
On the Notion of an Automorphic Representation *

The irreducible representations of a reductive group over a local field can be obtained from the

square-integrable representations of Levi factors of parabolic subgroups by induction and formation of

subquotients [2], [4]. Over a global field F the same process leads from the cuspidal representations,

which are analogues of square-integrable representations, to all automorphic representations.

Suppose P is a parabolic subgroup of G with Levi factor M and σ = ⊗σv a cuspidal representation

of M(A). Then Ind σ = ⊗vInd σv is a representation of G(A) which may not be irreducible, and may

not even have a finite composition series. As usual an irreducible subquotient of this representation is

said to be a constituent of it.

For almost all v, Ind σv has exactly one constituent π◦
v containing the trivial representation of

G(Ov). If Ind σv acts on Xv then π◦
v can be obtained by taking the smallest G(Fv)-invariant subspace

Vv of Xv containing nonzero vectors fixed by G(Ov) together with the largest G(Fv)-invariant subspace

Uv of Vv containing no such vectors and then letting G(Fv) act on Vv/Uv.

Lemma 1. The constituents of Ind σ are the representations π = ⊗πv where πv is a constituent

of Ind σv and πv = π◦
v for almost all v.

That any such representation is a constituent is clear. Conversely let the constituent π act on V/U

with 0 ⊆ U ⊆ V ⊆ X = ⊗Xv. Recall that to construct the tensor product one chooses a finite set

of places S0 and for each v not in S0 a vector x◦
v which is not zero and is fixed by G(Ov). We can

find a finite set of places S, containing S0, and a vector xS in XS = ⊗v∈SXv which are such that

x = xS ⊗ (⊗v/∈Sx
◦
v) lies in V but not in U .

Let VS be the smallest subspace of XS containing xS and invariant under GS = Πv∈SG(Fv).

There is clearly a surjective map

VS ⊗ (⊗v/∈SVv) → V/U,

and ifv0 /∈ S the kernel containsVS⊗Uv0⊗(⊗v/∈S∪{v0}Vv). We obtain a surjectionVS⊗(⊗v∈SVv/Uv) →
V/U with a kernel of the formUS⊗(⊗v∈SVv/Uv), US lying in VS . The representation of GS on VS/US is

irreducible and, since Ind σv has a finite composition series, of the form ⊗v∈Sπv, πv being a constituent

of Ind σv . Thus π = ⊗πv with πv = π◦
v when v /∈ S.

* Appeared in Proceedings of Symposia in Pure Mathematics Vol. 33 (1979), part 1, pp. 203–207



On the Notion of an Automorphic Representation 2

The purpose of this note is to establish the following proposition.*

Proposition 2. A representation π of G(A) is an automorphic representation if and only if π is a

constituent of Ind σ for some P and some σ.

The proof that every constituent of Ind σ is an automorphic representation will invoke the theory

of Eisenstein series, which has been fully developed only when the global field F has characteristic

zero [3]. One can expect however that the analogous theory for global fields of positive characteristic

will appear shortly; so there is little point in making the restriction to characteristic zero explicit in the

proposition. Besides, the proof that every automorphic representation is a constituent of some Ind σ

does not involve the theory of Eisenstein series in any serious way.

We begin by remarking some simple lemmas.

Lemma 3. Let Z be the center of G. Then an automorphic form is Z(A)-finite.

This is verified in [1].

Lemma 4. Suppose K is a maximal compact subgroup of G(A) and ϕ an automorphic form with

respect to K. Let P be a parabolic subgroup of G. Choose g ∈ G(A) and let K ′ be a maximal

compact subgroup of M(A) containing the projection of gKg−1 ∩ P (A) on M(A). Then

ϕP (m; g) =
∫

N(F )\N(A)

ϕ(nmg)dn

is an automorphic form on M(A) with respect to K ′.

It is clear that the growth conditions are hereditary and that ϕP (·; g) is smooth and K′-finite. That

it transforms under admissible representations of the local Hecke algebras of M is a consequence of

theorems in [2] and [4].

We say that ϕ is orthogonal to cusp forms if
∫
ΩGder(A)

ϕ(g)ψ(g) dg = 0 whenever ψ is a cusp form

and Ω is a compact set in G(A). If P is a parabolic subgroup we write ψ⊥P if ϕP (·; g) is orthogonal to

cusp forms on M(A) for all g. We recall a simple lemma [3].

* The definition of an automorphic representation is given in the paper [1] by A. Borel and H. Jacquet

to which this paper was a supplement.
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Lemma 5. If ϕ⊥P for all P then ϕ is zero.

We now set about proving that any automorphic representation π is a constituent of some Ind σ.

We may realize π on V/U , where U, V are subspaces of the space A of automorphic forms and V is

generated by a single automorphic form ϕ. Totally order the conjugacy classes of parabolic subgroups

in such a way that {P} < {P ′} implies rank P ≤ rank P ′ and rank P < rank P ′ implies {P} < {P ′}.

Given ϕ let {Pϕ} be the minimum {P} for which {P} < {P ′} implies ϕ⊥P ′. Amongst all the ϕ

serving to generate π choose one for which {P} = {Pϕ} is minimal. If ψ ∈ A let ψP (g) = ψP (1, g) and

consider the map ψ → ψP on V . If U and V had the same image we could realize π as a constituent

of the kernel of the map. But this is incompatible with our choice of ϕ and hence if UP and VP are the

images of U and V we can realize π in the quotient VP /UP .

Let A◦
P be the space of smooth functions ψ on N(A)P (F )\G(A) satisfying the following condi-

tions.

(a) ψ is K-finite.

(b) For each g the function m → ψ(m, g) = ψ(mg) is automorphic and cuspidal.

Then VP ⊆ A◦
P . Since there is no point in dragging the subscript P about, we change notation,

letting π be realized on V/U with U ⊆ V ⊆ A◦
P . We suppose that V is generated by a single function

ϕ.

Lemma 6. Let A be the center of M . We may so choose ϕ and V that there is a character χ of

A(A) satisfying ϕ(ag) = χ(a)ϕ(g) for all g ∈ G(A) and all a ∈ A(A).

Since P (A)\G(A)/K is finite, Lemma 3 implies that any ϕ in A◦
P is A(A)-finite. Choose V and

the ϕ generating it to be such that the dimension of the span Y of {l(a)ϕ|a ∈ A(A)} is minimal.

Here l(a) is left translation by a. If this dimension is one the lemma is valid. Otherwise there is an

a ∈ A(A) and α ∈ C such that 0 < dim(l(a) − α)Y < dimY . There are two possibilities. Either

(l(a) − α)U = (l(a) − α)V or (l(a) − α)U �= (l(a) − α)V . In the second case we may replace ϕ by

(l(a) − α)ϕ, contradicting our choice. In the first we can realize π as a subquotient of the kernel of

l(a) − α in V .

What we do then is to choose a lattice B in A(A) such that BA(F ) is closed and BA(F )\A(A) is

compact. Amongst all those ϕ and V for which Y has the minimal possible dimension we choose one

ϕ for which the subgroup of B defined as {b ∈ B|l(b)ϕ = βϕ, β ∈ C} has maximal rank. What we

conclude from the previous paragraph is that this rank must be that of B. Since ϕ is invariant under
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A(F ) and BA(F )\A(A) is compact, we conclude that Y must now have dimension one. The lemma

follows.

Choosing such a ϕ and V we let ν be that positive character of M(A) which satisfies

ν(a) = |χ(a)|, a ∈ A(A),

and introduce the Hilbert spaceL◦
2 = L◦

2(M(F )\M(A), χ) of all measurable functionsψ onM(Q)\M(A)

satisfying the following conditions.

(i) For all m ∈ M(A) and all a ∈ A(A), ψ(ag) = χ(a)ψ(g).

(ii)
∫

A(A)M(Q)\M(A)
ν−2(m)|ψ(m)|2dm < ∞.

L◦
2 is a direct sum of irreducible invariant subspaces and if ψ ∈ V then m → ψ(m, g) lies in L◦

2

for all g ∈ G(A). Choose some irreducible component H of L◦
2 on which the projection of ψ(·, g) is not

zero for some g ∈ G(A).

For each ψ in V define ψ′(·, g) to be the projection of ψ(·, g) on H . It is easily seen that, for

all m1 ∈ M(A), ψ′(mm1, g) = ψ′(m,m1g). Thus we may define ψ′(g) by ψ′(g) = ψ′(1, g). If

V ′ = {ψ′|ψ ∈ V }, then we realize π as a quotient of V ′. However if δ2 is the modular function for

M(A) on N(A) and σ the representation of M(A) on H then V ′ is contained in the space of Ind δ−1σ.

To prove the converse, and thereby complete the proof of the proposition, we exploit the analytic

continuation of the Eisenstein series associated to cusp forms. Suppose π is a representation of the

global Hecke algebra H, defined with respect to some maximal compact subgroup K of G(A). Choose

an irreducible representation k of K which is contained in π. If Eκ is the idempotent defined by κ

let Hκ = EκHEk and let πκ be the irreducible representation of Hκ on the κ-isotypical subspace of

π. To show that π is an automorphic representation, it is sufficient to show that πκ is a constituent of

the representation of Hκ on the space of automorphic forms of type κ. To lighten the burden on the

notation, we henceforth denote πκ by π and Hκ by H.

Suppose P and the cuspidal representation σ of M(A) are given. Let L be the lattice of rational

characters of M defined over F and let LC = L ⊗ C. Each element µ of LC defines a character ξµ of

M(A). Let Iµ be the κ-isotypical subspace of Ind ξµσ and let I = I0. We want to show that if π is a

constituent of the representation of I then π is a constituent of the representation of H on the space of

automorphic forms of type κ.

If {gi} is a set of coset representatives for P (A)\G(A)/K then we may identify Iµ with I by means

of the map ϕ → ϕµ with
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ϕµ(nmgik) = ξµ(m)ϕ(nmgik).

In other words we have a trivialization of the bundle {Iµ} over LC, and we may speak of a holomorphic

section or of a section vanishing at µ = 0 to a certain order. These notions do not depend on the choice

of the gi, although the trivialization does.

There is a neighborhood U of µ = 0 and a finite set of hyperplanes passing through U such that

for µ in the complement of these hyperplanes in U the Eisenstein series E(ϕ) is defined for ϕ in Iµ.

To make things simpler we may even multiply E by a product of linear functions and assume that it

is defined on all of U . Since it is only the modified function that we shall use, we may denote it by E,

although it is no longer the true Eisenstein series. It takes values in the space of automorphic forms

and thus E(ϕ) is a function g → E(g, ϕ) on G(A). It satisfies

E(ρµ(h)ϕ) = r(h)E(ϕ)

if h ∈ H and ρµ is Ind ξµσ. In addition, if ϕµ is a holomorphic section of {Iµ} in a neighborhood of 0

then E(g, ϕµ) is a holomorphic in µ for each g, and the derivatives of E(ϕµ), taken pointwise, continue

to be in A.

Let Ir be the space of germs of degree r at µ = 0 of holomorphic sections of I . Then ϕµ → ρµ(h)ϕµ

defines an action of H on Ir. If s ≤ r the natural map Ir → Is is an H-homomorphism. Denote its

kernel by Is
r . Certainly I0 = I . Choosing a basis for the linear forms on LC we may consider power

series with values in the κ-isotypical subspace of A, Σ|α|≤rµ
αψα. H acts by right translation on

this space and the representation so obtained is, of course, a direct sum of that on the κ-isotypical

automorphic forms. Moreover ϕµ → E(ϕµ) defines an H-homomorphism λ from Ir to this space. To

complete the proof of the proposition all one needs is the Jordan-Hölder theorem and the following

lemma.

Lemma 7. For r sufficiently large the kernel of λ is contained in I0
r .

Since we are dealing with Eisenstein series associated to a fixed P and σ we may replace E by

the sum of its constant terms for the parabolic associated to P , modifying λ accordingly. All of these

constant terms vanish identically if and only if E itself does. If Q1, . . . ,Qm is a set of representatives

for the classes of parabolics associated to P let Ei(ϕ) be the constant term along Qi. We may suppose
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that M is a Levi factor of each Qi. Define ν(m) for m ∈ M(A) by ξµ(m) = e〈µ,ν(m)〉. Thus ν(m) lies

in the dual of LR. If ϕ ∈ Iµ, the function of Ei(ϕ) has the form

Ei(nmgjk, ϕ) =
a∑

α=1

b∑
β=1

pα(ν(m))ξνβ(µ)(m)ψαβ(m,k).

Here ψαβ lies in a finite-dimensional space independent of µ and gj ; νβ , 1 ≤ β ≤ b is a holomorphic

function of µ; and {pα} is a basis for the polynomials of some degree. This representation may not be

unique. The next lemma implies that we may shrink the open set U and then find a finite set h1, . . . , hn

in G(A) such that E(ϕµ) is 0 for µ ∈ U , ϕµ ∈ Iµ if and only if the numbers Ei(hj , ϕµ), 1 ≤ i ≤ m,

1 ≤ j ≤ n are all 0.

Lemma 8. Let U be a neighborhood of 0 in Cl, ν1, . . . , νk holomorphic functions on U and p1, . . . , pa

a basis for the polynomials of some given degree. Then there is a neighborhood V of 0 contained

in U and a finite set y1, . . . , yb in Cl such that if µ ∈ V then

(∗) Σpi(y)eνj(µ)·y = 0

for all y if and only if it is 0 for y = y1, . . . , yb.

To prove this lemma one has only to observe that the analytic subset of U defined by the equation

(∗), y ∈ Cl, is defined in a neighborhood of 0 by a finite number of them.

We may therefore regard E as a function on U with values in the space of linear transformations

from the space I , which is finite-dimensional, to the space Cmn. One knows from the theory of

Eisenstein series that Eµ is injective for µ in an open subset of U . Then to complete the proof of the

proposition, we need only verify the following lemma.

Lemma 9. Suppose E is a holomorphic function in U , a neighborhood of 0 on Cl, with values in

Hom(I, J), where I and J are finite-dimensional spaces, and suppose that Eµ is injective on an

open subset of U . Then there is an integer r such that if ϕµ is analytic near µ = 0 and the Taylor

series of Eµϕµ vanishes to order r then ϕ0 = 0.

Projecting to a quotient of J , we may assume that dim I = dim J and even that I = J . Let the

first nonzero term of the power-series expansion of det Eµ have degree s. Then we will show that r

can be taken to be s + 1. It is enough to verify this for l = 1, for we can restrict to a line on which the
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leading term of Eµ still has degree s. But then multiplying E fore and aft by nonsingular matrices we

may suppose it is diagonal with entries zα, 0 ≤ α ≤ s. Then the assertion is obvious.

In conclusion I would like to thank P. Deligne, who drew my attention to a blunder in the first

version of the paper.
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