − α/β||1 − β/α| = |λ|2|1 ∓ λ−2|2 = 4|r

2

N
− 1|,
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we conclude thatψ±, although not necessarily bounded, are integrable functions of r and that tr(πχ(f))

is given by

(30) 4{
∫ −1

−∞
ε+−ψ+(r) +

∫ ∞

1

ε++ψ+(r) +

∫ 0

−∞
ε−−ψ−(r) +

∫ ∞

0

ε−+ψ−(r)},

where the constants ε±±, which are ±1 or 0, are to be chosen as prescribed by (29).

2.2 Calculating with the trace formula. Rather than refer to Arthur’s general trace formula as I

should if I were intent on preparing for the general case, I prefer to appeal to the formula on pp. 516­517

of [JL] with which I am more at ease and to which the reader is requested to refer. There are eight

terms in that formula, but for a base field of characteristic zero the term (iii) is absent. We shall also

only consider, for reasons already given, automorphic representations whose central character is trivial

on R+. The formula of [JL] gives the sum of the traces of π(f) over all automorphic representations

occurring discretely in L2(Z+G(Q)\G(A)). So we need to subtract those representations that are not

of Ramanujan type. For G = GL(2), these are the one­dimensional representations. Their traces will

be subtracted from the term (ii) of [JL] and the difference will be more important than (ii) itself. We

refer to the difference as the elliptic term. It is the most difficult and will be discussed – not treated –

in §2.5.

The principal question that concerns us is whether there are any possible developments in analytic

number theory that might enable us to find an explicit expression for (12). The numbers µπ are here

equal to 1 (or, for those π that are absent from the sum, 0). Lacking all experience, I fell back on

the obvious and made explicit calculations. For ρ = σm ⊗ τ they are feasible and not all too slow for

m = 1. Form = 2, 3 something can still be done, but for higherm, at least with my inefficient programs,

they are too slow to provide any useful information. On the other hand, as the first problem of §1.8

demonstrates, calculations for m = 1 are of considerable interest provided that we take the tensor

product of σm with a general τ or even just a τ of icosahedral type. Although taking such a tensor

product demands a simultaneous study of icosahedral representations or other Galois representations,

there is no reason not to expect that the important features of the problem are not already present for

τ trivial and that they persist. Of course, there may be accidental features, but these the wise student

should recognize and resolutely ignore. The addition of the Galois representation will add to the labor

but should not put additional demands on raw computer power, only on the skill of the programmer.

So I confine myself to trivial τ and, by and large, to m = 1. Although it is important for theoretical

purposes to envisage taking S arbitrarily large, computations and theory for larger S should not differ
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essentially from the case that S consists of the infinite place alone, although there will be many more

terms in the trace formula to be taken into account.

The sum over r ∈ Z that occurs in the elliptic term will be replaced by sums over r satisfying a

congruence condition. This will entail that whatever behavior we find for S = {∞} should remain

valid when congruence conditions are imposed. Such an assertion, which implies a greater theoretical

regularity that may make the proofs easier to come by, has to be tested further, but these are the

principles that justify confining myself at first to m = 1 and to representations unramified at all finite

places. We know of course a good deal about such representations. In particular, there are none of

Galois type, but this is an accidental circumstance that we will use to verify that the programs are

functioning well but that will be otherwise irrelevant to our conclusions.

The representations are to be unramified at all finite places; so the central character η of [JL] is

trivial. Since we will also examine, at least briefly, somem > 1, I do not fixm to be 1. The representation

τ will be, however, trivial. The trace formula replaces the expression (12) by a sum of seven terms,

corresponding to its seven terms. The function Φ of [JL] is now being denoted f , fp or even fp,m and

fp,m(g) = f∞(g∞)fm
p (gp)

∏

q 6=p

fq(gq),

in which f∞ is a variable function, fm
p depends on m, but all the other fq do not depend on m. Thus

the function Φ does not satisfy the conditions of [JL]; it does not transform according to a character of

the center Z(A) of G(A) and the resulting trace formula is different, but not very different. In (i) there

is a sum over the scalar matrices. In (ii) and (iv) there are sums over the full tori, not just over the tori

divided by the center. In (v) there is also a sum over the scalar matrices, the n0 defining θ(s, fv) being

replaced by zn0. In principle, (vi), (vii) and (viii) are different, but because fq is a spherical function

for all q, the sum over (µ, ν) implicit in these expressions reduces to the single term µ = ν = 1.

Since we are in a situation where (7) is appropriate and (6) unnecessary, the contribution of the

first term of the trace formula to (12) is given by

(TF.1)
∑

Z(Q)

µ(Z+G(Q)\G(A))

X

∑

ln(p)fm(z).

Since

fm(z) =
f∞(z)

pm/2
,

if z = ±pm/2 and 0 otherwise, the limit that appears in (12) or (12′) will be 0.
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The second term is the elliptic term to be treated in the next section. None of the terms (iv), (v)

and (viii) of [JL], is invariant on its own, so that some recombination of these terms is necessary. The

terms (vi) and (vii) can, however, be treated directly.

I begin with (vi), which yields a contribution that is not in general 0. Since fq is a spherical function

for all q, the only pair (µ, ν) that contributes to (vi) or to (vii) is the pair of trivial characters and ρ(·, s),

denoted ξs in this paper to avoid a conflict of notation, is the global (or local) representation unitarily

induced from the representation
(

α x
0 β

)

→ |α| s
2 |β|− s

2

of the adelic superdiagonal matrices. It is, moreover, easily verified that M(0) is the operator −I . Thus

the contribution of (vi) to (12) is

(TF.2)
1

4X

∑

ln(p) tr(ξ0(f∞)) tr(ξ0(f
m
p )).

Since tr(ξ0(f
m
p )) = m+ 1, the limit as X → ∞ is

(31)
m+ 1

4
tr(ξ0(f∞)).

From (30) we conclude that for m = 1, this is

(32) 2

{∫ −1

−∞
ψ+(r)dr +

∫ ∞

1

ψ+(r)dr+

∫ ∞

−∞
ψ−(r)dr

}

.

Apart from the elliptic term, this will be the only nonzero contribution to the limit. Since the standard

automorphic L­function L(s, π, σ1) does not have poles on Re(s) = 1, we expect that (32) will be

cancelled by the elliptic term. This is accidental and will not be for us, even numerically, the principal

feature of the elliptic term.

The function m(s) that appears in (vii) is

π
Γ((1− s)/2)

Γ((1 + s)/2)

ζ(1− s)

ζ(1 + s)
.

Thus

(33)
m′(s)

m(s)
= −1

2

Γ′((1− s)/2)

Γ((1− s)/2)
− 1

2

Γ′((1 + s)/2)

Γ((1 + s)/2)
− ζ ′(1− s)

ζ(1− s)
− ζ ′(1 + s)

ζ(1 + s)
.

It is to be multiplied by the product of

(34) tr(ξs(f∞))
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and tr(ξs(f
m
p ). The first of these two functions, as a function on (−i∞, i∞), is the Fourier transform

of a smooth function of compact support. The second is equal to

(35) pim s
2 + pi(m−2) s

2 + . . .+ pi(2−m) s
2 + p−im s

2 .

The estimates of §48 and §77 of [Lan] assure us that the product of (33) and (34) is an L1­function on

(−i∞, i∞). From the Riemann­Lebesgue lemma we then conclude that, for odd m, the integral of the

product of (33), (34) and (35) over that line approaches 0 as p approaches infinity. So, for m odd, (vii)

does not contribute to the limit in (12) or (12′).

2.3 The noninvariant terms. Both ω(γ, fv) and ω1(γ, fv) are 0 unless there is a matrix

n =

(

1 x
0 1

)

, x ∈ Fv,

and a matrix k in the maximal compact subgroup of GL(2,Qv) such that the element k−1n−1γnk lies

in the support of fv. Since f∞ is fixed at present, this means that the two eigenvalues α and β of γ

are units away from p and that there is a fixed δ > 0 such that δ < |α/β|∞ < 1/δ. From the product

formula we conclude that δ < |α/β|p < 1/δ. Since αβ = α2(β/α) = ±pm if ω(γ, fv) or ω1(γ, fv) is

not 0, we conclude that (iv) is 0 for all but a finite number of p if m is odd and thus does not contribute

to (12) or (12′). Ifm is even, there are only a finite number of γ that yield a nonzero contribution to (iv).

Indeed, such γ have to be of the form

γ =

(

±pk 0
0 ±pl

)

, k + l = m.

Since α/β = ±pk−m is bounded in absolute value, for all but a finite number of p only

γ

(

±pm/2 0
0 ±pm/2

)

contribute. Since γ is not central, the signs must be different.

In the new form of (v), θ(s, fv) depends upon a nonzero scalar z,

θz(s, fv) =

∫ ∫

fv(k
−1
v a−1

v zn0avkv)|
αv

βv
|−1−sdavdkv.

So the only contribution to (v) will be from z = ±pm/2 and it will only occur for even m.

At finite places q, the operator R′(µq, νq, s) that occurs in (viii) annihilates the vector fixed by

G(Zq). So, with our assumptions, (viii) reduces to

1

4π

∫ i∞

−i∞
tr(R−1(s)R′(s)ξs(f∞))

( m
∑

k=0

pi(m−2k)s

)

d|s|
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in which R is the local intertwining operator at infinity normalized as in [JL] and in which it is implicit

that µ∞ = ν∞ = 1. According to the estimates of [A],

| tr
(

R−1(s)R′(s)ξs(f∞)
)

| = O(
1

s2
), s→ ∞.

Thus we can once again apply the Riemann­Lebesgue lemma to conclude that, form odd, there will be

no contribution to the limits (12) or (12′) from (viii).

2.4 The case of even m.9 For evenm, there are several contributions in addition to those from (ii) that

survive when we take the limit in X . Since the term p0 occurs in (35), the expression (vii) contributes

(36)
1

4π

∫ i∞

−i∞

m′(s)

m(s)
tr(ξs(f∞))d|s|

to (12) or (12′). From (viii) we have

(37)
1

4π

∫ i∞

−i∞
tr(R−1(s)R′(s)ξs(f∞))d|s|

To treat (36), or at least part of it, we deform the contour from Re(s) = 0 to Re(s) > 0 or to

Re(s) < 0, as the usual estimates permit ([Lan]), expand

−ζ
′(1− s)

ζ(1− s)
− ζ ′(1 + s)

ζ(1 + s)

as

(38)
∑

q

∑

n>0

ln q

qn(1−s)
+
∑

q

∑

n>0

ln q

qn(1+s)

and integrate term by term, deforming the contours of the individual integrals back to Re(s) = 0. In

fact, because of the pole of
ζ ′(1± s)

ζ(1± s)

at s = 0, we have first to move the contour to the right and then, for the contribution from ζ′(1 −
s)/ζ(1 − s), move it back to the left. The result is that we pick up a supplementary contribution

− tr(ξ0(f∞))/2.

9 There are four sections devoted to evenm, by and large tom = 2, or to weighted orbital integrals:
§2.4, §4.3, and Appendices B and C. They are not used in this paper and are best omitted on a first
reading. The formulas for evenm are given for almost no other purpose than to make clear that for odd
m many significant simplifications occur. Since the formulas are not elegant and are applied neither
theoretically nor numerically, I very much fear that errors may have slipped in and advise the reader
to be cautious.
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Since the character of ξs is the function

|α/β|s/2 + |β/α|s/2

√

|1 − α/β||1 − β/α|
,

the calculation that led to (30) shows that

(39) tr(ξs(f∞)) = 2

∫

(λs/2 + λ−s/2)ψ±(r)dr

where the integral is to be taken over the set of (±1, r) with the interval

{(1, r)} | − 1≤ r ≤ 1}

removed. This may be rewritten as

2

∫ ∞

−∞
|t|s{|t− t−1|ψ+(t+ 1/t) + |t+ t−1|ψ−(t− 1/t)} dt|t| ,

so that, for s purely imaginary, tr(ξs(f∞)) is the Fourier transform of

(40) 2{|ex − e−x|ψ+(ex + e−x) + |ex + e−x|ψ−(ex − e−x)}.

As a result, the contribution of (38) to (36) is

(41)
∑

q

∑

n>0

ln q

qn
{|qn − q−n|ψ+(qn + q−n) + |qn + q−n|ψ−(qn − q−n)} − tr(ξ0(f∞))

2
,

in which the terms for large q or large n are 0. Since this expression occurs for every p, it remains in the

average, as in part a sum of atomic measures that may well be finally cancelled by a contribution from

the elliptic term, but it is hard to see at present how this will occur!

Although the local normalization of the intertwining operators to R used in [JL] is necessary if the

products and sums appearing in the trace formula are to converge, or at least if the global contribution

(vii), which entails no study of local harmonic analysis, is to be clearly separated from the contributions

(viii) for which the primary difficulty lies in the local harmonic analysis. Nonetheless it is best that,

having separated (38) from (33) to obtain a term that could be analyzed more easily, we combine what

remains of (36) with (37) so that we can more readily appeal to known results on weighted orbital

integrals.

Since

(42) −1

2

Γ′((1− s)/2)

Γ((1− s)/2)
− 1

2

Γ′((1 + s)/2)

Γ((1 + s)/2)
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is the logarithmic derivative of

π(s−1)/2Γ((1− s)/2)

π(s+1)/2Γ((1 + s)/2)
,

the combination of the two terms amounts to multiplying the unnormalized operator

(43) Js : φ→ Jsφ, Jsφ(g) =

∫

R

φ(n̄(x)g)dx

on the space of the induced representation ξs by

(44)
π(s−1)/2Γ((1− s)/2)

πs/2Γ(s/2)
.

I set

n(x) =

(

1 x
0 1

)

n̄(x) =

(

1 0
x 1

)

.

The choice of measure is irrelevant, because a logarithmic derivative is to be taken. Moreover there is a

slight difference between (43) and the intertwining operator of [JL], but this difference too disappears

when the logarithmic derivative is taken. So we use (43), which is the definition used in [H].

The logarithmic derivatives of both (44) and Js now have a pole at s = 0, the poles cancelling,

so that, when we replace the sum of (37) and the contribution of (42) to (36) by the integrals of the

logarithmic derivative of (43) and of (44), the contour of integration has to be deformed whenever we

want to discuss them separately. Hoffmann prefers to avoid 0 by skirting it to the right. I follow his

convention. So if C is the new contour, we are left with two terms,

(45)
1

4πi

∫

C

{

−1

2

Γ′((1− s)/2)

Γ((1− s)/2)
− 1

2

Γ′(s/2)

Γ(s/2)

}

tr ξs(f∞)ds

and

(46)
1

4πi

∫

C

tr(J−1
s J ′

sξs(f∞))ds.

The contribution (46) is not invariant and must be paired with terms from (iv) and (v) to obtain an

invariant distribution, the only kind that is useful in our context, for it is the only kind expressible in

terms of ψ alone.

The two expressions will be, however, ultimately combined. Indeed, there is a danger in discussing

them separately. We need an explicit expression for the sum as

1

4πi

∫ i∞

−i∞
Ω(s) tr ξs(f∞)ds.
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Since tr ξs(f∞) is even but otherwise essentially arbitrary, the function (or distribution) Ω will be

unique if it is assumed even. The integrands of (36) and (37) are even, so that if we stay with them

it is easier to use parity to monitor the manipulations. On the other hand, the factor multiplying the

trace in (45) is not even; nor is the integrand of (46). Since Hoffmann’s results for (46) are in a form

that is not only transparent but also symmetric and since we can easily put (45) in symmetric form, we

can readily restore the symmetry, the only cost being the replacement of (45) by a somewhat lengthier

expression, in which there is one surprise, the final term in the following formula. If we avoid 0 by a

small semi­circle of radius ε then (45) becomes, up to a term of order O(ε)

1

4πi

∫ −iε

−i∞
+

∫ i∞

iε

{

−1

2

Γ′((1− s)/2)

Γ((1− s)/2)
− 1

2

Γ′(s/2)

Γ(s/2)

}

tr ξs(f∞)ds+
tr ξ0(f∞)

4
.

The first factor in the integrand may be symmetrized, so that the singularity 1/s at s = 0 disappears,

and then ε allowed to go to 0. The result is the sum of

1

16πi

∫ i∞

−i∞

{

−Γ′((1− s)/2)

Γ((1− s)/2)
− Γ′(s/2)

Γ(s/2)
− Γ′((1 + s)/2)

Γ((1 + s)/2)
− Γ′(−s/2)

Γ(−s/2)

}

tr ξs(f∞)ds,

or better, since
Γ′(s/2)

Γ(s/2)
=

Γ′(1 + s/2)

Γ(1 + s/2)
− 2

s
,

of

(47)
−1

16πi

∫
{

Γ′((1− s)/2)

Γ((1− s)/2)
+

Γ′(1 + s/2)

Γ(1 + s/2)
+

Γ′((1 + s)/2)

Γ((1 + s)/2)
+

Γ′(1 − s/2)

Γ(1 − s/2)

}

tr ξs(f∞)

and

(48)
tr ξ0(f∞)

4

When considering (iv) and (v), we suppose that p 6= 2 since, as we observed, the values for a

particular p have no influence on the limit. We may also suppose that γ = ±pm/2δ, where δ is a matrix

with eigenvalues ±1. The signs are equal for (v) and different for (iv).

We begin with10 (iv), inverting the order of summation and discarding all terms that do not

contribute to the average, so that it becomes a sum over just two γ followed by a sum over the places

of Q. If v is a finite place q different from p, then

n(x)−1γn(x) = ±pm/2

(

1 2x
0 −1

)

10 There appears to be a factor of 1/2 missing in (iv). It was lost on passing from p. 530 to p. 531 of
[JL], but is included below.
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is integral in Qv if and only if 2x is integral. Consequently, ω1(γ, fq), q 6= p, is 0 except for q = 2, but

for q = 2,

ω1(γ, f2) = − ln(22)

2
= − ln 2

Moreover,

ω(γ, fq) =

{

1, q 6= 2, p;
2, q = 2 .

On the other hand,

ω(γ, fp) = 1,

if p 6= 2. Finally

ω1(γ, fp) = −
∫

1<|x|≤ pm/2 ln |x|2dx
pm/2

= −(1 − 1

p
)

ln p

pm/2

m/2
∑

j=1

2jpj

The integral is taken in Qp.

Thus the sum over v in (iv) reduces to three terms, those for v = ∞, v = 2 and v = p. Since our

emphasis is on f∞, the only variable part of f , the first plays a different role than the last two. It is

invariant only in combination with (46). The first two are already invariant as functions of f∞.

Before continuing, we give the values of the three constants c, λ0 and λ−1 appearing in the trace

formula as given in [JL]. First of all, λ−1 = 1 and λ0 is Euler’s constant. The constant c is the ratio

between two measures, the numerator being the measure introduced in §2.1 and used to define the

operators

R(f) =

∫

Z+\G(A)

f(g)dg

appearing in the trace formula11 and the denominator being that given locally and globally as d(ank) =

dadndk, g = ank being the Iwasawa decomposition. Thus both measures are product measures, so

that c =
∏

cv. If we choose, as we implicitly do, the measures da and dn so that A(Zq) and N(Zq)

have measure 1 for all q, then cq = 1 at all finite places. On the other hand, we have not been explicit

about the measure on Z+\G(R). There was no need for it. We may as well suppose that it is taken to

be dadndk, where a now belongs to Z+\A(R). Then c = c∞ = 1.

11 So the symbol R has two different roles. It is not the only symbol of the paper whose meaning
depends on the context.
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The measure on Z+\A(R) has already been fixed, but the choice of measures on N∞ and K∞ do

not enter the formulas explicitly. We have

ω(γ, f∞) = ψ(ch(γ)).

Thus the contribution from (iv) is the sum of two terms. The first

(49) −
∑

γ

ω1(γ, f∞)
∏

q 6=∞
ω(γ, fq),

in which only two γ appear,

γ = ±pm/2

(

1 0
0 −1

)

,

is to be combined with (46). Since ω(γ, fq) is just the orbital integral of fq, it is calculated by Lemma 1

and, as |γ1 − γ2| = |2pm/2| for the γ in question,

(50)
∏

q 6=∞
ω(γ, fq) =

1

pm/2
2pm/2 = 2.

The second stands alone and is

(51) ψ−(0)

{

ln 2 +

(

1 − 1

p

)

ln p

pm/2

m/2
∑

j=1

2jpj

}

,

an expression that is about ln p in size. Its occurrence is certainly unexpected, as it is not bounded in

p, so that the elliptic term will have to contain something that compensates for it. The source of this

atomic contribution to the elliptic term – if it is present – should not be hard to find, but I have not yet

searched for it.

We verify immediately that

θz(0, fv) =

∫

Qv

∫

Kv

fv(±pm/2k−1
v n(x)kv)dkvdx, z = ±pm/2,

if v = q is finite. If q 6= p, this is equal to 1. If q = p, it is equal to 1 because pm/2x is integral for

|x|≤ pm/2. Since (the notation is that of [JL], p. 194)

L(1) = π−1/2Γ(
1

2
) = 1

and f∞ is positively homogeneous, the first term of (v) contributes

(52)
∑

±
λ0θ±1(0, f∞) = λ0

∑

∫

R

∫

K∞

f∞(±k−1n(x)k)dkdx.
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to the average.

The expression (52) can be calculated easily in terms of ψ+. We take

γ = ±
(

et 0
0 e−t

)

,

and let t approach 0. Then ch(γ) = (N, r) = (4,±2 cosh t), r/
√

|N | approaches ±1, and, as a simple

change of variables shows,

(53) 2

(
√

r2

N
− 1

)

ψ+(r) = 2| sinh t|
∫

R

∫

K∞

f∞(k−1γn((1− e−2t)x)k)dxdk

approaches the integral of (52). According to (26), the limit of (53) is ψ′′∞(4,±2). It is nonzero only

when ψ+ is singular at 1 or −1.

The derivative

(54) θ′z(0, fv) = − ln q

q − 1

∫

fv(k
−1zn(x)k)dxdk+

∫

fv(k−1zn(x)k) ln |x|dxdk

if v = q is nonarchimedean. If it is archimedean, then

(55) θ′z(0, fv) = κ

∫

f∞(k−1zn(x)k)dxdk+

∫

f∞(k−1zn(x)k) ln |x|dxdk,

where

κ = −π
−1/2Γ(1/2)

2
lnπ + π−1/2Γ′(1/2) = −λ0

2
− ln π

2
− ln 2,

a result of

Γ′(
1

2
) = (−λ0 − 2 ln 2)

√
π, (cf. [N], p. 15).

The expression (54) is deceptive. If v 6= p and z = ±pm/2, then θz(s, fq) is identically 1 and its

derivative 0. If q = p, then

θz(s, fq) =
1

pm/2Lq(1 + s, 1)

∫

|β|≤ pm/2

|β|1+s dβ

|β| = pms/2,

so that

θ′z(0, fp) =
m ln p

2
.

The sum in (v) is a double sum, over γ = ±pm/2 and over v. Only v = ∞ and v = p yield a

contribution different from 0. The first will be combined with (52) to give the sum of

(56) κ1

∑

∫

R

∫

K∞

f∞(±k−1n(x)k)dx, κ1 =
λ0

2
− lnπ

2
− ln 2
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and the noninvariant expression

(57)
∑

∫

f∞(k−1zn(x)k) ln |x|dxdk,

which will have to be combined with (46). The second is

(58)
∑ m ln p

2

∫

R

∫

K∞

f∞(±k−1n(x)k)dx,

in which two disagreeable features appear: the logarithm of p which cannot possibly have an average

and the integral that is expressible only in terms of the singularities of ψ+ at ±1. So there is no question

of the logarithmic terms in (51) and (58) cancelling.

2.5 The elliptic term. The sum in the expression (ii) from [JL] is over the global regular elliptic elements

γ, each γ being determined by its trace, which we have denoted r and by 4 times its determinant,

N = 4det(γ). Only γ for which r is integral and N = ±4pm appear. The eigenvalues of γ are

r

2
±

√
r2 −N

2
.

Their difference is ±
√
r2 −N . Thus γ will be elliptic if and only if r2 −N is not a square. We write12

r2 −N = s2D, where D is a fundamental discriminant, thus D ≡ 0, 1 (mod 4). Both D and s are

understood to be functions of r and N . If r2 = N , then D is taken to be 0; if it is a square then D = 1.

I claim that

(59)
∑

f |s
f
∏

q|f



1 −

(

D
q

)

q



 ,

in which
(

D
p

)

is the Kronecker symbol ([C]), is equal to the product ofUm(γ) taken at pwith the product

over q 6= p of U1(γ). By multiplicativity, it is enough to consider

1 +
k
∑

j=1

qj



1 −

(

D
q

)

q





for each prime q. If
(

D
q

)

= 1, this is 1 + qk − 1, but if
(

D
q

)

= −1, it is

1 + (qk − 1)
q + 1

q − 1
= qk q + 1

q − 1
− 2

q − 1
.

12 So the symbol s appears in the paper in two quite different ways: here and elsewhere, as an integer
by whose square we divide to obtain the fundamental discriminant; previously and also below, as a
variable parametrizing the characters of R+.
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Finally, if
(

D
q

)

= 0, it is

k
∑

j=0

qj =
qk+1

q − 1
− 1

q − 1
.

So we have only to appeal to Lemma 1.

Let µD be the volume µ(Z+Gγ(Q)\Gγ(A)) if D 6= 1. Then the uncorrected elliptic term is the

sum

(60)
∑

N=±4pm

∑

r

µD
ψ(N, r)

pm/2

∑

f |s
f
∏

q|f



1 −

(

D
q

)

q



 ,

in which the function ψ continues to be defined as in (26). The factor 1/2 in (ii) has been removed

because each r accounts for two γ. Because of the presence of the term ψ(N, r), the sum is finite, the

number of terms being of order
√

|N |. The terms with D = 0, 1 are excluded because they do not

correspond to regular elliptic γ. Moreover p is fixed for the moment.

We now make use of formulas from [C] (§5.3.3 and §5.6.2 – the general form of the second formula

is stated incorrectly but we do not need the general form) for µD . If n is a positive integer and x a real

number, define the function ϕ(x, n) by the following formulas.

x < 0:

ϕ(x, n) = π erfc

(

n
√
π

√

|x|

)

+

√

|x|
n

exp(−πn2/|x|).

x > 0:

ϕ(x, n) =

√
x

n
erfc

(

n
√
π

√

|x|

)

+ E1

(

πn2

x

)

,

where E1 is defined to be the function

−γ − ln(x) +
∑

k ≥ 1

(−1)k−1 x
k

k!k
,

γ being Euler’s constant. Then, on making use of the formulas in §2.1 for µD in terms of the class

number, we obtain

(61) µD =
∞
∑

n=1

(

D

n

)

ϕ(D,n).

The series (61) is absolutely convergent and we substitute it in (60) to obtain

(62) 2
∑

n

∑

f

∑

{(r,N) | f |s}
f

(

D

n

)

ϕ(D,n)
ψ(N, r)
√

|N |
∏

q|f



1 −

(

D
q

)

q



 .
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Recall that N assumes only two values ±4pm, but that r runs over all integers except the very few for

which D = 0, 1. By homogeneity, we may replace ψ(N, r) by ψ±(xr), where for brevity of notation I

set xr = r/
√

|N |. I rewrite (62) as

(63) 2
∑

f

∑

{n | (n,f)=1}

∑

{(r,N) | f |s}

∑

f ′

f

(

D

nf ′

)

ϕ(D,nf ′)
ψ±(xr)
√

|N |
∏

q|f



1 −

(

D
q

)

q



 .

The sum over f ′ is over all positive numbers all of whose prime divisors are prime divisors of f . The

sum over (r,N) is over those pairs for which f |s, s continuing to be defined by r2 − N = s2D. In

principle, we want to examine the individual terms

(64) 2
∑

f |s

∑

f ′

f

(

D

nf ′

)

ϕ(D,nf ′)
ψ±(xr)
√

|N |
∏

q|f



1 −

(

D
q

)

q



 ,

the outer sum being a sum over r and the two possible N , but we must first subtract the contribution

(28) from the trivial representation. So we have to express it too as a sum over n and f .

The contribution from the trivial representation θ is the product of (28) with

tr θ(fm
p ) =

m
∑

k=0

p(m−2k)/2 = pm/2 1 − p−m

1 − p−1
=

√

|N |
2

1 − p−m

1− p−1

So it is

(65) 2
√

|N |1 − p−m

1 − p−1

∑

∫

ψ±(x)
√

|x2 ∓ 1|dx,

the sum being over the set {+,−}. To see how this is to be expressed as a sum over n and f , we observe

that ϕ(D,n) behaves for large |D| like
√

|D|/n =
√

|r2 −N |/sn, so that, for a rough analysis, (63)

may be replaced by

(66) 2
√

|N |
∑

f

∑

{n | (n,f)=1}

∑

f |s

∑

f ′

f

snf ′

(

D

nf ′

)

ψ±(xr)

√

|x2
r ∓ 1|

√

|N |
∏

q|f



1 −

(

D
q

)

q



 .

Suppose we replace each of the factors

(67)
∑

f ′

f

snf ′

(

D

nf ′

)

∏

q|f



1 −

(

D
q

)

q



 =
f

sn

(

D

n

)
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by a number εn,f (N), an approximation to its average value on intervals long with respect to n but

short with respect to
√

|N |. Then (63) is replaced by

(68) 2
√

|N |
∑

f

∑

{n | (n,f)=1}

∑

±
εn,f (N)

∫

ψ±(x)
√

|x2 ∓ 1|dx.

The inner sum is over the two possible values of N .

The exact sense in which εn,f (N) is an approximation to the average is not important, provided

the choice works, but we do need to show that

(69)

∑

n,f

εn,f (N) =
1

1− p−1
+O(|N |−1),

=
1− p−m−1

1 − p−1
+O(|N |−1),

so that (65) is equal to (68) and the difference between (63) and (65) has some chance of being o(|N |1/2).

For the purposes of further examination, we write this difference as the sum overn and f , gcd(n, f) = 1,

of13

(70) 2{
∑

f

(

D

nf ′

)

ϕ(D,nf ′)
ψ±(xr)
√

|N |
Φ −

√

|N |
∑

±
εn,f (N)

∫

ψ±(x)
√

|x2 ∓ 1|dx},

with

Φ = Φf =
∏

q|f



1 −

(

D
q

)

q



 .

The first sum in (70) is over r, f ′ and ±.

I now explain how we choose εn,f (N). Let t be an integer large with respect to
√

|N | and divisible

by a multiplicatively very large square. The average of (68) is to be first calculated on [0, t). The

divisibility of r2 −N by s2 is then decided for all s up to a certain point by the residue of r modulo t.

Whether (r2 −N)/s2 is then divisible by further squares is not, but it is except for squares that are only

divisible by very large primes. There will be very few r for which this occurs. Otherwise f divides s if

and only if f2 divides r2 −N with a remainder congruent to 0 or 1 modulo 4. Then, for (n, f) = 1,

(

(r2 −N)f2/s2

n

)

=

(

D

n

)

.

13 Notice that the sum (70) has a simpler mathematical structure than (60), especially for f = 1 for
then the sum over f ′ is absent. The only element that varies irregularly with r is the square s2 dividing
r2 −N .
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Thus εn,f (N) will be an approximation to the average value of

(71)
f

sn

(

(r2 −N)f2/s2

n

)

.

If gcd(n, f) were not 1, these expressions would be 0 and it is useful to set εn,f (N) = 0 if gcd(n, f) 6= 1.

The calculation of these factors is long and tedious, but their values are needed for the numerical

experiments, and (69) is a confirmation of the correctness of the calculation. So I present the calculation

in an appendix.

Part III: Numerical experiments

3.1 A first test. We observed that (32) was, apart from the elliptic term, the only nonzero contribution

to the limit. Since L(s, π, σ1) is regular and nonzero on Re(s) = 1 for all cuspidal automorphic π,

we expect that the limit (12′) is 0. For m = 1, we have calculated explicitly all contributions to the

limit (12′) except for the difference between the elliptic term (60) and the contribution (65) from the

one­dimensional representations. So we have to show that this difference, or rather its average in the

sense of (12′) over p < X , cancels the simple, but in our context fundamental, distribution (32). A first

test is numeric.

Both (60) and (65) are distributions, even measures, on the pair (ψ+, ψ−). The first is a sum of

atomic measures. The second is absolutely continuous with respect to Lebesgue measure. So their

difference and the average over p is also a measure, symmetric with respect to r → −r. I divide

the interval from −3 to 3 on each of the lines N = ±1 into 60 equal parts of length .1 and calculate

numerically for each p the measure of each interval. In the unlikely event that a point common to two

intervals has nonzero mass, I assign half of this mass to each of the two intervals. Then I average over

the first n primes in the sense of (12′). The result should be approaching −.2 on each of the intervals

except those on N = +1 between −1 and 1, where it should approach 0. From Table 3.1 at the end of

the paper in which the first two columns refer to the average over the first 200 primes, the second to

that over the first 3600 primes, and the third to that over the first 9400, we see that the average is almost

immediately approximately correct at least for the intervals closer to 0, that it does seem to converge to

the correct values, but that the convergence is slow, sometimes even doubtfully slow.

Thanks to the symmetry, only the results for the intervals from −3 to 0 need be given. In each set

of two columns, the numbers in the first column are for intervals of r with N = −1, and those in the
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second for N = 1. Once the results get within about .007 of the expected values they cease to improve.

I assume they would with better programming.

3.2 A rough estimate. For m odd and in particular for m = 1, the elliptic term, or more precisely the

difference between the elliptic term and the contribution from the one­dimensional representations,

is a formidable expression, with which it is difficult, probably very difficult, to deal. The limit of the

average is nevertheless expected to exist and is, moreover, expected to be, even if S contains finite

places, a linear combination of the distributions (30), of which there are three, because ε−− = ε−+. The

coefficients will depend on the functions fq, q 6= ∞, q ∈ S, thus on congruence conditions. So there is

a great deal of uniformity present in the limit, and it is fair to assume that it will influence the structure

of the proofs.

On the other hand, the average of the difference, with the elliptic term expressed as in (62) and

(65), decomposed with the help of (69), will be a sum over three parameters, r, p and n. More precisely,

the last sum is over n and f , but the additional sum over f may be little more than an unfortunate

complication, whose implications are limited, of the sum over n. At the moment, I am not concerned

with it. There are also sums over ± and f ′ that occur simultaneously with the sum over r and are

understood to be part of it.

The sum over r has a simple structure, except for the dependence on s. The use of the logarithmic

derivatives that leads us to an average over p with the factor ln p is alarming as any incautious move

puts us dangerously close to the mathematics of the Riemann hypothesis, but there is nothing to

be done about it. The structure suggested by functoriality and the L­group imposes the use of the

logarithmic derivative on us, and any attempt to avoid it for specious (in the sense of MacAulay14)

14 Although in the middle of the nineteenth century the word did not yet have its present thoroughly

pejorative sense, it did evoke doubt; so a few words of explanation are in order. The only tool presently

in sight for passing from π to λH are the functions mπ and mH , which are linear in ρ. We are already
familiar, thanks to basic results for the Artin L­functions, with the importance of the linearity in ρ of the

order of the pole of the L­functions at s = 1. The linearity in ρ is naturally accompanied by a linearity
in π. The functions mπ not only incorporate the structural advantages suggested by functoriality that

will be of great importance when we pass to groups of large dimension but also are fully adapted to
the trace formula, provided we take them as defined by the logarithm of the L­function L(s, π, ρ) or its

derivative. On the other hand, we have none of the necessary analytic experience. We are faced with

sums and limits in which we do not know what is large, what is small, what converges, what does not,
and we desperately need insight. If some experience and some feeling for the analysis can be acquired

by a modification of the problem in special cases in which the sums over primes that appear in the
logarithmic derivative are replaced by easier sums over integers, then common sense suggests that we

start there.
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technical advantages is likely to lead us away from our goal, not toward it. We do want to discover

something about the behaviour of automorphic L­functions near s = 1 but if we are careful we should

not otherwise find ourselves inside the critical strip.

By passing from (60) to (62) we remove the class number, an almost intractable factor, but at

the cost of the additional sum over n and f . Although the contribution from the one­dimensional

representations is not at first expressed as a sum over n and f , we observed in §2.5 that there was a

natural way so to express it, so that the difference becomes the sum over n and f of (70).

If it turned out that for each n and f , the sum over r and p behaved well, then we would, it seems

to me, have a much better chance of dealing with the elliptic term. More precisely, it would be a real

windfall if the average of (70) approached a limit for each n and f and if the sum over n and f followed

by the average could be replaced by the average followed by the sum. The most important observation

of this paper is that preliminary numerical investigations suggest that the average of (70) does indeed

have a regular behavior, but there are no windfalls. Since my experience as a programmer is limited and

mistakes are easy to make, either outright blunders or a careless analysis of possible systematic errors

in what are necessarily approximate calculations, I very much hope that others will find the results

sufficiently curious to be worthy of their attention. Not only should my conclusions be examined again

and more extensively, but, apart from any theoretical efforts, higher m, especially m = 2, 3, need to be

considered as does the effect of congruence conditions or of characters of the Galois group.

Interchanging the order of summation and the passage to the limit is another matter. In the

summation there are three ranges: n substantially smaller than
√

|N |; n about equal to
√

|N |; n
substantially larger than

√

|N |. We can expect that the interchange picks out the first range. The

function ϕ(x, n) is such that we can expect the last range to contribute nothing. This leaves the

intermediate range, which may very well contribute but about which nothing is said in this paper,

whose tentative explorations, instructive though they are, stop short of all difficult analytic problems.15

15 Since ϕ(x, n) is a function of n/
√
x, the factor ϕ(D,n) in (62) can almost be treated as a constant

when n ∼
√
N . Thus, in so far as D is just r2 −N , the pertinent expression in the intermediate range

is pretty much

(F.1)
∑

−cn ≤ r ≤ cn

(

r2 −N

n

)

ψ±
( r

n

)

.

More extensive investigations, which I have not yet undertaken, would examine, at least numerically

but also theoretically if this is possible, the sum over the intermediate range in this light as well as the
validity of the separation into three ranges. Is it possible to hope that the average over p < X of (F.1)

will have features like those described in §3.3 for the average over the first range? Can the separation be
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Although we persuaded ourselves that (70) might very well be o(|N |1/2), so that it is smaller than

the two expressions of which it is a difference, we made no effort to see what size it might be. Its

average over p is intended to have a limit, thus, in particular, to be O(1), but that does not prevent

violent oscillations in the individual terms. Besides the existence of a limit may be too much to expect.

The numerical results described later in this section suggest that (70) is O(ln2 |N |), but I have not yet

even been able to show that it is O(lnc |N |) for some exponent c. Before coming to the experiments,

I describe briefly the difficulties that I met in trying to estimate (70) directly. I have not yet made a

serious attempt to overcome them.

Recall first that ψ± in (70) are zero outside some interval [c1, c2], so that r need be summed only

over c1
√

|N |≤ r ≤ c2
√

|N |. To simplify the – in any case rough – analysis, I suppose that both ψ± are

bounded; thus I ignore the possible singularity of ψ+ at r = ±1. Observe that, for large N ,

ϕ(x, n) =

√

|x|
n

+ A+B ln |x| + O(|x|−1/2),

whereA andB are well­determined constants that depend only on the sign of x. The constant implicit

in the error term depends on n. Since

∑

c1

√
|N |≤ r ≤ c2

√
|N |

1
√

|N |
= O(1),

we can replace ϕ(x, n) by
√

|x|/n at a cost that is O(ln |N |), a price that we are willing to pay.

Thus, at that level of precision, we can make the same modifications as led from (63) to (66) and

replace (70) by twice the sum over ± of the difference

(72)
∑

r

f

sn

(

D

n

)

ψ±(xr)
√

|x2
r ∓ 1|Φ −

√

|N |εn,f (N)

∫

ψ±(x)
√

|x2 ∓ 1|dx.

In (72) there is no longer a sum over f ′ and no need to sum over ±, as we can simply fix the sign.

To simplify further, I take n = 1. In so far as there is any real argument in the following discussion,

it can easily be extended to an arbitrary n. This is just a matter of imposing further congruence

conditions on r modulo primes dividing 2n. For similar reasons, I also take f = 1. Then (72) becomes

∑

r

ψ±(xr)

√

|D|
√

|N |
−
√

|N |ε1,1(N)

∫

ψ±(x)
√

x2 ∓ 1dx.

made cleanly so that any contributions from intermediate domains on the marches of the three ranges

are small?
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It might be better to take ψ± to be the characteristic function of an interval and to attack this fairly

simple expression directly. I tried a different approach.

I indicate explicitly the dependence of s on r by setting s = sr and then write the first term of the

difference, with n now equal to 1, as

(73)
∑

s

1

s

∑

sr=s

ψ±(xr)
√

|x2
r ∓ 1|.

We then compare

(74)
∑

sr=s

ψ±(xr)
√

|x2
r ∓ 1|

with

(75)

√

|N |
s2

∫ ∞

−∞
ψ±(x)

√

|x2 ∓ 1|gs(x)dx,

where gs(x) is constant on each interval [ks2/
√

|N |, (k + 1)s2/
√

|N |) and equal to the number Cs(k)

of integral points r in [ks2, (k + 1)s2) such that r2 −N divided by s2 is a fundamental discriminant.

The sum (73) is compared with

(76)
∑

s

√

|N |
s3

∫ ∞

−∞
ψ±(x)

√

|x2 ∓ 1|gs(x)dx

We have to compare (76) not only with (73) but also with the second term of (72), which is, forn = f = 1,

(77)
√

|N |ε1,1(N)

∫

ψ±(x)
√

|x2 ∓ 1|dx.

I truncate both (73) and (76) at s≤M = |N |1/4. An integer r contributes to the numberCs(k) only

if s2 divides r2 −N . This already fixes r up to a number of possibilities modulo s2 bounded by 2#(s),

where #(s) is the number of prime divisors of s. Thus the truncation of (76) leads to an error whose

order is no larger than
∑

s>M

√

|N |2#(s)

s3
= O(ln2c−1 |N |),

as in Lemma B.1 of Appendix B. As observed there, the constant c may very well be 1.

For s > M , the number of r in [c1
√

|N |, c2
√

|N |) such that s2 divides r2 −N isO(2#(s)), because
√

|N |/s2 is bounded by 1. Thus, according to Lemma B.3, the error entailed by the truncation of (73)

is of order no worse than
∑

C
√

|N |>s>M

2#(s)

s
= O(ln2c |N |).
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To estimate the difference between (74) and (75), we regard

ψ±(xr)
√

|x2
r ∓ 1| =

√

|N |
s2

ψ±(xr)
√

|x2
r ∓ 1| s2

√

|N |
,

ks2 ≤ r < (k + 1)s2, as an approximation to

√

|N |
s2

∫
(k+1)s2√

|N|

ks2√
|N|

ψ±(x)
√

|x2 ∓ 1|dx.

Difficulties around x = ±1 – where ψ+ may not be bounded, much less smooth – aside, the approxi­

mation will be good to within

√

|N |
s2

O





(

s2
√

|N |

)2


 = O

(

s2
√

|N |

)

.

Multiplying by 1/s and summing up to M , we obtain as an estimate for the truncated difference

between (73) and (76)
1

√

|N |
O

(

∑

s ≤ M

2#(s)s

)

,

which is estimated according to Corollary B.4 as O(ln2c |N |).

For a givenN and a given natural number s, the condition that (r2−N)/s2 be integral but divisible

by the square of no odd prime dividing s and that (r2 −N)/4 have some specified residue modulo 4,

or any given higher power of 2 is a condition on r modulo 4s4 or some multiple of this by a power of

2, so that it makes sense to speak of the average number α′(N, s) of such r. The number α′(N, s) is

O(2#(s)/s2). If q is odd and prime to s then the average number of r for which, in addition, r2 −N is

not divisible by q2 is

1 −
1 +

(

N
q

)

q2
.

Thus the average number of r for which r2 −N divided by s2 is a fundamental discriminant can be

defined as

α(N, s) = α′(N, s)
∏

gcd(q,2s)=1



1 −
1 +

(

N
q

)

q2



 .

As in the first appendix,

ε1,1(N) =
∞
∑

s=1

α(N, s)

s
.
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Diagram 3.2.A

It remains to compare (75) with

(78)
√

|N |α(N, s)

∫ ∞

−∞
ψ±(x)

√

|x2 ∓ 1|dx

remembering that their difference is to be divided by s and then summed over s, although by Lemma

B.1, the sum can be truncated at s≤M . I had difficulties with the estimates that I have not yet been

able to overcome. I describe them.

Let ḡs be the average of gs on some interval [−C,C] large enough to contain in its interior the

support of ψ±. The difference between (75) and (78) divided by s is the sum of two terms. First of all,

(79)

√

|N |
s3

∫ C

−C

ψ±(x)
√

|x2 ∓ 1|(gs(x) − ḡs(x))dx;

and secondly,

(80)

√

|N |
s3

∫ C

−C

ψ±(x)
√

|x2 ∓ 1|(ḡs(x)− s2α(N, s))dx.

The first should be smallest when ψ± is very flat; the second when its mean is 0. So it appears they are

to be estimated separately.

First of all, to calculate Cs(k) and thus gs, we have to examine the O(2#(s)) integers r in the

pertinent interval such that s2 divides r2 −N . For simplicity, rather than work with gs and ḡs, I work

with the contributions to Cs(k) from a single residue class r̄ modulo s2, but without changing the

notation. As a result, the estimates obtained will have to be multiplied by the familiar factor 2#(s).

Moreover, the definition of α(N, s) will have to be modified according to the same principle.

If r lies in [−C
√

|N |, C
√

|N |] and has residue r̄, then we attach to r the set p1, p2, . . . , pl such

that s2p2
i divides r2 − N and is congruent to 0 or 1 modulo 4. Then s(r) is divisible by sp1 . . . pl
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and s2p2
1 . . . p

2
l ≤ (C2 + 1)|N |. So there are only a finite number of sets {p1, . . . , pl} that arise. Let

A(p1, . . . , pl) be the set of k such that r ∈ [ks2, (k + 1)s2) ⊂ [−C
√

|N |, C
√

|N |] with the given

residue r̄ has s(r) divisible by sp1 . . . pl and by no prime but those in {p1, . . . , pl}. Let |A| be the

total number of elements in all the A(p1, . . . , pl), l≥ 0. Then |A| − 2C
√

|N |/s2 is O(1) and 1/|A| =

s2/2C
√

|N | +O(1/|A|2). Let A(+) be the union of A(p1, . . . , pl), l > 0.

Set Ψ±(k) equal to the integral over the interval [ks2/
√

|N |, (k+1)s2/
√

|N |] of ψ±(x)
√

|x2 ± 1|.
Then with our new conventions, the integral in (79) becomes

∑

k∈A()

Ψ±(k)(1−
∑

i∈A()

1/|A|) −
∑

k∈A(+)

∑

i∈A()

Ψ±(k)/|A| +O(s2/
√

|N |).

Thanks to (B.10) we may ignore the error term. The main term is

(81)
1

|A|
∑

k∈A()

∑

i∈A(+)

(Ψ±(k)− Ψ±(i))

Each term Ψ±(k) that appears in (81) is assigned not only to a k ∈ A() but also to an i ∈ A(+),

say i ∈ A(p1, . . . , pl). We can change the assignation and thus rearrange the sum by decomposing the

integers into intervals Im = [ms2p2
1 . . . p

2
l , (m+ 1)s2p2

1 . . . p
2
l ), choosing for each of these intervals an

i′ in it such that i′ ≡ i (mod s2p2
1 . . . p

2
l ) and assigning Ψ±(k) to k and to that i′ lying in the same

interval Im as k. For this to be effective, we introduce sets B(p1, . . . , pl), defined as the set of k such

that the r ∈ [ks2, (k + 1)s2) with the given residue r̄ modulo s has s(r) divisible by sp1 . . . pl. Then

i′ necessarily lies in B(p1, . . . , pl), although it may not lie in A(p1, . . . , pl). Then the union B(+) of

all the B(p1, . . . , pl), l > 0, is again A(+) but these sets are no longer disjoint. The number of times

Q(k, i′) that k is assigned to a given i′ is clearly O(
√

|N |/s2p2
1 . . . p

2
l ).

If we change notation, replacing i′ by i, the sum (81) becomes

(82)
1

|A|
∑

i∈A(+)

∑

k∈A()

Q(k, i)(Ψ±(k)− Ψ±(i)).

If ψ± is continuously differentiable and if i ∈ A(p1, . . . , pl) and Q(k, i) 6= 0, then

Ψ±(k)− Ψ±(i) = O(
s2
√

|N |
)O(

s2
∏l

j=1 p
2
j

√

|N |
),

the first factor coming from the length of the interval, the second from the difference of the functions

ψ± on the two intervals. Since the number of elements in B(p1, . . . , pl) is O(2l′
√

|N |/s2p2
1 . . . p

2
l ), l′

being the number of p2j , 1≤ j ≤ l, that do not divide s, (81) is estimated as

1

|A|
∑

l>0

∑

p1,...,pl

2l′O(
s2
√

|N |
)O(

s2
∏l

j=1 p
2
j

√

|N |
)O(

√

|N |
s2p2

1 . . . p
2
l

)2O(p2
1 . . . p

2
l ),
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the final factor being the number of intervals of length s2 in an interval Im. This expression is

(83) O(
s2
√

|N |
)O(

∑

l>0

∑

p1,...,pl

2l′),

which multiplied by
√

|N |/s3 yields

(84) O(
1

s
)O(

∑

l>0

∑

p1,...,pl

2l′).

Were it not for the second factor, we could appeal to (B.10). Even though this factor is a finite sum

because s2p2
1 . . . p

2
l ≤ (C2+1)

√

|N |, it is far too large to be useful. It is likely to have been very wasteful

to estimate the terms in (82) individually. We can after all expect that if 0≤ ī < s2p2
1 . . . p

2
l is the residue

of i in A(p1, . . . , pl) then ī/s2p2
1 . . . p

2
l is distributed fairly uniformly over [0, 1) as p1, . . . , pl vary but

at the moment I do not know how to establish or to use this. So the poor estimate (83) is one obstacle

to establishing a reasonable estimate for (72).

As in the analysis of (79), we may calculate, with an error that is easily estimated as O(s2/
√

|N |),

ḡs as |A()|/|A| or, better, s2|A()|/2C
√

|N |. It is clear that

(85) |A()| = |B()| −
∑

p1

|B(p1)| +
∑

p1,p2

|B(p1, p2)| − + . . . ,

in which the sum is over s2p2
1 . . . p

2
l ≤C2 + 1. Each set B(p1, . . . , pl) corresponds to an inter­

val [ks2p2
1 . . . p

2
l , (k + 1)s2p2

1 . . . p
2
l ) and it is implicit in the definition that this interval must meet

[−C
√

|N |, C
√

|N |]. It is not, however, necessary that it be contained in the larger interval. Then

(86) |B(p1, . . . , pl)| = α(p1, . . . , pl)(
2C

√
N

s2p2
1 . . . p

2
l

+ ε(p1, . . . , pl)).

Here

α(p1, . . . , pl) =
l
∏

j=1

α(pj).

If p is odd, α(p), which is 0, 1 or 2, is the number of solutions of r2 − N ≡ 0 (mod s2p2), (r2 −
N)/s2p2 ≡ 0, 1 (mod 4) with the condition that the residue of r modulo s2 is r̄. If p = 2, it is 1/4 the

number of solutions of the same conditions but with r taken modulo 4s2p2. Because those intervals

[ks2p2
1 . . . p

2
l , (k+1)s2p2

1 . . . p
2
l ) that lie partly inside [−C

√

|N |, C
√

|N |] and partly outside may or not

belong to B(p1, . . . , pl) the number ε(p1, . . . , pl) lies between −1 and 1 if no pj is 2. Otherwise it lies

between −4 and 4.
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Diagram 3.2.B

We can also calculate the modified α(N, s) as

∑

p1,...,pl

(−1)lα(p1, . . . , pl)

s2p2
1 . . . p

2
l

.

We conclude from (85) and (86) that, apart from an error that we can allow ourselves, the difference

ḡs − s2α is
∑

l ≥ 0

∑

p1,...,pl

(−1)lα(p1, . . . , pl)ε(p1, . . . , pl)
s2

2C
√

|N |
.

So once again, we have to deal with

(87)
∑

s

1

s

{

∑

l ≥ 0

∑

p1,...,pl

(−1)lα(p1, . . . , pl)ε(p1, . . . , pl)

}

.
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0.356779,−0.136681, 0.358137,−0.135542, 0.358815,−0.136301,

−0.305870, 0.089564, −0.304567, 0.090622, −0.303917, 0.089916,

0.102864, 0.114616, 0.104113, 0.115592, 0.104736, 0.114941,

−0.108330, 0.054990, −0.107135, 0.055883, −0.106538, 0.055287,

−0.027594, 0.071878, −0.026452, 0.072683, −0.025881, 0.072146,

−0.212283, 0.083968, −0.211192, 0.084682, −0.210647, 0.084206,

0.117788,−0.003163, 0.118829,−0.002547, 0.119348,−0.002958,

0.091523,−0.015066, 0.092514,−0.014557, 0.093010,−0.014897,

0.020256,−0.084660, 0.021200,−0.084275, 0.021671,−0.084532,

−0.252761,−0.016231, −0.251863,−0.016025, −0.251414,−0.016162,

0.133049, 0.067864, 0.133903, 0.068064, 0.134330, 0.067930,

0.088015, 0.014307, 0.088828, 0.014663, 0.089234, 0.014425,

−0.081067,−0.030958, −0.080293,−0.030509, −0.079906,−0.030808,

0.017027, 0.076392, 0.017766, 0.076908, 0.018135, 0.076564,

0.121633, 0.025750, 0.122340, 0.026318, 0.122693, 0.025939,

−0.081617, 0.053260, −0.080938, 0.053867, −0.080599, 0.053463,

−0.002066,−0.126718, −0.001409,−0.126081, −0.001082,−0.126505,

0.068478, 0.082597, 0.069116, 0.083256, 0.069435, 0.082816,

−0.004951, 0.124929, −0.004325, 0.125601, −0.004012, 0.125153,

−0.239656, 0.099643, −0.239035, 0.100322, −0.238725, 0.099869.

Table 3.2.A: Part 1: p = 59369

The expression in parentheses in (87) depends strongly on s and is, once again, apparently far too

large, a coarse estimate suggesting that the inner sum is of magnitude

(88)
∑

p2
1...p2

l
≤ (C2+1)

√
|N |/s2

2l′ ,

where l′ is once again the number of j, 1≤ j ≤ l such that pj does not divide s. Perhaps we have to take

into account that the signs of the factors ε(p1, . . . , pl) vary and cancel each other. I have not tried to do

this.
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−0.219263, 0.068058, −0.215435, 0.071714, −0.208291, 0.070964,

0.143721, 0.001004, 0.146339, 0.004404, 0.153195, 0.003706,

−0.020184, 0.035014, −0.016663,−0.065354, −0.010093,−0.065998,

−0.091281,−0.098202, −0.087911,−0.095335, −0.081622,−0.095923,

0.003985,−0.017991, 0.007207,−0.015405, 0.013220,−0.015936,

0.087754, 0.076422, −0.042187, 0.078715, −0.036444, 0.078245,

0.180775,−0.060344, 0.183710,−0.058364, 0.189187,−0.058771,

0.107415, 0.038662, 0.110212, 0.013086, 0.115430, 0.012750,

−0.058412,−0.094389, −0.167936,−0.093154, −0.162967,−0.093407,

−0.073063, 0.007405, −0.070531, 0.008066, −0.065803, 0.007930,

0.070096, 0.045556, 0.072506, 0.046198, 0.077003, 0.046066,

−0.023146, 0.060006, −0.020854, 0.061151, −0.016574, 0.060916,

0.129606,−0.071048, 0.084723,−0.117606, 0.088799,−0.117902,

−0.044026, 0.110108, −0.041942, 0.111766, −0.038054, 0.111426,

−0.015731,−0.062830, −0.013737,−0.061007, −0.010015,−0.061381,

−0.180290, 0.079119, −0.258895, 0.081069, −0.255319, 0.080669,

0.077034,−0.078929, 0.078885,−0.076884, 0.082340,−0.077304,

−0.011454, 0.060534, −0.009653,−0.008355, −0.006292,−0.008789,

−0.003079, 0.082049, −0.001312, 0.084207, 0.001986, 0.083764,

0.031046, 0.121403, −0.041293, 0.123583, −0.038028, 0.123136.

Table 3.2.A: Part 2: p = 746777

Our estimate of (70) is unsatisfactory, so that at this stage it is useful to examine it numerically.

The numerical results that I now describe suggest strongly that all estimates that look, for one reason

or another, weak are indeed so and that (70) is O(ln2 |N |). The experimental results, too, leave a

good deal to be desired, partly because it is impossible to detect slowly growing coefficients but also

because it is inconvenient (for me with my limited programming skills) to work with integers greater

than 231 = 2147483648. For example, when testing the divisibility properties of r2 − N by s2, it is

inconvenient to take s greater than 215. Since we can work with remainders when taking squares, we

can let r be as large as 231. Nonethless, if we do not want to take more time with the programming

and do not want the machine to be too long with the calculations, there are limits on the accuracy with

which we can calculate the s = sr appearing in (72). We can calculate a large divisor of s, for example

the largest prime divisor that is the product of powers qa = qaq of the first Q primes, where Q is at our



50

disposition and where qaq is at most 215. The same limitations apply to the calculation of εn,f (N) and

in particular of ε1,1(N). So we can only approximate (72), the approximation depending also on Q.

0.065614,−0.026226, 0.077929,−0.016149, 0.086276,−0.021717,

−0.099652,−0.151652, −0.087834,−0.142283, −0.079825,−0.147459,

−0.148913, 0.172582, −0.137585, 0.181226, −0.129909, 0.176450,

0.403084,−0.036168, 0.413927,−0.028269, 0.421275,−0.032633,

−0.156494, 0.060108, −0.146127, 0.067236, −0.139102, 0.063297,

0.016583, 0.038520, 0.026483, 0.044839, 0.033191, 0.041348,

0.273885, 0.195733, 0.283327, 0.201189, 0.289726, 0.198174,

−0.074761,−0.041762, −0.065764,−0.037253, −0.059667,−0.039744,

0.092875, 0.010855, 0.101440, 0.014259, 0.107244, 0.012378,

−0.126962, 0.015473, −0.118812, 0.017294, −0.113290, 0.016288,

0.065242, 0.009336, 0.072994, 0.011104, 0.078248, 0.010127,

0.258894, 0.023944, 0.266270, 0.027098, 0.271269, 0.025356,

−0.120552,−0.028011, −0.113526,−0.024038, −0.108765,−0.026233,

−0.059059, 0.034596, −0.052355, 0.039166, −0.047812, 0.036641,

−0.106739,−0.015397, −0.100324,−0.010374, −0.095977,−0.013149,

0.093762,−0.044505, 0.099926,−0.039132, 0.104104,−0.042101,

−0.101929, 0.219005, −0.095973, 0.224641, −0.091937, 0.221527,

0.101531, 0.011202, 0.107326, 0.017028, 0.111253, 0.013809,

0.036660,−0.033043, 0.042345,−0.027093, 0.046198,−0.030380,

−0.010312,−0.008676, −0.004683,−0.002666, −0.000869,−0.005986.

Table 3.2.A: Part 3: p = 8960467

In Table 3.2.A, which has three parts, we give three approximations not to the difference itself but

to the difference divided by ln p. Each is for n = f = 1 and for three different primes of quite different

sizes, the 6000th, p = 59369, the 60000th, p = 746777, and the 600000th, p = 8960467. The three

approximations are for Q = 80, 160, 320. They give not (72) itself, but the measure implicit in it, thus

the mass with respect to the measure of the twenty intervals of length .1 between −2 and 0, a point

mass falling between exactly at the point separating two intervals being assigned half to one and half

to the other interval. All these masses are divided by ln p. For the smallest of the three primes, all

approximations give similar results. For the largest of the primes, even the best two are only close to
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another. For numbers with any claim to precision, either a larger value of Q or a larger bound on the

powers of the primes would be necessary. Nevertheless, the change in the numbers with increasing Q

is far, far less than suggested by (84) and (88).

In each part of the table one of the three primes is considered. Each part has three double columns,

each of them corresponding to one value of Q. For a given Q, the first element of the double column

is the measure for ψ− and the second for ψ+. The interval in the first row is [−2,−1.9] and in the last

is [−.1, 0]. Notice that the mass divided by ln p does not seem to grow much or to decrease much but

does behave irregularly. Thus the mass itself at first glance seems to be about O(ln p), but, as already

suggested, this is not the correct conclusion.

0.065424, 0.139319, 0.009127, 0.020117,

−0.339535, 0.095697, 0.244114, 0.028861,

0.064939,−0.125936, −0.242039, 0.013350,

0.227577, 0.215971, 0.068047, 0.008164,

−0.077371,−0.069531, 0.011311, 0.034411,

−0.210577,−0.056532, 0.159543,−0.064707,

0.373104,−0.083462, −0.002606, 0.046361,

−0.279405, 0.042905, 0.147926, 0.197334,

0.176183, 0.114329, −0.041558, 0.238247,

−0.049009,−0.016793, −0.180851,−0.082724.

Table 3.2.B

To exhibit the fluctuating character of these numbers, a similar table for the 6001st prime p =

746791 is included as Table 3.2.B, but I only give the results for Q = 320. Once again, they come in

pairs, for N = −1 and N = 1, but there are two columns, the first for the interval from −2 to −1 and

the second for the interval from −1 to 0. Table 3.2.B can be compared with Table 3.2.A, Part 1 to see the

change on moving from one prime to the next.

As a further test, I took the largest of the absolute values of the masses of the 2 times 20 intervals

for the 1000th, the 2000th, and so on up to the 100000th prime and divided it by ln p. The one hundred

numbers so obtained appear as Table 3.2.C, which is to be read like a normal text, from left to right and

then from top to bottom. In the calculations, the integer Q was taken to be 160, but doubling this has
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only a slight effect. Although at first glance, there is no obvious sign in the table of any increase, a plot

of the numbers, as in16 Diagram 3.2.A, suggests that they do increase and rather dramatically.

100 200 300 400 500 600

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Diagram 3.2.C

On the other hand, if we continue up to the 600000th prime we obtain the results of Diagram

3.2.B, where once again Q = 160 and where once again doubling Q leads to essentially the same

scattering with only a slight displacement of the points. So Diagram 3.2.A is misleading and there is no

dramatic rise! A second, more careful glance at the diagram suggests, however, that a slow movement

of the points upward, perhaps compatible with the O(ln2 |N |) = O(ln2 p) hypothesis, is not out of the

question. We will return to this point when we have more and different data at our disposition. As

a convenient comparison, Diagram 3.2.C superposes the points of Diagram 3.2.B on the graph of the

curve .4 ln(1000x ln(1000x))/15,1≤x≤ 600. The diagram confirms, to the extent it can, the hypothesis.

16 Unfortunately, it was not always convenient to insert the tables and the diagrams at the points

where they are discussed in the text.
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0.358120, 0.872623, 0.258640, 0.295414, 0.345120,

0.358137, 0.310121, 0.427307, 0.392101, 0.461449,

0.301074, 0.242229, 0.353707, 0.498970, 0.449767,

0.405747, 0.256198, 0.461453, 0.381769, 0.347241,

0.317558, 0.345492, 0.324273, 0.559732, 0.305104,

0.246601, 0.355806, 0.287550, 0.435331, 0.400707,

0.275095, 0.324584, 0.376984, 0.427550, 0.321304,

0.319035, 0.306974, 0.494958, 0.301518, 0.393844,

0.394138, 0.252000, 0.429559, 0.365034, 0.407917,

0.359968, 0.458391, 0.338244, 0.312106, 0.300587,

0.291630, 0.489896, 0.327670, 0.405218, 0.209386,

0.227849, 0.481018, 0.556393, 0.322056, 0.258895,

0.361781, 0.383069, 0.374638, 0.337790, 0.287852,

0.441601, 0.695974, 0.321117, 0.627571, 0.324480,

0.391816, 0.830769, 0.615896, 0.358815, 0.291243,

0.644122, 0.228597, 0.557525, 0.313941, 0.440433,

0.343996, 0.864512, 0.356637, 0.678889, 0.582523,

0.314871, 0.329813, 0.398283, 0.385383, 0.645377,

0.314966, 0.470168, 0.331259, 0.298338, 0.479059,

0.302799, 0.579901, 0.365380, 0.457965, 0.388941.

Table 3.2.C

3.3 Some suggestive phenomena. The previous section does not establish beyond doubt that (70) is

O(ln2 p) or even the slightly weaker hypothesis, that, for some integer l the expression (70) is O(lnl p).

We now, consider fixing n and f and taking the average of (70), in the sense of (12′) over the primes

up to X . If X = x ln x, then, under the hypothesis that (70) is O(ln p), the order of the average will be

majorized by a constant times

(89)

∑

n<x ln2(n lnn)

x ln x
.

This is approximately
∫ x

2
ln2(t ln t)

x ln x
∼ ln x ∼ ln(x lnx) = lnX.
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If the order were lnl p, then (89) would be majorized by a constant times lnlX . The average is a

measure νn,f,X , which we may also consider as a distribution on the set of possible ψ±. Suppose

νn,f,X = αn,f + βn,f lnX + on,f (1),

where αn,f and βn,f are two measures or distributions. Then interchanging the order of the sum up to

X and the sum over n, we find that we are to take the limit of

(90)
∑

n,f

αn,f +
∑

n,f

βn,f lnX +
∑

n,f

on,f (1).

If there were no contributions from the other two ranges and if the third sum was itself o(1), then

the sum

(91)
∑

n,f

βn,f

would have to be 0, and the sum

(92)
∑

n,f

αn,f

the limit for which we are looking, thus the contribution from the first range of summation where n is

smaller than
√

|N |. There is, however, no good reason to expect that (91) is 0. It may be cancelled by a

contribution from the intermediate range.

We can certainly envisage polynomials of higher degree in (90). For such asymptotic behavior to

make sense, it is best that the change in lnlX be o(1), as X changes from n lnn to (n + 1) ln(n + 1),

thus in essence as we pass from one prime to the next. Since

(n+ 1) ln(n+ 1) = (n+ 1) lnn+O(1) = n lnn(1 +O(
1

n
)),

we have

ln((n+ 1) ln(n+ 1)) = ln(n lnn) +O(
1

n
).

13.2 13.4 13.6 13.8 14.2

1.9

1.95

2.05

2.1

2.15

2.2
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Diagram 3.3.E

I examined the behavior of the average of the sum (70) for n = 1, 3, 5, 15 and f = 1, treating it

again as a measure on the two lines N = ±1 and plotting the average, in the sense of (12′), over the

first 1000k primes for 1≤ k ≤ 60 against 1000k ln(1000k). The results are given at the end of the paper

in Diagrams 3.3.A to 3.3.D. The results are not so simple as (90), although they do make it clear that the

average behaves regularly and is naturally expressed as a quadratic function of ln(X), so that νf,n,X

would be a quadratic function of lnX with a small remainder and there would be another sum in (91)

that would have to vanish.17 I divided the interval [−3, 0] into six intervals of length .5, each column of

each diagram contains the six graphs for the six intervals, the first column for N = −1 and the second

for N = 1. They are close to linear as (90) suggests, but not exactly linear.

So I redid the experiments for detN > 0 and n = 1 on the intervals in [−1, 0] for primes up to

140000, using a slightly better approximation to the integral

∫

√

1 − x2dx

over the two intervals but continuing to use only 320 primes to compute the various factors. Since

ln(k ln k) is 13.4 for k = 60000, 14.32 for k = 140000 and 15.7 for k = 600000, not much is gained

by taking even more primes. The two resulting curves, but only for 50000≤k≤ 140000, together with

quadratic approximations to them are shown in Diagrams 3.3.E, for the first interval, and 3.3.F, for the

second. The quadratic approximations are

−1.37552 + 0.24677x+ 0.06329(x− 13.5)2

for the first interval and

−1.97565 + 0.33297x+ 0.10656(x− 13.5)2

for the second. The quadratic term looks to be definitely present. There may even be terms of higher

order, but there appears to be a little question that we are dealing with a function that as a function of

lnX is essentially polynomial. Thus the natural parameter is lnX and not some power of X .

17 It is perfectly clear to me that these suggestions are far­fetched. I feel, nevertheless, that they are

worth pursuing.
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13.2 13.4 13.6 13.8 14.2

2.6

2.7

2.8

Diagram 3.3.F

Part IV: Supplementary remarks

4.1 Quaternion algebras. There is some advantage in treating quaternion algebras as similar results

are to be expected, but only the terms (i) and (ii) appear in the trace formula. The disadvantage,

especially for numerical purposes, is that some ramification has to be admitted immediately. Apart

from that, the only formal difference in the elliptic term is that the discriminant D is subject to the

condition that
(

D
q

)

= 1 for those q that ramify in the quaternion algebra. Moreover, if the algebra is

ramified at infinity then only D < 0 are allowed.

4.2 Transfer from elliptic tori. The representation σ2 is of course the representation

(93) X → AXAt

on the space of symmetric matrices. Thus if a reductive subgroup λHQ of LGQ = GL(2,C) is not

abelian but has a fixed vector in the representation, it is contained in an orthogonal group. Observe that

the condition of §1.3 may no longer be fulfilled: the group λH may not lie in SL(2,C) × Gal(K/F ).

If λHQ is the first term of an inverse system λH in the system LG, then λHQ is contained in the usual

image in LGQ of theL­group of an elliptic torus. Thus, if we take the ρ implicit in (12′) to be σ2, then we

can expect to single out in the limit those cuspidal representations π that are transfers from elliptic tori.

They will, however, have an additional property. If the torus is associated to the quadratic extension

E with associated character χE , then χE will be the central character of π. Since we can, in the context

of the trace formula, fix the central character of the representations π to be considered in any way we

like, we can in fact single out those representations that are transfers from a given elliptic torus. Then

the sum in (14′) will be a sum over a single torus.

If we want an arbitrary central character, then we have to replace (93) by the tensor product of σ4

with det−2. Thus the sum in (14′) will be an infinite sum, over all elliptic tori. Moreover there will in
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all likelihood be no choice but to let the transfer f → fH reflect the reality of the situation. It will have

to be defined by the condition that

tr θ(fH) = trΘ(f)

if Θ is the transfer of the character θ. These transfers are certainly known to exist, but the relation

between the characters of θ and Θ remains obscure. So the definition of fH , which is to be made locally

is by no means clear.

If the base field is Q, we cannot take fv to be unramified at all finite places, because fH
v would

then necessarily be 0 at those places where the quadratic field defining the torus H was ramified. So

for experimental purposes, some ramification in f has to be admitted.

If we consider only representations trivial on Z+, then (14′) will be

(94)
∑

H

∑

θ

tr θ(fH),

with those θ that lead to noncuspidal representations excluded. Since they can be taken care of

separately, it is best to include them. Then (94) can be written as

(95)
∑

H

µ(Z+H(Q)\H(A))
∑

γ∈H(Q)

fH(γ).

Although this sum appears infinite, it will not be, because fH will necessarily be 0 for those H that

ramify where fv is unramifed. The sum (95) is very much like the elliptic term of the trace formula,

except that the γ in the center appear more than once.

The transfer θ → Θ is well understood at infinity. There, at least, the inverse tranfer f → fH

differs in an important way from endoscopic transfer. Endoscopic transfer is local in the sense that

the support of (the orbital integrals of) fH is, in the stable sense, the same as the support of (those of)

fH . In contrast, even if the orbital integrals of f∞ are supported on hyperbolic elements, fH
∞ may be

nonzero for tori elliptic at infinity. This does not prevent a comparison between (14′) and (17′), but

does suggest that it may have a number of novel elements not present for endoscopy.

The first, simplest test offers itself for the representations unramified everywhere. Since every

quadratic extension of Q is ramified somewhere, there are no unramified representations arising from

elliptic tori. Thus the limit (12′) should be 0 for ρ = σm, m = 2. This is even less obvious than for

m = 1 and everything will depend on the elliptic contribution to the trace formula. It must cancel all

the others. I have made no attempt to understand numerically how this might function, but it would
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be very useful to do so. A distillation that separates the different kinds of contribution in the elliptic

term term may be necessary. It would then be useful to understand clearly the orders of magnitude of

these contributions.

As a convenient reference for myself, and for anyone else who might be inclined to pursue

the matter, I apply the formulas of Appendix B to the conclusions of §2.4 to obtain a list of all the

contributions to be cancelled. As it stands, the list has no structure and the terms no meaning. Until

they do, §4.3 has to be treated with scepticism.

4.3 Contributions for even m. I consider all contributions but the elliptic. The first is made up of

(31) from the term (ii), corrected by the last term in (41) and by (48) to yield

(a)
m

4
tr(ξ0(f∞)).

The second is the sum of atomic measures in (41):

(b)
∑

q

∑

n>0

{|qn − q−n|ψ+(qn + q−n) + |qn + q−n|ψ−(qn − q−n)},

The third arises from (51) which is equal to

ψ−(0){ln 2 +m ln p(1 + O(
1

p
))}

and whose average is

(c) ψ−(0)(ln 2 +m lnX).

As was already suggested, this means that for m = 2 the analogue of (91) will not be 0, but will have

to cancel, among other things, (c), at least when there is no ramification.

The contributions from (56) and (48) yield together, in the notation of Appendix C,

∑

±
(κ1 +

m ln p

2
)f̂∞(a(1,±1)),

or when averaged

(d)
∑

±
(κ1 +

m lnX

2
)f̂∞(a(1,±1)).

I offer no guarantee for the constants in (c) and (d).
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All that remains are the terms resulting from the combination of (49) and (57) with (46) and an

application of Hoffmann’s formula. There is, first of all, the contribution from (C.13) (which must be

multiplied by 1/2)

(e) −1

2

∑

∫ ∞

−∞

e−|x|

1 + e−|x| f̂∞(a)dx,

where the sum is over the arbitrary sign before the matrix

a = ±
(

ex 0
0 −e−x

)

,

and, from (C.17) and (C.18),

(f)
1

2

∑

∫ ∞

−∞
(

e−|x|

1 − e−|x| −
1

|x| )f̂∞(a)dx,

in which

a = a(x) = ±
(

ex 0
0 e−x

)

,

the sum being again over the sign, and

(g) −1

2

∫ ∞

−∞
ln |x|df̂∞

dx
(a)dx,

which according to the formula of Appendix D is equal to

∫ i∞

−i∞
(ln |s| + λ0) tr ξs(f∞).

From (47) we have

(h)
1

16πi

∫ i∞

−i∞
{−Γ′((1− s)/2)

Γ((1− s)/2)
− Γ′(s/2)

Γ(s/2)
− Γ′((1 + s)/2)

Γ((1 + s)/2)
− Γ′(−s/2)

Γ(−s/2)
} tr ξs(f∞)ds.

Finally, from (D.19) there is the completely different contribution

(i) −1

2

∞
∑

k=0

(±1)k−1Θπk
(f).

The usual formulas ([N,§72] for the logarithmic derivative of the Γ­function suggest that there should

be cancellation among (f), (g) and (h). The Fourier transform of ξs(f∞) is, however, a function on all

four components of the group of diagonal matrices, each component determined by the signs in

a = a(x) =

(

±ex 0
0 ±e−x

)

.
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So any cancellation between (h) and (f) would also have to involve (e). I am not familiar with any

formula that relates (e) to the Γ­function and have not searched for one.

4.4 The third touchstone. The problem (T3) is, on the face of it, different than the first two, but may

be amenable to the same kind of arguments. If the base field is Q, the pertinent representations of

GL(2,R) are those obtained by induction from the representations

(

a x
0 b

)

→ (sgna)k(sgn b)l|a
b
|s/2, k, l = ±1.

We can try to isolate them by a function f∞ such that trπ(f∞) is 0 if π lies in the discrete series

and tr ξk,l
s (f∞) is independent of k, l but, as a function of s, is an approximation to the δ­function at

s = 0. This means that f̂∞ is concentrated on a with positive eigenvalues and that it is approaching

the function identically equal to 1. Thus ψ− will be 0 and ψ+ will be 0 for x < −1. For x > 1, it will be

approaching

ψ+(x) =
1

et − e−t
=

1
√

|x2 − 1|
, r = et + e−t, x =

r

2
.

What will happen on the range −1 < x < 1 remains to be worked out.

Since the approximation at infinity would be occurring while fq remained fixed at the other places,

the sum over r in the elliptic term of the trace formula would be a sum over a fixed lattice – the lattice

of integral r if fq were the unit element of the Hecke algebra everywhere. So the problems that arise

look to be different than those for (T2): the limits to be taken are of a different nature. They are perhaps

easier, perhaps more difficult; but I have not examined the matter. I have also not examined the role of

the other terms in the trace formula.

4.5 General groups. Is there an obvious obstacle to extending the considerations of this paper to

general groups? Recall that the structure of the trace formula is the equality of a spectral side and a

geometric side. The principal term of the spectral side is the sum over the representations occurring

discretely in L2(G(Q)\G(A)) of trπ(f)). As for GL(2), we will expect that an inductive procedure

will be necessary to remove the contributions from representations that are not of Ramanujan type.

This will leave
∑

π

R
trπ(f)

in which to substitute appropriate f before passing to the limit.
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On the geometric side, there will also be a main term, the sum over the elliptic elements. For

GL(k) an elliptic element γ corresponds to a monic polynomial

xk + a1x
k−1 + . . . ak−1x+ ak.

For GL(2), a1 = −r, a2 = N/4. Of course, for γ to be regular certain degenerate sequences

a1, a2, . . . , ak will have to be excluded. For GL(2), not only is N 6= 0 but r2 − N 6= 0. In addition

split γ are excluded. We should like to say that for a general group, an elliptic element is defined, after

the exclusion of singular or partially split elements, by the values of a similar sequence a1, a2, . . . , ak.

If the group is semisimple and simply connected, these could be the characters of the representations

with highest weight λi, (λi, αj) = δi,j , but only if we deal not with conjugacy classes in the usual sense

but with stable conjugacy classes, as is perfectly reasonable if we first stabilize the trace formula. For

groups that are not semisimple or not simply connected, something can surely be arranged. So we

can expect in general a sum over a lattice, analogous either to the lattice of integral (r,N), or, if we

recognize that the values of the rational characters of G on those γ that yield a contribution different

from 0 will be determined up to a finite number of possibilities by f , over an analogue of the lattice of r.

As for GL(2), it will be appropriate to allow a fixed denominator or to impose congruence conditions.

The limits of the remaining terms, either on the spectral side or on the geometric side, we can hope

to treat by induction. So the question arises during these preliminary reflections whether the terms in

the sum over the lattice have the same structural features as for GL(2). If so and if there is a procedure

for passing rigorously to the limit in the sum over p < X , either one in the spirit of the remarks in Part

III or some quite different method, then we can continue to hope that the constructs of this paper have

some general validity.

There are several factors in the sum: the volumeµγ ofGγ(Q)\Gγ(A); the orbital integral at infinity,

a function of a1, . . . , ak and the analogue of ψ; the orbital integrals at the finite number of finite primes

in S that give congruence conditions and conditions on the denominators; the orbital integrals at the

primes outside of S. These latter account for the contribution

(96)
∑

f |s
f
∏

q|f



1 −

(

D
q

)

q





of (59).

The usual calculations of the volume of T (Q)\T (A) (see Ono’s appendix to [W]) show that it is

expressible as the value of anL­function at s = 1 so that it will be given by an expression similar to (61).
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There will be changes. In particular, the L­function will be a product of nonabelian Artin L­functions.

For GL(k) the Kronecker symbols
(

D
n

)

will be replaced by an expression determined by the behavior

of xk + a1x
k−1 + . . . ≡ 0 in the local fields defined by this equation and associated to the primes

dividing n. This behavior is periodic in a1, . . . , ak with period given by some bounded power of the

primes dividing n, so that the nature of the contribution of µγ to the numerical analysis appears to be

unchanged. For other groups the relation between the coefficients a1, a2, . . . and the stable conjugacy

class will be less simple, but the principle is the same.

The contribution of the orbital integrals for places outside S will not be so simple as that given

by Lemma 1. It has still to be examined, but it will have similar features. Lemma 1 expresses, among

other things, a simple form of the Shalika germ expansion, and it may very well be that this structural

feature of orbital integrals will be pertinent to the general analysis. It is reassuring for those who have

struggled with the fundamental lemma and other aspects of orbital integrals to see that the arithmetic

structure of the orbital integrals of functions in the Hecke algebra, especially of the unit element, may

have an even deeper signifance than yet appreciated.

It remains, however, to be seen whether anything serious along these lines can be accomplished!
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−0.686858,−0.010181, −0.232848,−0.181406, −0.207348,−0.213738,

0.186493,−0.509315, −0.143169,−0.267028, −0.160988,−0.214750,

−0.291132,−0.231973, −0.268148,−0.267438, −0.226005,−0.252182,

−0.199118,−0.079383, −0.183245,−0.132645, −0.202296,−0.171024,

−1.025438,−0.527494, −0.233874,−0.247813, −0.248718,−0.231158,

0.017161,−0.245755, −0.271121,−0.200476, −0.211613,−0.186097,

0.057466,−0.073425, −0.243888,−0.170394, −0.227328,−0.194990,

−0.604006,−0.449603, −0.106058,−0.211854, −0.123694,−0.198008,

−0.147666,−0.198848, −0.244547,−0.154175, −0.267187,−0.169350,

−0.232995,−0.460777, −0.199048,−0.265850, −0.163095,−0.238796,

−0.352068, 0.088846, −0.154301,−0.183977, −0.186853,−0.186285,

−0.183918,−0.399292, −0.319741,−0.250550, −0.273583,−0.235420,

−0.218394,−0.137239, −0.112422,−0.158514, −0.140592,−0.170782,

−0.331184,−0.328770, −0.223462,−0.234503, −0.237538,−0.201874,

−0.330528,−0.277603, −0.236737,−0.227831, −0.191458,−0.218459,

−0.107266,−0.126031, −0.195398,−0.185583, −0.213405,−0.202951,

−0.138815,−0.188041, −0.211230,−0.181449, −0.197189,−0.192290,

−0.388114,−0.267641, −0.236432,−0.223636, −0.239041,−0.204733,

−0.285824,−0.179338, −0.159782,−0.179327, −0.176213,−0.194733,

−0.147042,−0.182515, −0.213875,−0.195378, −0.207439,−0.192548,

−0.137437,−0.008915, −0.225177,−0.013033, −0.211749,−0.000857,

−0.413068,−0.056893, −0.220921, 0.007333, −0.201721, 0.003851,

−0.080076,−0.004867, −0.169043,−0.005863, −0.182254,−0.007391,

−0.270411,−0.037313, −0.235472,−0.020661, −0.224686,−0.006618,

−0.282038,−0.001461, −0.188183, 0.019859, −0.193986, 0.005356,

−0.232331,−0.095297, −0.217932,−0.011204, −0.224461, 0.004303,

−0.125913, 0.028871, −0.208961,−0.020619, −0.194989,−0.011606,

−0.238424,−0.026239, −0.177729, 0.004167, −0.197464,−0.006211,

−0.175674,−0.020565, −0.215916, 0.008770, −0.192947,−0.007468,

−0.249100, 0.015408, −0.184689,−0.009332, −0.198297, 0.006565.

Table 3.1
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10 11 12 13
2.5

3
3.5

4
4.5

5

10 11 12 13
1.8

2.2
2.4

10 11 12 132.5

3.5
4

4.5
5

10 11 12 13
1.4

1.6

1.8

10 11 12 132.5

3.5
4

4.5
5

5.5

10 11 12 13

2.5
3

3.5
4

10 11 12 13
3.5

4
4.5

5
5.5

6

10 11 12 132.5

3.5
4

4.5
5

5.5

10 11 12 13
3.5

4
4.5

5
5.5

6
6.5

10 11 12 13
3.5

4
4.5

5
5.5

6
6.5

10 11 12 13

4
5
6
7

10 11 12 13

4
5
6
7

Diagram 3.3.A
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10 11 12 13-1.2

-0.8
-0.6
-0.4

10 11 12 13

-0.55

-0.5

-0.45

10 11 12 13-1.2

-0.8
-0.6

10 11 12 13-0.52

-0.48
-0.46
-0.44
-0.42

10 11 12 13
-1.4
-1.2

-0.8
-0.6

10 11 12 13

-0.8
-0.6
-0.4
-0.2

10 11 12 13
-1.4
-1.2

-0.8
-0.6

10 11 12 13-1.2

-0.8
-0.6

10 11 12 13

-1.6
-1.4
-1.2

-0.8
-0.6

10 11 12 13
-1.4
-1.2

-0.8
-0.6

10 11 12 13

-1.6
-1.4
-1.2

-0.8

10 11 12 13

-1.6
-1.4
-1.2

-0.8
-0.6

Diagram 3.3.B
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10 11 12 13

0.02

0.06

0.1

10 11 12 13
0.04

0.06

0.08

10 11 12 13

0.04

0.08

0.12

10 11 12 13

0.03

0.05

0.07

10 11 12 13

0.04
0.08
0.12

10 11 12 13

0.04

0.08

10 11 12 13
0.06

0.12

0.16

10 11 12 13

0.04
0.08
0.12

10 11 12 13
0.06

0.14
0.18

10 11 12 13

0.05
0.1
0.15

10 11 12 13

0.05
0.1
0.15

10 11 12 130.08

0.14
0.18

Diagram 3.3.C
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10 11 12 13

-0.5
-0.4
-0.3
-0.2

10 11 12 13-0.32
-0.28
-0.24

10 11 12 13

-0.5
-0.4
-0.3
-0.2

10 11 12 13

-0.26
-0.24
-0.22

10 11 12 13

-0.5
-0.4
-0.3 10 11 12 13

-0.5
-0.4
-0.3
-0.2
-0.1

10 11 12 13

-0.6
-0.5
-0.4
-0.3

10 11 12 13

-0.5
-0.4
-0.3
-0.2

10 11 12 13

-0.7
-0.6
-0.5
-0.4

10 11 12 13

-0.6
-0.5
-0.4
-0.3

10 11 12 13

-0.7
-0.6
-0.5
-0.4
-0.3

10 11 12 13

-0.7
-0.6
-0.5
-0.4
-0.3

Diagram 3.3.D
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Appendix A: Calculation of εn,f (N).

Both n and f are products of prime powers, n =
∏

qa and f =
∏

qb. Thanks to the Chinese

remainder theorem,

εn,f (N) =
∏

q

εqa,qb(N).

It will suffice to show that

(A.1)

∞
∑

a,b=0

εqa,qb(N) = 1, q 6= p,

= 1
1−p−1 +O(|N |−1/2), q = p.

When q is fixed, we set for brevity εqa,qb(N) = Λa,b. It will be more convenient to define Λa,b,c,

c≥ b, as the product of the average value of

(

(r2 −N)q2b/q2c

q2a

)

on the set of r for which q2c is the highest even power of q dividing r2 −N with a remainder congruent

to 0 or 1 modulo 4 with the density of the set, and to calculate Λa,b as

(A.2)
∑

c ≥ b

qb

qa+c
Λa,b,c.

That the Λa,b,c are at least as natural to calculate as the Λa,b suggests that rather than expressing the

elliptic term as a sum over f and n as in the experiments to be described, one might want to express it

as a sum over f , n and s. This would mean that a,d = c− b and cwere as good a choice of parameters

as a, b and c, or that (71) could be replaced by

(A.3)
1

gn

(

(r2 −N)/g2

n

)

, g =
s

f
.

A direct analytic attack on the problems leads to (A.3) and not to (71).

Suppose first that q is odd and not equal to p. Then N is prime to q. If t is a high power of q, then

the density of r modulo t such that r2 −N is divisible by qc is

(1 +

(

N

q

)

)q−c.
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if c > 0. Thus the density µc of r such that it is divisible by q2c and not by q2c+2 is

(A.4)

1− 1

q2
(1 +

(

N

q

)

), c = 0

1

q2c
(1 +

(

N

q

)

)(1− 1

q2
), c > 0

For positive even a it is the density νc of r such that r2 −N is divisible by q2c and not by q2c+1 that is

pertinent. This is

(A.5)

1 − 1

q
(1 +

(

N

q

)

), c = 0

1

q2c
(1 +

(

N

q

)

)(1− 1

q
), c > 0

When c > 0, if r2 = N + uqc, then

(r + vqc)2 ≡ N + (u+ 2v)qc (mod qc+1).

Thus, the average value of
(

(r2 −N)/q2c

qa

)

on those r for which r2 −N is divisible by q2c and not by q2c+2 is 0 if a is odd. For c = 0 and a odd,

we have a simple lemma that shows that the average is −1/q.

Lemma 2 The sum A of
(

r2 −N

q

)

over r modulo q is −1.

Since the number of solutions of

(A.6) y2 = x2 −N

for a given value of x is
(

x2 −N

q

)

+ 1,

the number A+ q is just the number of points on the rational curve (A.6) modulo q whose coordinates

are finite. The lemma follows.
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The value of all Λa,b,c and Λa,b can now be calculated. For a = b = 0, Λ0,0,c = µc and

Λ0,0 =
∑ 1

qc
µc

= 1 − 1

q2
(1 +

(

N

q

)

) +
∞
∑

c=1

1

q3c
(1 +

(

N

q

)

)(1− 1

q2
)

= 1 − (1 +

(

N

q

)

){ 1

q2
− 1

q2
q2 − 1

q3 − 1
}

= 1 − (1 +

(

N

q

)

)
q − 1

q3 − 1

If a > 0 and b > 0 then Λa,b,c = 0 and Λa,b = 0. For b > 0,

Λ0,b =
∞
∑

c=b

qb

qc
Λ0,b,c

=
∞
∑

c=b

qb

qc
µc

= (1 − 1

q2
)(1 +

(

N

q

)

)
∞
∑

c=b

qb

q3c

= (1 − 1

q2
)(1 +

(

N

q

)

)
1

q2b

1

1 − q−3
.

Thus

(A.7)
∞
∑

b=1

Λ0,b =
1

q2
(1 +

(

N

q

)

)
1

1− q−3
=

q

q3 − 1
(1 +

(

N

q

)

)

If a > 0 is even,

Λa,0 =
1

qa

∞
∑

c=0

νc

qc
=

1

qa
{1 − 1

q
(1 +

(

N

q

)

) +
1

q3 − 1
(1 +

(

N

q

)

)(1− 1

q
)}.

The sum of this over all positive even integers is

∞
∑

a=1

Λ2a,0 =
1

q2 − 1
{1− 1

q
(1 +

(

N

q

)

) +
1

q3 − 1
(1 +

(

N

q

)

)(1− 1

q
)}

=
1

q2 − 1
− 1

q3 − 1
(1 +

(

N

q

)

)

.

If a is odd

Λa,0 = − 1

qa+1
.
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Thus
∞
∑

a=0

Λ2a+1 = − 1

q2
1

1 − 1
q2

= − 1

q2 − 1
.

Examining the previous calculations, we conclude that

∞
∑

a,b=0

Λa,b = 1

We now consider q = 2 6= p, calculating first of all for each r the highest even power 22c of 2 that

divides r2 −N with a remainder congruent to 0 or 1 modulo 4. We begin by observing that 4 divides

r2 −N if and only if r = 2t is even and then

r2 −N

4
= t2 −M, M = ±pm,

which is congruent to 0 modulo 4 if and only if t is odd and
(−1

M

)

= 1 and to 1 if and only if t is even

and
(−1

M

)

= −1. In the first of these two cases, c > 0; in the second c = 1. Otherwise c = 0.

There are thus two ways in which c can be 0. Either r is odd or r is even. Since r2 −N is odd if

and only r is odd and is then congruent to 1−N modulo 8,

Λ0,0,0 =
1

2
+

1

4
=

3

4
,

Λa,0,0 =
1

2

(

1 −N

2

)

=
1

2

(

5

2

)

= −1

2
, a > 0, a odd,

Λa,0,0 =
1

2
, a > 0, a even.

If
(−1

M

)

= −1 and c > 0, then c is necessarily 1. Thus for such M ,

Λa,b,c = 0, c > 1.

Moreover, recalling that the Kronecker symbol
(

n
2

)

is 0 for n even, 1 for n ≡ 1, 7 (mod 8), and −1

for n ≡ 3, 5 (mod 8) and that t2 −M is odd only for t even and then takes on the values −M , 4−M

modulo 8 with equal frequency, we see that for the same M ,

Λ0,b,1 =
1

4
=

1

4
− 1

16
(1 +

(−1

M

)

), 1≥ b≥ 0,

Λa,0,1 = 0, a > 0, a odd,

Λa,0,1 =
1

4
, a > 0, a even.
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Now suppose that
(−1

M

)

= 1 and c > 0. Then, as observed, 4 divides t2 −M if and only if

t = 2u + 1. The integer u2 + u is necessarily even and for any even v and any d≥ 2, u2 + u ≡ v

(mod 2d) has exactly two solutions modulo 2d. In particular, u ≡ 0, 1, 2, 3 (mod 4) yield respectively

u2 + u ≡ 0, 2, 2, 0 (mod 4). Since

(A.8)
t2 −M

4
= u2 + u+

1 −M

4
,

and we conclude that c = 1 for 1/2 of the possible values of u and c = 2 for the other half whenM ≡ 5

(mod 8). Thus, in this case,

Λ0,b,1 = 1
8

= 1
4
− 1

16
(1 +

(−1
M

)

), 1≥ b≥ 0,

Λ0,b,2 = 1
8 = 1

32(1 +
(−1

M

)

)(1−
(

M
2

)

), 2≥ b≥ 0,

Λa,0,1 = 0, Λa,0,2 = 0, a > 0, a odd,

Λa,0,1 = 0, Λa,0,2 = 1
8
. a > 0, a even

These numbers are to be incorporated with the factor

1

4
(1 +

(−1

M

)

)(1−
(

M

2

)

)

in so far as it is not already present.

For M ≡ 1 (mod 8), (A.8) can be any even number and the density of u for which it can be

divided by 22d, d≥ 0, to give a number congruent to 0, 1 modulo 4 is 1/2 if d = 0 and 1/22d if d > 0.

Since dwill be c− 2, this is 1/22c−4. On the other hand, the density is multiplied by 1/4 when we pass

from u to r, so that

Λ0,b,1 =
1

8
=

1

4
− 1

16
(1 +

(−1

M

)

), 1≥ b≥ 0,

Λa,0,1 = Λa,0,2 = 0, a > 0, a odd,

Λa,0,1 = Λa,0,2 = 0, a > 0, a even,

Λ0,b,2 =
1

16
, 2≥ b≥ 0,

Λ0,b,c =
1

22c−2
(1 − 1

4
), c≥ b≥ 0, c > 2,

Λa,0,c = 0, a > 0, a odd, c > 2,

Λa,0,c =
1

22c−1
, a > 0, a even, c > 2.

These numbers are to be incorporated with the factor

1

4
(1 +

(−1

M

)

)(1 +

(

M

2

)

).
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Then Λ0,0 is the sum of

(A.9′)
7

8
− 1

32
(1 +

(−1

M

)

) +
1

27
(1 +

(−1

M

)

)(1−
(

M

2

)

)

and

{ 1

28
+

3

24

∞
∑

c=3

1

23c−2
}(1 +

(−1

M

)

)(1 +

(

M

2

)

)

or

(A.9′′) Λ′
0,0 =

1

28
(1 +

3

7
)(1 +

(−1

M

)

)(1 +

(

M

2

)

)

For b > 0,

Λ0,b =
∞
∑

c=b

2b

2c
Λ0,b,c.

Thus Λ0,1 is

1

4
− 1

16
(1 +

(−1

M

)

) +
1

64
(1 +

(−1

M

)

)(1−
(

M

2

)

) +
1

27
(1 +

3

7
)(1 +

(−1

M

)

)(1 +

(

M

2

)

),

while

Λ0,2 =
1

32
(1 +

(−1

M

)

)(1−
(

M

2

)

) +
1

26
(1 +

3

7
)(1 +

(−1

M

)

)(1 +

(

M

2

)

)

and

Λ0,b =
3

7

1

22b−1
(1 +

(−1

M

)

)(1 +

(

M

2

)

), b > 2,

because
3

16

∞
∑

c=b

2b

23c−2
=

3

7

1

22b−1
.

Thus
∑

b>2

Λ0,b =
1

23

1

7
(1 +

(−1

M

)

)(1 +

(

M

2

)

)

and

Λ′
0,0 +

∑

b>0

Λ0,b

is equal to the sum of

(A.10′)
1

4
− 1

16
(1 +

(−1

M

)

)

and

(A.10′′)
3

64
(1 +

(−1

M

)

)(1−
(

M

2

)

)
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and

(A.10′′′) { 5

27
+

1

7

1

23
}(1 +

(−1

M

)

)(1 +

(

M

2

)

),

because
5

7
(

1

27
+

1

26
+

1

25
) +

1

7

1

23
=

5

27
+

1

7

1

23
.

Finally

Λa,0 =
∞
∑

c=0

1

2a+c
Λa,0,c, a > 0.

I express it as a sum of three terms, the first of which is

Λ′
a,0 = − 1

2a+1
, a odd,

or

Λ′
a,0 =

1

2a+1
+

1

2a+4
(1−

(−1

M

)

), a even.

The other two, Λ′′
a,0 and Λ′′′

a,0, will be multiples of (1 +
(−1

M

)

)(1 +
(

M
2

)

) and (1 +
(−1

M

)

)(1 −
(

M
2

)

)

respectively. Observe that

(A.11)

∞
∑

a=1

Λ′
a,0 = −1

3
+

1

6
+

1

48
(1−

(−1

M

)

)

= − 1

16
(1 −

(−1

M

)

) − 1

12
(1 +

(−1

M

)

).

Since

(A.12)
1

8
=

1

16
(1 +

(−1

M

)

) +
1

16
(1 −

(−1

M

)

),

we can conclude at least that
∑

Λa,b − 1 is a multiple of (1 +
(−1

M

)

).

The terms that involve (1+
(−1

M

)

) alone without a second factor (1±
(

M
2

)

) come from (A.9′), (A.10′),

(A.11) and (A.12).

(A.13) {− 1

32
− 1

16
+

1

16
− 1

12
}(1 +

(−1

M

)

).

Since all other terms involve the second factor, I multiply (A.13) by

1

2
(1 +

(

M

2

)

) +
1

2
(1−

(

M

2

)

).
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To establish the first equality of (A.1) for q = 2, we have to show that the coefficients of the two

expressions (1 +
(−1

M

)

)(1±
(

M
2

)

) add up to 0.

The remaining terms that involve the product (1+
(−1

M

)

)(1−
(

M
2

)

) come from (A.9′), (A.10′′) and

∑

a>0

1

2a+2
Λ′′

a,0 =
∑

a>0

1

22a+7
(1 +

(−1

M

)

)(1−
(

M

2

)

)

=
1

27

1

3
(1 +

(−1

M

)

)(1−
(

M

2

)

).

They multiply it by the factor
1

27
+

3

64
+

1

27

1

3
.

The sum of this factor and 1/2 of that of (A.13) is

1

32
− 1

24
+

1

25

1

3
= 0.

Since
∑

a>0

Λ′′′
a,0 =

1

4
(1 +

(−1

M

)

)(1 +

(

M

2

)

)
∑

a=2d>0

∞
∑

c=3

1

2a+3c−1

=
1

27

1

3

1

7
(1 +

(−1

M

)

)(1 +

(

M

2

)

),

the terms involving the factor (1 +
(−1
M

)

)(1 +
(

M
2

)

) yield

(A.14) { 5

27
+

1

7

1

23
+

1

27

1

3

1

7
}(1 +

(−1

M

)

(1 +

(

M

2

)

=
11

263
(1 +

(−1

M

)

(1 +

(

M

2

)

Since

− 1

32
− 1

12
= − 11

253
,

the term (A.14) cancels the contribution from (A.13).

I treat the second equality of (A.1) only for q odd as this suffices for our purposes. We calculate

Λa,b using (A.2). Since

∑

a ≥ 0

∑

c ≥ b

∑

c ≥ m/2

qb

qa+c
O(

1

qc
) = {

∑

a ≥ 0

∑

d ≥ 0

1

qa+d
}
∑

c ≥ m/2

O(
1

qc
),

we need not use the exact value of Λa,b,c for 2c≥m. We need only approximate it uniformly within

O( 1
qc ).
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For 2c < m, the density of r for which r2−N is exactly divisible by q2c is (1−1/q)/qc. For 2c≥m,

it is O(1/qc). Thus, as an approximation,

Λ0,0 ∼ (1− 1

q
)

∞
∑

c=0

1

q2c
=

q

q + 1
.

Moreover, again as an approximation,

Λ0,b ∼ (1− 1

q
)

∞
∑

c=b

qb

q2c
=

q

q + 1

1

qb
, b > 0,

so that
∑

b>0

Λ0,b ∼
q

q + 1

1

q − 1
.

If 2c < m and r = qct, (q, t) = 1, then

r2 −N

q2c
≡ t2 (mod q)

and
(

(r2 −N)/q2c

q

)

= 1.

Thus, the approximation is

Λa,0 ∼ (1− 1

q
)

∞
∑

c=0

1

qa+2c
=

1

qa

q

q + 1
,

and
∑

a>0

Λa,0 ∼ q

q + 1

1

q − 1
.

Finally

Λ0,0 +
∑

b>0

Λ0,b +
∑

a>0

Λa,0 ∼ 1

1 − q−1
.

Appendix B: Some estimates.

I collect here a few simple estimates needed in Section 3.2. They are provisional and made without

any effort to search the literature. To simplify the notation, take N to be positive and M = N1/4. If s

is a positive integer, let #(s) be the number of distinct prime divisors of s.
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Lemma B.1 There is a constant c≥ 1 such that

√
N
∑

s>M

2#(s)

s3
= O(ln2c−1N).

There is a chance that the constant c is 1. It is even very likely, but I make no effort to prove it

here. The analysis would certainly be more difficult. For the lemma as stated it is sufficient to use

the well­known Tchebychef estimate ([HW], p. 10) for the n­th prime number18 p(n) � n ln 2n. I

have used n ln 2n rather than n lnn only to avoid dividing by ln 1 = 0. To verify the lemma with

c = 1 would undoubtedly entail the use the prime number theorem, thus the asymptotic relation

p(n) ∼ n/ ln 2n ∼ n/ lnn, and a different, more incisive treatment of the sums that appear.

Let q(n) be the nth element of the sequence of prime powers {2, 3, 4, 5, 7, 8, 9, . . .} and σ(x) the

number of prime powers less than x. I observe first that the Tchebychef estimate π(x) � x ln x implies

that σ(x) � x lnx as well and thus that q(n) � n lnn � n ln 2n.

Indeed,

σ(x) = π(x) + π(x1/2) + . . . π(x1/D) +O(1), D = [ln x],

and
D
∑

j=2

π(x1/j)≤C

∫ D

t=1

x1/t

lnx1/t
dt≤C

∫ ln x

t=1

x1/t

lnx1/t
dt,

because y/ ln y is an increasing function for y ≥ e. The integral is

1

ln x

∫ ln x

1

teln x/tdt =
1

ln x

∫ 1

1/ ln x

et ln x dt

t3

= ln x

∫ ln x

1

et dt

t3

≤ ln x

∫ ln x/2

1

et dt

t3
+

8

ln2 x

∫ ln x

ln x/2

etdt = O

(

x

ln2 x

)

Thus σ(x) � π(x).

To prove the lemma we write s as s = pa1
1 . . . pal

l , where all the primes p1, . . . , pl, are different. At

first, take p1 < p2 < . . . < pl. The expression of the lemma may be written as

√
N{
∑

l>0

∑

p1,p2,...,pl

2l

p3a1
1 . . . p3al

l

}.

18 Following [HW], I use the notation p(n) � n ln 2n to mean that C1n ln 2n≤ p(n)≤C2n ln 2n, with
positive constants C1 and C2.



78

There is certainly a sequence 1′ < . . . < k′, k′ ≤ l such that p
a1′

1′ . . . p
ak′

k′ > M while p
a1′

1′ . . . p̂
ai′

i′

. . . p
ak′

k′ ≤M for any i′, 1≤ i′ ≤ k′. The notation signifies that p
ai′

i′ is removed from the product. Thus

the expression of the lemma is bounded by

√
N{
∑

k>0

∑

p1,p2,...,pk

2k

p3a1
1 . . . p3ak

k

(
∑

t

2#(t)

t3
)},

where t is allowed to run over all integers prime to p1 , . . . , pk, but where p1 < . . . < pk, pa1
1 . . . pak

k > M ,

and pa1
1 . . . p̂ai

i . . . pak

k ≤M .

I next allow p1, . . . , pk to appear in any order, so that I have to divide by k!. It is still the case,

however, that pa1
1 . . . pak

k > M and that pa1
1 . . . p

ak−1

k−1 ≤M . Since

∑

t

2#(t)

t3
≤
∏

p

(1 +
2

p3
+

2

p6
+ . . .)

is finite, we may drop it from the expression and consider

(B.1)
√
N

∞
∑

k=1

2k

k!

∑

p
a1
1 ...p

ak
k

>M

p
a1
1 ...p

ak−1
k−1

≤ M

1

p3a1
1 . . . p3ak

k

=
√
N

∞
∑

k=1

2k

k!

∑

q1...qk>M
q1...qk−1 ≤ M

1

q31 . . . q
3
k

,

where q1, . . . qk are prime powers. It is this sum that is to be estimated. In it,

qk > A =
M

q1 . . . qk−1
≥ 1.

So in general, as a first step, we need to estimate, for any A≥ 1,

(B.2)
∑

q>A

1

q3
.

We apply the Tchebychef estimate. Thus, if C is taken to be an appropriate positive constant indepen­

dent of A, (B.2) is majorized by a constant times

∑

n>C A
ln 2A

1

n3 ln3 2n
≤

1

ln3(CA/ ln 2A)

∑

n>C A
ln 2A

1

n3

= O(
1

(A/ ln 2A)2
1

ln3(2A/ ln 2A)
)

= O(
1

A2 ln 2A
).

Although the argument itself is doubtful for smallA, especially if C is also small, the conclusion is not.
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As a result, (B.1) is bounded by

C
√
N

∞
∑

k=1

2k

k!

∑

q1...qk−1 ≤ M

1

q31 . . . q
3
k−1

q21 . . . q
2
k−1

M2

1

ln(2M/q1 . . . qk−1)
,

with perhaps a new constant C . Since M2 =
√
N , this is

(B.3) C
∑

k

2k

k!

∑

q1...qk−1 ≤ M

1

q1 . . . qk−1

1

ln(2M/q1 . . . qk−1)
.

To complete the proof of Lemma B.1, we shall use another lemma.

Lemma B.2. If A≥ 1, then

(B.4)
∑

q ≤ A

1

q ln(2A/q)
≤ c

ln lnA

ln 2A
,

the sum running over prime powers.

The constant of this lemma is the constant that appears in Lemma B.1. So it is Lemma B.2 that will

have to be improved.

Before proving the lemma, we complete the proof of Lemma B.1. Set A = M/p1 . . . pk−2. Then

(B.5)
∑

q1...qk−1 ≤ M

1

q1 . . . qk−1

1

ln(2M/q1 . . . qk−1)

may be rewritten as
∑

q1...qk−2 ≤ M

1

q1 . . . qk−2

∑

qk−1 ≤ A

1

qk−1

1

ln(2A/qk−1)
,

which, by Lemma B.2, is at most

c
∑

q1...qk−2 ≤ M

1

q1 . . . qk−2

ln lnA

ln 2A
≤ c ln lnM

∑

q1...qk−2 ≤ M

1

q1 . . . qk−2

1

ln 2A

It is clear that (B.5) is O((c ln lnM)k−1/ ln 2M) for k = 1, and this estimate now follows readily by

induction for all k uniformly in k. As a result (B.3) is

O(
∞
∑

k=1

2k(c ln lnM)k−1

k! lnM
) = O(

e2c ln ln M

ln lnM lnM
) = O(ln2c−1M),

where we have discarded a ln lnM in the denominator that is of no help.
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If we are willing to accept a very large constant c in (B.4), then we can replace ln 2A/q in the

denominator by lnCA/ ln p, whereC is any given constant greater than 1 or byCA/n ln 2n, if q = q(n)

is thenth prime power andC is chosen sufficiently large in comparison to the constant in the Tchebychef

inequality. We can also replace the p(n) in the denominator by n ln 2n. Thus, at the cost of adding

some terms, we may replace the sum (B.4) by

(B.6)
∑

n ln 2n ≤ C′A

1

n ln 2n

1

ln(CA/n ln 2n)
.

There is no harm in supposing that C′ = 1, Clearly, we can demand in addition that the sum run over

n ln 2n≥C1, where C1 is a fixed arbitrary constant, because the sum

∑

n ln 2n ≤ C1

1

n ln 2n

1

ln(CA/n ln 2n)

is certainly O(1/ lnA). Set
CA

n ln 2n
= A1−α, α = e−a.

If C1 ≥C , α = α(n)≥ 0. Moreover, as we have agreed to exclude the initial terms of the original

sum, α < 1 and a > 0. If β is some fixed number less than 1, then

∑

α(n) ≤ β

1

n ln 2n

1

ln(CA/n ln 2n)
≤C2

1

ln 2A

∑

α(n) ≤ β

1

n ln 2n
≤C3

ln lnA

ln 2A
.

So we may sum over α(n) > β or a = a(n) < b, b = − lnβ. We now confine ourselves to this range.

In addition (1− α) lnA≥ lnC , so that (1 − α)≥C4/ lnA and

a≥C5/ lnA

Let ε > 0 and set b(k) = b(1+ ε/ lnA)−k. I shall decompose the sum into sums over the intervals b(k+

1)≤ a(n) < b(k), for all those k such that b(k+2)≥C5/ lnA and into one last intervalC5/ lnA≤ a(n) <

b(k), where k is the first integer such that b(k + 2) < C5/ lnA. I shall denote these intervals by I and

use the Hardy­Wright notation to indicate uniformity with respect to I .

Notice first that

Aα(n+1)−α(n) =
(n+ 1) ln 2(n+ 1)

n ln 2n
= 1 +O(

1

n
) = 1 +O(

1

ln 2n
).

Thus α(n + 1) − α(n)≤C6/ ln2A when α(n) > β. As a result, on the same range a(n) − a(n +

1)≤C7/ ln2A. Moreover

b(k)− b(k + 1)≥ b(k)
ε

lnA
>

C5ε

ln2A
.
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Thus each of these intervals contains at least two terms of our sum provided that C5ε > 2C7, as we

assume. Moreover, if a′ and a lie in the same interval, then a′/a � 1 and (1− α′)/(1− α) � 1, so that

ln(CA/n′ ln 2n′)

ln(CA/2n ln 2n)
� 1,

where n′ = n(α′) and n = n(α) are not necessarily integers.

We conclude first of all that, for any point aI in I ,

∑

a(n)∈I

1

n ln 2n

1

ln(CA/n ln 2n)
� 1

aI ln 2A

∑

a(n)∈I

1

n ln 2n

and that
∫

I

1

a
da � 1

aI

∫

I

da.

So, if we can show that

(B.7)
∑

a(n)∈I

1

n ln 2n
�
∫

I

da

the lemma will follow, because

∑

I

∫

I

1

a
da =

∫ b

C5/ ln A

1

a
da = O(ln lnA).

Since
(n+ 1) ln 2(n+ 1)

n ln 2n
= O((1 +

1

n
)2),

the sum in (B.7) may be replaced by the integral with respect to dn from n1 to n2 if a2 = a(n2 − 1) and

a1 = a(n1) are the first and last points in the interval associated to integers. The integral is equal to

∫ n2

n1

1

n ln 2n
dn = ln ln 2n2 − ln ln 2n1.

We show that the right­hand side is equivalent in the sense of Hardy­Wright to a2 − a1 or, what is the

same on the range in question, to α1 − α2. Thus all three are of comparable magnitudes uniformly in

I . Since a2 − a1 is equivalent, again in the sense of Hardy­Wright, to the length of I , the relation (B.7)

will follow.

Since n ln 2n = CAα, lnn+ ln ln 2n = lnC + α lnA,

lnn+ ln ln 2n = lnn+ (1 +
ln ln 2n

lnn
),
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and α = α(n) is bounded below by − ln b, we infer that lnn � lnA. Moreover

(B.8)
ln lnn+ ln

(

1 +
ln lnn

ln 2n

)

= ln(α lnA
(

1 +
lnC

α lnA

)

)

= lnα+ ln lnA+ ln
(

1 +
lnC

α lnA

)

.

Since a difference between the values of a continuously differentiable function at two values of the

argument is equal to the difference of the arguments times the derivative at some intermediate point,

(B.9) ln(1 +
lnC

α2 lnA
) − ln

(

1 +
lnC

α1 lnA

)

= O(
lnC

lnA
(α1 − α2)) = O(

1

lnA
(a2 − a1)).

The expression

ln
(

1 +
ln ln 2n

lnn

)

= ln
(

1 +
lnX

X − ln 2

)

, X = ln 2n.

So the difference

ln
(

1 +
ln2 ln 2n2

lnn2

)

− ln
(

1 +
ln1 ln 2n1

lnn1

)

= O(
ln lnA

ln2 A
(lnn2 − lnn1))

Since

ln lnn2 − ln lnn1 � 1

lnA
(lnn2 − lnn1),

we conclude from (B.8) and (B.9)that

ln ln 2n2 − ln ln 2n1 � ln lnn2 − ln lnn1 � α2 − α1.

The next lemma is similar to Lemma B.1.

Lemma B.3. There is a positive constant c≥ 1 such that for any positive constant C,

∑

C
√

N>s>M

2#(s)

s
= O(ln2cN).

It is again very likely that c may be taken equal to 1, but once again our proof will squander a

good deal of the force even of the Tchebychef inequality.

I have stated the lemma in the way it will be used, but the constant C is clearly neither here nor

there. Moreover, we prove the stronger statement

(B.10)
∑

s ≤
√

N

2#(s)

s
= O(ln2cN).
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Thus the lower bound on s in the sum is unnecessary. We takeA =
√
N and write s = p1 . . . plt, where

t is prime to p1, . . . , pl and where p|t implies that p2|t. So the left side of (B.10) is majorized by

(
∑

l ≥ 0

∑

p1...pl<A

2l

p1 . . . pl
)
∏

p

(1 +
2

p2
+

2

p3
+ . . .).

The product is a constant factor and can be dropped for purposes of the estimation. So we are left with

(B.11)
∑

l ≥ 0

∑

p1...pl<A

2l

p1 . . . pl
=
∑

l ≥ 0

∑

p1...pl<A

2l

l!

1

p1 . . . pl
,

the difference between the left and the right sides being that the first is over p1 < . . . < pl, whereas in

the second the primes are different but the order arbitrary.

It is clear that

∑

p<A

1

p
= O(

∑

n ln 2n<CA

1

n ln 2n
) = O(ln ln(

A

lnA
)) = O(ln lnA).

Thus,
∑

p1...pl<A

1

p1 . . . pl
≤ (
∑

p<A

1

p
)l ≤ (c ln lnA)l,

uniformly in l. The estimate (B.10) follows from (B.11).

Applying Lemma B.3 with N replaced by
√
N we obtain

Corollary B.4. There is a constant c≥ 1 such that

1√
N

∑

s ≤ M

2#(s)s = O(ln2cN).

Appendix C: Weighted orbital integrals.

This is largely a matter of recollecting results from [H] and earlier papers, amply acknowledged

in [H]. More must be said than would be necessary had the author, W. Hoffmann, not assumed that his

groups were connected, for, like many groups that arise in the arithmetic theory of automorphic forms,

Z+\GL(2,R) is unfortunately disconnected, but there is no real difficulty and I shall be as brief as

possible. The goal of §2.4 and §4.3, for which we need these results, is just to make clear what terms in

addition to the elliptic term contribute to the limit (12′) when m is even and how. We first establish the
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relation between the notation of this paper and that of [H], as well as the connection between ω1(γ, f∞)

and θ′z(0, f∞), or rather, on referring to (55), between ω1(γ, f∞) and

(C.1)

∫

f∞(k−1zn(x)k) ln |x|dxdk.

Let

γ =

(

α 0
0 β

)

.

According to its definition in [JL],

ω1(γ, f∞) = −
∫ ∫

f∞(k−1n−1(x)γn(x)k) ln(1 + x2)dxdk

= −
∫ ∫

f∞(k−1γn((1− β/α)x)k) ln(1 + x2)dxdk

which is equal to

− 1

|1 − β/α|

∫ ∫

f∞(k−1γn(x)k){ln((1− β/α)2 + x2) − ln(1− β/α)2}dxdk.

Thus

(C.2) |1 − β/α|ω1(γ, f∞) − ln(1 − β/α)2ω(γ, f∞)

approaches −2 times (C.1) as α and β approach z. So we shall be able to deduce a convenient

expression for (C.1) from Hoffmann’s formulas, which are valid for αβ > 0. Since the singularity of

|1 − β/α|ω1(γ, f∞) at α = β is only logarithmic, we may multiply it in (C.2) by any smooth function

that assumes the value 1 for α = β.

Because

γ = z

(

1 0
0 −1

)

does not lie in the connected component of Z+\GL(2,R), Hoffmann’s arguments do not apply directly

to ω1(γ, f∞) for this γ.

When comparing the notation of this paper with that of Hoffmann, it is best to replace, without

comment, all of Hoffmann’s group elements by their inverses. Otherwise the conventions are not those

of number­theorists and not those of this paper. For him maximal compact subgroups operate on the

left, and parabolic and discrete groups on the right.

The group P of Hoffmann is for us the group of upper­triangular matrices, P̄ the group of lower­

triangular matrices, and M is the quotient of the group of diagonal matrices by Z+ and has as Lie
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algebra aR. His map λP , which is determined by the weight in the noninvariant orbital integral

defining ω1, we take to be
(

a 0
0 b

)

→ a− b,

and the λ defining his σ to be s/2 times λP . In addition, his dλ is ds/2. Then, as a result of the transfer

of the parabolic subgroup to the right in [H], Hoffmann’s v(n(x)) is ln(1 + x2) and is, as he observes,

positive.19 Since

DG(m) = (1− β

α
)(1− α

β
), m = γ,

we conclude that

JM (m, f∞) = −|α− β|
|αβ| 12

ω1(γ, f∞).

So we may replace |1− β/α|ω1(γ, f∞) in (C.2) by −JM(m, f∞). Here and elsewhere in this appendix

I freely use the symbol m as it is used by Hoffmann. Elsewhere in the paper, the symbol m is reserved

for the degree of the symmetric power.

Before entering into further comparisons between our notation and that of Hoffmann, I review my

understanding of his conventions about the measure onM and on its dual. He takes the two measures

to be dual with respect to the Fourier transform. So when they both appear, the normalization is

immaterial. On the other hand, only one may appear; moreover, there is a second choice, that of λP ,

which is fixed by the weighting factor v. Hoffmann’s IP is a linear combination of JM (m, f) and an

integral over the dual M̂ . JM(m, f) depends directly on λP but not on the two Haar measures. There

is a further dependence on the measure on M\G, but this dependence is the same in every pertinent

expression in his paper and can be ignored. The integral over the dual depends directly on the measure

on M̂ and directly on the measure on M because of the presence of πP,σ(f) which depends directly

on the measure on G, thus on the measures on M and M\G; because of the derivative δP it depends

directly on λP as well. Since the measures onM and its dual are inversely proportional, the dependence

on the two measures is cancelled and both terms of the sum depend on λP alone.

This must therefore be the case for the right side of the formula in his Theorem 1 as well. In the

second term, the integral over M̂ , this is clear, because Θπσ
depends directly on the measure on M

and ΩP,Σ depends depends directly on λP . In the first term, however, the only dependence is through

Ωπ(f) and is a direct dependence on the measure on M . If the theorem is to be valid, this measure

19 What with signs and factors of 2, there is considerable room for error when attempting to reconcile
conventions from various sources.
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must be defined directly in terms of the form λP . This Hoffmann does in a straightforward manner. I

refer to his paper for more precision. For the group SL(2,R) = Z+\G+, with G+ = {g ∈ GL(2,R)|

det(g) > 0} and with our parameters, s, for the characters of M and t for a = a(x) as in §4.3, the

measures are dσ = d|s|/2 and da = dx, which is also the measure dλ/λ of §2.1.

The collection M̂ of unitary representations of M has four connected components, corresponding

to the four choices of k, l = 0, 1,

σ : γ → sgn(α)k sgn(β)l|α
β
|s/2,

with s purely imaginary. Although Js and tr(J−1
s J ′

sξs(f∞)) were defined in §2.3 only for k =

l = 0, they are defined for all choices of k and l and Hoffmann’s −JP (σ, f∞) is nothing but

2 tr(J−1
s J ′

sξ
k,l
s (f∞)), an expression in which all implicit dependence on k and l is not indicated.

Earlier in the paper, ξ0,0
s appeared simply as ξs. The factor 2 is a result of the relation λ = sλP /2.

Recalling that DM (m) = 1, we consider

(C.3) JM(m, f∞) +
1

8πi

∑

∫

C

sgn(α)k sgn(β)l|α
β
|−s/2 tr(J−1

s J ′
sξ

k,l
s (f∞))ds.

The sum before the integration is over the four possible choices for the pair (k, l). If f is supported

on G+ and if det(m) > 0, then the integrand does not change when k, l are replaced modulo 2 by

k + 1, l + 1. So the sum over l can be dropped, l can be taken to be 0 and the 8 becomes 4. So (C.3)

would reproduce Hoffmann’s definition if we were concerned with G+ alone.

We will, in general, be summing (C.3) over ±m, so that the total contribution from the integrals for

k 6= l will be 0 and for k = l the 8πi in the denominator will be replaced by 4πi. Moreover replacing

k = l = 0 by k = l = 1 has the effect of replacing ξs(g) by sgn(det(g))ξs(g) and has no effect on Js.

For the contribution from (iv), we shall be concerned with α = −β and, for such an m, sgnαk sgnβk

is 1 for k = 0 and −1 for k = 1. The sum of (C.3) over ±m therefore reduces to

(C.4) JM (m, f∞) + JM (−m, f∞) +
1

2πi

∫

C

tr(J−1
s J ′

sξs(f
−
∞))ds,

where f−∞ is the product of f∞ with the characteristic function of the component of Z+\GL(2,R)

defined by det(g) = −1. The analogous f+
∞ will appear below. For the m in question, the factor

|DG(m)|1/2 is equal to 2. This is the factor coming from ω(γ, f2). Thus (C.4) is twice the negative of

the sum of the contribution to the limit (12′) of (iv), in which there is yet another minus sign, and of

that part of (viii) associated to f−∞.
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The expression (C.3) has no meaning for the γ that are pertinent in the contribution of (v) to the

limit (12′) for even symmetric powers, namely for α = β. We may however consider it for α unequal

but close to β. Once again we consider the sum over ±m. Then only the terms with k = l remain.

Since sgnα will be equal to sgnβ, we obtain

(C.5) JM (m, f∞) + JM (−m, f∞) +
1

2πi

∫

C

|α
β
|−s/2 tr(J−1

s J ′
sξs(f

+
∞))ds.

We add to this

ln(1 − β/α)2{ω(γ, f∞) + ω(−γ, f∞)}, γ = m.

Since the second term in (C.3) is well behaved asα→ β, the result will have a limit asα and β approach

a common value z because the integrals themselves will have a limit. The limit is

(C.6) 2
1
∑

j=0

∫

f∞(k−1(−1)jzn(x)k) ln |x|dxdk +
1

2πi

∫

C

tr(J−1
s J ′

sξs(f
+
∞))ds.

This is twice the contribution of (57) and of that part of (viii) associated to f+∞ to the limit (12′),

Although the results of Hoffmann cannot be applied directly to the general form of (C.3) or

(C.4), they can be applied to (C.5). In fact, the material necessary for extending his arguments is

available, although not all in print. The principal ingredients are the differential equation for the

weighted orbital integrals and an analysis of their asymptotic behavior. The first is available in

general ([A1]) and the second will appear in the course of time in a paper by the same author. Since

irreducible representations ofZ+\GL(2,R) are obtained by decomposing – into at most two irreducible

constituents – representations induced from its connected componentSL(2,R), the Plancherel measure

of the larger group is, at least for the discrete series, the same as that of the smaller one. So I feel free to

apply Hoffmann’s results to (C.3) and (C.4) as well, taking care that the measures used are compatible

on restriction to functions supported on G+ with his.

For any diagonal matrix m with diagonal entries of different absolute value, Hoffmann

([H], Th. 1) finds – at least for f supported on G+ – that IP (m, f∞) is equal to

(C.7) −|α− β|
|αβ| 12

∑

π

Θπ̌(m)Θπ(f) +
1

8πi

∑

k,l

∫ i∞

−i∞
Ω(m, s) tr ξk,l

s (f∞)ds,

where

Ω(m, s) = ηk,l(m, s) + ηl,k(m,−s)
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and

(C.8) ηk,l(m, s) = sgnαk sgnβlets

{

∑∞
n=1

(α/β)−n

n−s
, t > 0

∑∞
n=0

(α/β)n

n+s
+ π(−1)k+l

sin(πs)
, t < 0,

if

m = m(t) =

(

α 0
0 β

)

=

(

±et 0
0 ±e−t

)

,

the two signs being chosen independently. The factor λP (Hα)/2 that appears in [H] is 1.

There are two observations to be made. First of all, Ω depends not only on m and s, but also on k

and l, which determine the character of MI . Secondly, Ω(m, s) is, for a given m, symmetric in s and,

despite appearances, does not have a singularity at s = 0, so that the contour of integration can pass

through that point.

For our purposes, it is best to represent (C.7) in terms of the Fourier transform of ξk,l
s (f∞). We

begin with the case that detm is negative, for the passage to the limit |α| = |β| is then more direct. We

refer to the first term in (C.7) as the elliptic contribution and to the second as the hyperbolic contribution.

If detm is negative, then the character of a discrete­series representation vanishes at m, Θπ̌(m) = 0.

So the elliptic contribution is 0.

The character of the representation ξk,l
s is 0 on the elliptic elements ofGL(2,R), but on a hyperbolic

element

(C.9) a = a(x) = ε

(

ex 0
0 δe−x

)

, δ, ε = ±1,

it is equal to

(C.10) εk+l δlesx + δke−sx

√

|1 − α/β||1 − β/α|
,

where the signs are that appearing in the matrix. Since

r = ε(ex ± e−x),

the numbers ex and e−x can of course be recovered from r and the sign. The measure dλ/λ is in this

new notation dx. If

f̂∞(a) =
√

|1 − α/β||1 − β/α|
∫

M\GL(2,R)

f∞(g−1ag)dg,
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then, by the Weyl integration formula,

tr ξk,l
s (f∞) =

∑

∫ ∞

−∞
εk+lδlesxf̂∞(a)dx,

where a is given by (C.9) and there is a sum over the two free signs in a. Thus tr(ξk,l
s (f∞)) is expressed

as the Fourier transform of the functions f̂∞(a), although the formula (C.10) and the calculations that

led to (30) allow us to express this immediately as an integral of the two functions ψ±. It is, however,

too soon to pass to the variable r.

What we want to do is to express the hyperbolic contribution to (C.7), for |α| 6= |β|, in terms not

of tr ξk,l
s (f∞) but in terms of its Fourier transform, then to pass to α = −β, and at this point and for

this particular choice to express the result in terms of ψ±. I stop short of this final transformation.

Since we shall be taking the limit t → 0, it suffices to take t > 0. Since the signs of α and β are

supposed different, the function η(m, s) is the Fourier transform of the function that is

sgnαk sgnβl
∞
∑

n=1

(−1)ne−n(t+x) = − sgnαk sgnβl e−(t+x)

1 + e−(t+x)

for x > t and 0 for x < t. Thus, the hyperbolic contribution is

−1

4

∑

k,l

∑

∫ ∞

t

sgnαk sgnβlεk+lδl e−(t+x)

1 + e−(t+x)
f̂∞(a)dx,

in which the inner sum is over the free signs in a. The effect of the sum over k and l together with the

factor 1/4 is to remove all terms of the inner sum except the one for which ε = α and δε = β, as we

could have predicted. Thus the signs of a are those of m and the hyperbolic contribution is

(C.11) −
∑

∫ ∞

t

e−(t+x)

1 + e−(t+x)
f̂∞(a)dx.

The limit as t→ 0 can be taken without further ado and gives

(C.12) −
∑

∫ ∞

0

e−x

1 + e−x
f̂∞(a)dx,

where a has eigenvalues of opposite sign. Which is positive and which is negative does not matter

because of the summation over the two possible opposing signs. When we take η(m,−s) into account

as well, we obtain in addition

(C.12′) −
∑

∫ 0

−∞

e−x

1 + e−x
f̂∞(a)dx,
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The two are to be added together. Since we take the sum of IP (m, f∞) and IP (−m, f∞), it is probably

best to represent it as the sum of (C.12) (together with (C.12′)),

(C.13) −
∑

∫ ∞

−∞

e−|x|

1 + e−|x| f̂∞(a)dx, a = a(x)

If detm is positive, then, the sign no longer appearing, (C.11) is replaced by

(C.14)
∑

∫ ∞

t

e−(t+x)

1 − e−(t+x)
f̂∞(a)dx,

where, of course, the signs of a are those of m. When we need to be explicit, we denote by a(x, ε) the

diagonal matrix with eigenvalues εex and εe−x, ε being ±1. For the passage to the limit,20 we replace

(C.14) by the sum of

(C.15)
∑

∫ ∞

t

(
e−(t+x)

1 − e−(t+x)
− 1

t+ x
)f̂∞(a)dx,

whose limit is obtained by setting t = 0, and

(C.16)
1

2

∑

∫ ∞

t

1

t+ x
f̂∞(a)dx = −

∑

f̂∞(±m) ln(2t)−
∫ ∞

t

ln(t+ x)
df̂∞
dx

(a)dx,

where we have integrated by parts. Once again, there will be similar terms arising from η(m,−s). The

first term is an even function of x and will thus contribute

−2
∑

f̂∞(±m) ln(2t).

Since 1 − β/α ∼ 2t, we are to add to this

ln(4t2)ω(γ, f∞) = 2 ln(2t)f̂∞(m), γ = m,

because in spite of our notation, taken as it is from a variety of sources, f̂(m) = ω(γ, f∞).

So the limit as t→ 0 of the sum over m and −m is the sum of

(C.17)
∑

∫ ∞

−∞
(

e−|x|

1 − e−|x| −
1

|x| )f̂∞(a)dx

20 The formulas here are variants of those to be found in [H], especially Lemma 6. They are not
necessarily more useful.
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and

(C.18) −
∑

∫ ∞

−∞
ln |x| sgnx

df̂∞
dx

(a)dx.

In both (C.17) and (C.18) there is a sum over a and −a, as in (C.13).

For the elliptic contribution, we recall that from the formula for the discrete­series character with

parameter k ≥ 0, as found, for example, in [K]

−α− β|
|αβ| 12

Θπ̌(m) = −(±1)k−1e−kt, m = a(t,±1), t > 0.

This has a limit as t→ 0. It is −(±1)k−1. Since

(C.19) −
∞
∑

k=0

(±1)k−1Θπk
(f)

is absolutely convergent, we can provisionally take (C.19) as the contribution of the elliptic term of

Hoffmann’s formula. The contribution (C.19) does not appear to be expressible as an integral of the

pair of functions ψ± against a measure. So for the moment I prefer to leave it as it stands.

Appendix D: A Fourier transform.

The Fourier transform of the distribution

(D.1) h→
∫ ∞

0

lnx
dh

dx
(x)dx

is calculated by treating the distribution as minus the derivative with respect to the purely imaginary

Fourier transform variable s of

lim
ε→0

d

dt

∫ ∞

0

xte−εxh(x)dx

for s = 0. The Fourier transform of the distribution without either the derivative or the limit is

calculated directly as
∫ ∞

0

xte−εxesxdx = (ε− s)−1−tΓ(t+ 1),

where s is purely imaginary. Differentiating, setting t = 0, and multiplying by −s, we obtain

s

ε− s
Γ(1) ln(ε+ s) − Γ′(1)

s

ε− s
.
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Careful attention to the real content of this formal argument reveals that ln(ε + s) is to be chosen

between −π/2 and π/2. Letting ε approach 0, this becomes

(D.2) − ln s+ Γ′(1),

where ln s is ln |s| + π
2 sgn s. The symmetric form of (D.1) is

(D.1′))

∫ ∞

−∞
ln |x| sgn x

dh

dx
(x)dx

and the symmetric form of (D.2) is −2 ln |s| + 2Γ′(1). Recall from [N, p. 15] that Γ′(1) = −λ0 is the

negative of Euler’s constant.
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Added in Proof. As the reader was cautioned, much of the material of the paper was provisional:
the analysis rough and numerical experiments preliminary. Although further reflection confirms so far

the general conclusions, details will have to be modified. There is little point in precise explanations
until arguments or experiments have reached a more mature stage. There are only three observations

to make. First of all, the O(lnl(p)) hypothesis for the size of (70) appears more than doubtful. On the

other hand, the averages continue to behave, with better code, as described, but better, for the quadratic
term in ln p seems to have coefficient O. Finally formula (81) is not correct as it stands.


