1. Gaussian sums In the second paragraph | shall discuss the representations of the group of 2 x 2 non-
singular matrices over a non-archimedean field. In the discussion a number of identities for Gaussian
sums will be required. In this paragraph the necessary identities, trivial or not, are stated and proved.

Let k£ be a non-archimedean local field, let o be the ring of integers in k, let p be the maximal ideal
of o, and let 7 be a generator of p. Let k* be the multiplicative group of k& and let o™ be the group of
units. If n > 0then 0 = {a € 0™|a — 1 € p"}. Fix a character £, of k with the property that o is the

largest ideal of £ on which & is trivial.

If 11 is a character of 0> and x belongs to & set
0= | ey

Alp, Br) = p~H(B) A, x).

It is clear that if 3 belongs to o™

Lemmal.1l Let p™ be the conductor of p.

(i) If n =0 then A(u,7™) =1 if m >0, A(u, 7 1) = Iﬂl, and A(p, 7)) =0 if m < —1.
(i) If n > 0 then A(p, ™) =0 if m # —n but

n
2

||

[A(p, "] =

L= x|’

If n = 0 then p is trivial and it is clear that A(u, 7) = 1 for m > 0. Itis also clear that if m < 0

Ll i
1+Z T ) =0.

The first part of the lemma follows immediately.

| atermuteyda = [ » u(a){ / fo(aﬂwm)dﬂ}da

If n > 0 the inner integral is equal to

Certainly

Sl —
,

1 —|m|
This is zero if the character y — &, (an™y) is not trivial on p”, that is, if m < —n. On the other hand if

m > —n So that for some ¢, with 0 < ¢ < —n, m + ¢ > 0 then

[ atemmioyia= [ e [ uoasfao
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The inner integral on the right is zero.

Finally
-n -n o
AP = [ da [ apg(a-pn (E)
— [ da [ ds&(sta - Dr (e,
By part (i) of the lemma the integral with respectto Sis 1 if a € o), m‘\% ifa € 0 | —o0X, and zero
otherwise. Since
|| / ||
da = d
|7T| . 1 OX_I_O; ,l,L(a) « 1 o ‘7T| O:; Iu’(a) a?
we have
_ ||
|A(p, ™) > = ———(measure 0*) =
1 —|m| (1= [x[)?

If the conductor of p is p™ we shall refer to n as the order of p.

Lemma 1.2 Suppose pu and v are characters of 0*. Let the order of uv be r. If r > 1 then

A(p, ™) A(v, ™)

¢ / (@) ()~ (7 + 7 da,
A(HVﬂT T) {a€oX |mrtmatrrtmeox}

If r =0 then A(p, 7™)A(v, ") is equal to

ka

p(a)do + pla)da.

/{anX |Tma+mm €0} ’7’(’ -1 /{aeox |[rm+latmntleoX}

The product A(u, 7™)A(v, n™) is equal to

|| atmatwmuepv@iads= [ [ amat s

If » > 1 the right side is equal to

Ay, ") / p(a)(pr)~H @™ a4+ 7 da.
{a€oX|grtmatgrtmeox}
If r = 0 the right side equals

/ pu(a)do + il / pu(a)do.
{a|mma+n" €0} ’7’(’ -1 {a|mm+latnntlcox}

Now let K be a two dimensional commutative algebra over k with a non-degenerate trace. There

are two possibilities for K. Either it is the direct sum of k& with itself or it is a separable quadratic
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extension of k. In both cases k£ has exactly one non-trivial automorphism over k. We will denote
this automorphism by s. If z € K then Sz = = + 2° and Nz = zz®. Let O be the elements of &
integral over o and let O* be the group of unitsof O. If K = k® ksetll = 7 ® 7 and if ny and no
are any two integers set 772 = "t @ 72, If K is an unramified extension of k set II = 7 and if
ny = ng set 7™""2 = g™ If K is a ramified extension choose 7w and II so that NII = x, if np, = 0
set 7"1:"2 = [I™, Thus the symbol 7™1"2 has a meaning only for certain values of n; and ny,. We
shall adhere to the convention that any expression in which the symbol 712 occurs with values of
nq and ny for which it has no meaning is equal to zero. If ny > 0, no > 0 and 7":"2 is defined set
Oy ... ={ae€O0%|la—-1¢ca"™0}. If M is acharacter of O* then amongst all groups of this type

ni,n2

on which M is trivial there is a maximal one O*

s mo- (1, m2) Will be called the order of M.

If K = k® k or K is an unramified extension we set f = 0. Otherwise (II-7) is the inverse
different. The index of NK* in k* is either 1 or 2. If it is 1 let x be the trivial character of k*; if it
is 2 let x be the unique non-trivial character of £* whose restriction to N K * is trivial. Let x( be the

restriction of x to 0o*. The order of g is f.

Before going on | recall some facts whose proofs are either completely trivial or are to be found in

the book “Corps Locaux” of Serre.

Lemmal.3 (i) Let ny and ne be non-negative integers. If K = k®k the map x — Sz takes 720

X

onto p" with r = min{ny,nz}. The map x — Nx maps O) .

X
onto o, .

(i) If K is an unramified extension of k the map x — Sx maps 7™ "0 onto p™. The map r — Nz
p

takes O, ,, onto o).

(iii) If K is a ramified extension of k the map x — Sz maps %0 onto p" with r = [nT-H”] If
n > f the smallest number m such that N(O}, o) = o) is 2n — f; the largest such number

is2n— f+ 1. If n < f then N(Oio) is contained in o) and if 0 < m < n the map

n

N: Oy /05 — oy [o; both have order two.

N: O 0/O o — 0y, /oy is an isomorphism. If m < f the kernel and the cokernel of the map

If 1 is a character of o let u'** be the character of O* defined by u'*%(a) = pu(aa®). Let n be
the order of u. If K = k® k or K is unramified the order of ;! is (n,n). If K is ramified the order of
pttsis (2n — f,0)ifn > fiitis (n,0) ifn < f,butifn = f all one can say is that it is (r,0) with r < f.

If My is a character of O~ set

A(My, 7""?) = ; Eo(S(am™ ")) My(a)dor.

The following lemma is an immediate consequence of Lemma 1.2 but it is convenient to state it explicitly.
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Lemma 1.4 Suppose My and Hy are two characters of O*. Let the order of MoHy be (ry,r2). If
ry >0 and ro + f > 0 then

Mo(a)(MoHo)_l(WT1+m1+f’r2+m2a + aritmatfiratng )da
acOXx ‘WT1+m1+fﬂ“2+m2 a+rritnitfiratng EO*}

A (Mo, 7™m2) A( Ho, 72 _/
A(MoHo,’/T_Tl_f’_TQ) {

IfK=k&®k andry =0 and ro = 0 the left hand side is equal to the sum of

/ My(a)do
{acOX|xm1m2a+47"1:"2€0}
and \71!|7r—‘1 times
/ Mo(a)da + / Mo(a)da
{aeox |7rm1+1,m2a+7rn1+1,n2 coX EBO} {OLEOX Iﬁml’m2+la+ﬂ'"l*"2+leo@o}

2
and <| Ll ) times

m|—1

/ Mo(a)dOé.
{aeox |ﬂ.m1+1,m2+la+ﬂn1+1,n2+leo><}

If K is an unramified extension and r1 = ro = 0 it is the sum of

/ My(a)do
{a€O*|xm1 M2 a1 "2 €0}

and
2
’;Tiy/ My(a)da.
’7’(’ -1 {aeox‘ﬂ.m1+1,m2+1a+ﬂn1+1,n2+1€O><}

If K is a ramified extension and r1 = 0 it is the sum of
/ My (a)da
{a€OX |rmitfim2qianitfinacO}

and
||

— / My(a)da.
|7T| 1 {acOx |gmiti+fimagqpratitfinacOx}

Lemmal.5 Let My be a character of O* of order (my,m2) and let u and v be characters of 0* of
orders ni and ny respectively. Suppose that My = xopv on 0™ and that the order of MO_1V1+S 18

(b1,03) withnqy >0y + Lo+ f. If {1 > 03, ny > ng, and ny + ne = my + mo + f then

A(Mo, =™ =572 ) N(xg, 7)) Mo(TIUsmimm2)telme=n2)) A(p, m=™)A(v, 7~ "2)

’A(Mo,ﬂ—n1—f7—m2)A(X07W—f)’ X(Wnl) ’A(M,W_"l)A(y’ﬂ—Tw)"

Since both sides of this identity have the same absolute value all we need do is show that

A(My, m=™ = H=m2) Ay, 7=n1) Ay, m=n2)
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is equal to the product of
Axo,m ) Mo(IIVFmmm)Fslmana)) =1 (i)
and a positive constant. As a start observe that it is equal to
o[ a8 [ re(semioma) — g = ) M) (9 )

which equals

/ox do /ox Clﬂ{/oX €o [ T (gm§(rmm—fimmag) _ gmmnag 1)] XO(’y)d’y}M(a)l/_l(ﬂ). (A)

T
If f > 0 the integral with respect to ~ is zero unless
o S(ﬂ'_ml_f’_"”oz) —rmTm2g ¢ pm—f _ pm—f—&-l'

However if this last condition is satisfied it is equal to

H(m—ml—f)-I-(m—mz)sa) —gmn2g
7rn1_f )

_ S
A(xo, ™ )xo < (
Changing variables we see that the integral is equal to the product of
A(XOaW_f)Mo_l(H(”l_mv_f)+(n2—m2)8)

and

s(n1—nz) . mi—ne
/ Mo(e)v~(B)xo <S(H agl_fw b 1) dadp
{ T

(e, 8)|S(IT*("1=72) )~ =72 f—Tgpm —f —pr1—f+1]

If ny > f and n; > n — 2 then the restriction of M to o* has order ny. Thus m; > 2n; and
m1 +ms + f > 2n1 > ny + no contrary to assumption. Consequently we need only consider the
case that n; = f or ny = ngy. Ifny > f orng > ny then S(II7("1="2)q) — x™1~"23 — 1 can belong to

pri—f — pmi—F+1 only if S(II7("1—"2) o) — 1 belongs to 0*.

Suppose that n; = ny = f and S(a) — 1 € p. Replacing 3 by % in

/ Mo()v=(8)x0(S(e) — B — 1)dB
{B|Sa—B—1€0*}

we obtain

Mo(a)xo(~1) / v (B)x0(B)x0(1 — B(S(a) — 1))dp.
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Sincen; = ng = f, ¢, = 0and My = v'*7. Since M = xouv on o*, vxo = p and the order of vy is

f B €0 andv € of_ then
1-py(Sa—1)=1-p(Sa—1) (mod p’)
Thus the above expression is equal to

Moara(-1) [ v+ ssa - ) [ vinaty fas =

x
0></of_1 o

In all cases we can take the integral over
{(a.@)SM 1 =m)a) — 1 ¢ p, S@M7M ) a) — g g € S gl

Replacing 3 by [S(IT°("1~"2)q) — 1]3 we obtain
1 —qgha—n2
{ Mo (a)v™ xo(SII7M ") a) — 1)da}{/ V_l(ﬂ)Xc)(Zi_fﬂ)d}y
{a|S(II7(m1—"2)a)—1¢p} {Blrm1i—r2p—1€pmi—F —pm1—St+1} ™
an expression we label (B).

Suppose n; > f and consider the first integral. Replacing « by «(1 + v) with v € TI"* O does not

change the value of the integral. The integrand becomes

My ()™ (Sor = 1) xo(Ser = 1)Mo(1 + v)w ™ (1 g )1) Yo (1 * %) |

Since ny > £y, Mo(1 +v) = v(1 + Sv+ Nv) = v(1 + Sv). Moreover [”ITH] > [%} = f so that

X0 (1 + S(“”)> = 1. Also [”ITH] > [2H] > 2 so that

So1
v <1 * 5<>(4a—v)1> - (1 - go(za—vi)

and
_ S(av)
1 —
v(1+ Sv)v <1—|— Soc—l) =v(1 4 S(v))
if § =1~ g%~ Integrating over II"*O we obtain 0 unless |§| = |r|* and [W} > ny, that is,

s+mn1+ f >2ny0rs >mn; — f when we obtain |7|"*. Since |§| = |a — 1| we can in all cases write the

first integral of (B) as

/ Mo(a)v™ xo(S(I7" ")) — 1)da,
{aGO:fl_fYO\S(H”<”1*n2)a)_1gp}



Since ny — f > ¢; and xo(Na) = 1 this may be written as

Ha(nl—nz) -1
/ V_lXO <7T”1_”2 — N < @ )) do.
{a€0X, _, oIS(I7 =2 a)~1¢p} a

Set IT™ 1~ = % so that a = L ~. The integral is the product of a positive

Ho‘(nl —ng) —TI"1 —f
constant and

ni—ng _ . n—1—f
Z{’YEO/H-fO‘T{'"I_TLZ—ﬁ"l_fNrygp}V XO(T" i N’Y)- (C)

If ny > no every v appearing in this sum is a unit and the sum is equal to

-1 1 T — ﬂ
Z{ﬁeo*/O:l|w"1—"2—Bep"l‘f—p"l‘f“}V Xo(B) |1 X0 \ = '

Since this sum is taken over all of o™ it is equal to

1 qhi—n2 ﬂ
Z{ﬂeox/orflh"l—"z —Bepm1i—f _pr1—f+1} v XO(ﬂ)XO ani—f ’

If n1 = no then (C) is the sum of

-1 ni—f
v 1—a™m"/N
Z{VEOX/0,?,0\1—77"1*va¢33} Xol 7)

and

f -1 ni+r—f
DIND DI jor Vo= N7).

7,0

Since the map v — Ny defines an isomorphism of O /O;_ ;and 0* /o;_, the latter sum is equal to

-1

Zp/pf v~ xo(l —w).
Since

Z oV x0(B) =0

o /of
we can subtract it from (C) without changing (C). The result is
1 qhi—n2 ﬂ
Z{ﬁeox/oﬁl ‘7‘{'"1_"2 _ﬁepnl—f_pnl—f—}—l} v Xo(ﬂ) < 7Tn1_f : (D)

Thus (C') and (D) are equal in all cases.

Replace § by % in the second integral of (B) to see that it is equal to the product of a positive

constant and

1 Thi—n2 ﬁ
Xo(—1) {Z{ﬁeoX/osl 1 —n2 —gepni—f —pm—s+1) L X0 (B)xo <W) } :
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This is the product of yo(—1) and the complex conjugates of (D). Since A(xo, 7 ) =
Xo(=1)A(x0,7f) the lemma is proved for f > 0.

If f = 0 then in the integral (A) we may replace xo(v) by 1. If ny = 0 then ny = 0 and
my = meo = 0 so that u, v and M, are all trivial. The lemma is also; so we suppose ny > 0. If ny > no
then K = k @ k. Let My(a® () = u1(a)v1(B). Then my is the order of u; and my is the order of v;.
Since p1vy = pv either my > ny or mg > ny. ifmy > ny then ¢4 = my sothat ¢, = 0. Then vy, = v
and p1 = p. If mg > ny then ¢, = mo so that /1 = 0 which is contrary to the assumption that ¢, > /5.

Thus the lemma is trivial if n; > ns; so we suppose that n; = ny. Then m; = mo = n;.

The integral (A) is equal to

/ da / dﬂ{/ox £ [%(Sa —B- 1)] dy}Mo(oz)V—l(ﬂ).

The inner integral is different from zero if and only if Soo — 3 — 1 € p"~ 1. If n; > 1 this mplies that

Sa—1 ¢ p. Set

Mol (3) [ 0 [Z(50—5-1)]dr = v(a.5).

T

If S — 1 € pand ny = 1 then ¢(«, 5) kd Mo(a)v=1(B). Since ny = ny

= Tnl-1

| wtapyas=o

if S« —1 € p. Thus if

the integral (A) is equal to
/ Mofa)y™" (Sa — 1y~ (8)p((1 — 8) (Sex — 1)) df do
{alSa—1¢p} Jox
If S — 1 ¢ pthen p((1—3)(Sa—1)) = ¢(1 — ). Moreover

/ Mo(e)r (S~ D (B)p(1 — B)d3

is equal to the product of My(a)v~—!(Sa — 1) and

||

1 -1
/O>< Y (ﬂ)dﬂ—i_ ’7’(’ -1 /o; _limesoifl Y (ﬂ)dﬁ

n1

The first integral is equal to the measure of o;; . The second is equal to

|| / 1 ||
— dp = measure oX_ .

X
1



Thus the integral (A) is the product of a positive constant and

/ Mo(a)y_l(Sa—l)da:/ MO(OZ)V_l(NOz)y_l (1_N<a_1>>da,
{a|Sa—1¢p} {a|Sa—1¢p} «

If K = k®kand/{y = 0thelemmaistrivial. Suppose K = k@ kand /, > 0. Leta = a1 @ an. If

y isin p2 then replacing a by a; @ as(1 +y) in the integrand does not change the value of the integral.

The integrand becomes

Mo(a)v= (Na)v~ (1 ~N <O‘; 1) - O‘la: ! a2(1y+ y)> .

The integral of this over p’2 is the measure of p*> or zero according as aq — 1 € p™* 2 or not. The same

observation applies to the first variable. Thus the integral is equal to

/X Mo(a)v(a)v™! (1—N<a;1>>da.

ni—~Lo,ng—~£1

Sinceny — €y > {1, no — f1 > £y and ny — €5 + no — 1 > ny the integrand is identically one. Thus the
lemmais proved if K =k & k.

If K is an unramified extension let k; = ko be the smallest integer greater than or equal to . Let
y € mF1k20. Replacing a by a(1 + y) in the integrand does not change the value of the integral. Since

k1 > £ and 2kq > n the integrand becomes

st 14 (52) (1 (55)

if v = —m. The integral of this expression over 7%1*20 is the measure of 7%1"*20 or zero

X
ni1—ki,n2

according as a € O _1, Ornot. Thus our integral is equal to

Mo(a)v~ (Na)y~! <1 N <0‘ - 1)) da.

(e

/{aeosl_kl’nz_kz |[Sa—1¢p}

Since ny — k1 > /1 this is equal to

-1
/ v1 <1—N<a ))da
{aEOZl_RImQ_kQ\Sa—lép} «

If ny is even, k; = %2 and the integrand is identically one. Thus the lemma is proved in this case.

If nyis odd set ©=1 = 71 ~*2 3 so that o« = ;— =7 3. Since 2(ny — k1) = n1 — 1 when n, is odd this

1
integral is the product of a positive constant and

—1 _ 77,1—1
Z{ﬁeO/no\wﬂrlNﬁ;ﬂ}” (1= NG)
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If z # (modp) the equation N3 = xz(mod p) has 7141 solutions modulo I1O, otherwise it has just one.

Il

Thus if n; > 1 the sum equals

||+ 1 _1 1 | 1
1—7™ - — 1) = ——
A ey T g W = —
and if n; = 1 itequals
Im[+1 _1 1, 1
v (z)— —v 1) = ——
oo @ g 0=
The lemma is completely proved.
If K = k@ kwesete = 1;if K is an unramified extension of k we set ¢ = —1, and if K is a

ramified extension of k£ we set e = 0. If M is generalized a character of K*, if M is its restriction to

O*, and v is a character of 0 set

A(XOv”T_f ntf ni,m2\s — s _ni,n
T, ) = (1= )1 = ) ZOE T Y M)A )

where the sum is taken over all n;, ny for which 7™*-"2 js defined.
Lemmal.6 Let w and M be homomorphisms of k* and K* respectively into C*. Suppose that the

restriction of M to k™ is wx. Let v and n be characters of 0o* and let wy be the restriction of w to

0. Suppose that the order n of Vnwo_l 1s positive. Then, for all integers k and £,

Alwnwst, wn
CU(?T")T(M7 Nk — n)T(M’ vl — n) _ (Vnwo ST

|A(vwg ! ﬂ—”))\z Z Alnp~ 1, 7)) A(wp= L, 7OT(M, p, k + £)
0 » o

where the sum is over all characters of o*.

The formula of the lemma will be referred to as formula (E). Notice that all but a finite number
of terms in the sum on the right are zero. The sum on the right is the product of (1 — |7|)(1 —
EHHS A(xo,mf)

€|7T|)|7T| 2 m and

Zn1+n2:k+£ M((m"172)%) Zp fox do fox dap fo* da&O(S(“nl’HQa)""“[ﬁ"'”k'y)Mo_l(a)p(%)y(ﬁ)n(w’

Given v, n, M, k, and £ there is a number m such that this integral is zero if the order of p is greater
than m. Thus we may restrict the sum to a sum over the characters of 0* /o,%. Replace a by S, v by

(7, and take one of the summations under the integral sign to obtain, if x4 is the restriction of M, to 0%,

Y g M) [ da [ dB [ dreo[(S(am 2yttt M T )n(Nadunp () {3 ont (22) ]
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The summation over p is different from zero if and only if v = Na(modp™). If K = k @ k set

L—k £—k

Aa) = N(nm=bm2q 4 704 if K is an unramified extension of k set A(a) = 78N (a + WT’T); if

K is a ramified extension set A(a) = 7% N (a + II~**5¢). The above expression is equal to

S o M) [ da [ dsea(aN@) Mg @n(Na)n (),

If the order 7 of vnu ™! is not zero this is equal to

Anp™ 77y S0 M) / My (@)n(Neyuw ™"y~ (" Aa))dav. ()
n1+n2:k+€ {anX\ﬂr)\(a)gOX}

If the order of vnu ! is zero it is equal to

ka

> M((wwm{ My (@)n(Na)da + Mg (@)n(Na)da ,

ny+na—k+0 {aeO0* |\ (a)E0} ‘ﬂ-| -1 /{OJGO>< [T (a)Eo0* }

an expression that will be labelled (G).

If K is an unramified extension of k£, r = n > 0 and the expression (F') is zero unless k — ¢ and

k — n are even. There is only one term in (F) and the corresponding integral is

k—r k—r L—r L—r
My a)p(Na)uv—tn~? (N <7Tr+ 7 T a4t T ))da
k—r k—r L—r L—r
{aEOX‘7TT+T’T+TO¢+7TT+T’TEOX}

Set Mg (a) = My(a®). Since My tn*ts . M *vits = (u~'wvn)'*s this integral is equal to
0 o 7 0 wmoovn

k—n £—m £—n

A (MO_1771+877TR_TH7%) A <M0_1y1+5,7T_T’T)
A(p= ), mmrr).

Putting everything together and appealing to Lemmas 1.1 and 1.5, we see that the right side of (E) is

equal to
X(x™) M ((wTvT)s) (1= [x )] F A (Mg e, 7 ) A (Mg e )

Since A(M ~7,7™™) = A(M~!, 7™™) it is equal to the left side.

If K is a ramified extension of £ and r > 0 there is only one term in the sum () and the integral

appearing in that term is

/ My (@)n(Na)uv™tg~" (N (II"Fa + T7+Y)) de.
{aeox ‘Hr—}—ka_j’_nr—}—séeox}

11



Replace a by II7**+%¢« to obtain
M (TI#f) / My (an(Na)ur ™y~ (N (I a + 7)) de.
{a€eO* |II"tka+II"+LeO*}

If » > f then r = n, the order of (uv=tnH)*is2n — f,0,r+k =2n—f +(k—n+ f),
r+/f=2n—f+(k-n+f). Ifr < fthenn = f, the order of (uv=1n=1)1*% is (r,0), and
r+k=r+k-n+f),r+l=r+{—n+f). Ifr= fthenn < f, the order of (uv=1n=1)1+s s
(n,0),r+k=n+(k—n+f),r+¢=n+ (k—{+ f). According to Lemma 1.4 the above expression

is equal to
A(M()_1771+s7 Wk_”’O)A(MO_SVH_S, 7TE—n,O)
A((M—ll/n)l—l-s’ 7T_T1’_T2)

M (Hﬁ—sé)

if (r1,79) is the order of (u~'vn)'*s. Observe that
A(MO_IVH_S, ﬂ_ﬁ—n,O) =M (H(n—é)(l—s)> A(MO_IVH_S, ﬂ_(ﬁ—n,o))'

Appealing to Lemmas 1.1 and 1.5, we see that, if » > 0, the right side of () is equal to

Alxo,m )
M(Hn(1+s))M(H(k+£—2n)s)(1_|ﬂ,|)2|ﬂ_|a { (X077T ) } A(Mo—lnl—l-s’ﬂ_k—n,O)A(Mo—lyl—l-sﬂTZ—n,O)

withq =800 0y v m - hondf 4 Londl This is obviously equal to the left side.

If » = 0 the expression (G) is equal to the product of M (TT*+4)%) and

Mo_l(oc)n(Na)da + [

Myt Na)d
W—1/{aEOX|nk+1a+n1+MGOX} o (0)n(Najda

/{anX [Tk a+I15¢€O}

After a change of variables this becomes

£—st —1 1 |7
M(II°~°%) {/{ My (a)(n(Na)da +/{aeox M, (a)n(Na)da‘ﬂ — } )

acOX* |lIkFa+IIfacO} Mk+la+II¢+teO0x}
Since (1~ 1vn)' T will also be trivial this is equal to
M(H8—2S)A(M0—1nl+s’ 7_‘_k—n,())A(]wo—snl—‘,-s7 71_E—n,O)

because n = f in this case. Thus the right side of (E) is equal to

2
n s —2n)s k4t A(XOaﬂ_f — s —-n — s —-n
M (IO M (TH2005) (1 e ] {7, RO A MG e A A )

Since x(TI"(1*9)) = 1 and II"(1+%) = 7™ it is equal to the left side.
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It remains to consider the case that K = k @ k. Then r — n is not zero and (F') is equal to the

product of A(vnu~!,7") and

3 rs o M) [ MG @) (N (N e ) o
1 2=

mi+mo=r
1 2 {aeox‘ﬂn1+m1—[,n2+m2a+ﬂm1,m2+ieo><}

This is equal to

S S Ay ) A (g

mi+mo=r

divided by A((p~tvn)t+s, 7= =), Replace my by mi + n, ms by mo — £ + n, interchange the order

of summation and replace n; by n; — mq + £, no by no — mg + £ to see that the sum is equal to

> S M@ ME M AM ) A e, me)

mi+mo=~€—n notni=k—n

Appealing to Lemmas 1.1 and 1.5, we see that the right side of (F) is equal to

k42
() A—lm) x| E S MEETMET T AM a2 A M B ),
ni+ng=k—mn mi+mo=~L—n

This is of course just the left side.

Lemmal.7 Let w and M be homomorphisms of k™ and K> respectively into C*. Suppose that the
restriction of M to k™ is wy. Let v and n be characters of 0* and let wy be the restriction of w to

o*. If Vnwgl 1s trivial then for all integers k and ¢

—2
>ow(m ™M) T (M, n, k+m)T (M, v, £+m) +—w(m)T(M,n, k—=1)T (M, v, 0—1)+wo(—1)de jw(r")

— 00

=Y, Al o~ ) At )T (M, p,k + £)

d¢,1 is of course Kroneckev’s delta. For brevity denote the left side by L;, , and the right side by
Ry ¢. Suppose at first that £ < 0 and £ < 0. Then Ly, = wo(—l)w(w")ém. The only terms which
contribute anything to the right hand side are those for which order(p) = —k and order(p) = —¢. Thus
the right side is zero if & # ¢. Suppose order(p) = —¢ and k = ¢. The order, (r,73), of M *p'*s
is (—¢,—¢) if K = k @ k or K is an unramified extension of k. Itis (—2¢ — f,0) if K is a ramified

extension of k. Moreover ifny +ny =k + /¢

A(Mg g+, wmm) = 0

13



if —ny # r1 + f. The orders of = *p and v~!p are both —¢. The orders of (M, 'p'+*)~1(n~1p)*s =
Mon~'=*and (M ' p**+*)~1(v~1p)'*t* = Mov~'~* are independent of £. Moreover the restriction of

My p'*4 to 0 is equal to xo (™ p)(r~'p). According to Lemma 1.5

M(Hﬁ—sé)

A(Xo,ﬂ_f) 1- ‘W‘ ritrat2e
x() '

A M—lpl-ﬁ-s’ﬂ_—’f‘l—fl—?“z — T )
o ) 00w D1 el "

Al o, AW p, 1)

Since A(n~!p, 7)) = np~ 1 (—=1)A(np~1,7¢) the term corresponding to a p with order p = —/ is

M(HE—SE)M((,]T—Tl—fv—TZ)S) B 1
N YD) e

This is clearly equal to
M@ L wmwe(=])
x(m*) (1= [x)? [m|f(1 = |x])?

Since the number of such characters is |7|*(1 — |7|)? the lemma is valid if k < 0 and ¢ < 0.

Thus to prove the lemma it is enough to show that
Lit1,041 —w(m) Ly e = Riy1,041 = w(m) R e

for all k£ and /. The left-hand side is equal to

w(m)
|m =1

T(Mu m, k)T(M7 v, E) - ’ |’7T| lwz(ﬂ-)T(M7 m, k— 1)T(M7 v, k — 1)
Tl —
Suppose K isan unramified extension. If £ —/ is odd both of these terms are zero and so is the right
side. We suppose then that k& — Zis even. If k is even only the first of these two terms can be different
from zero. If k is odd only the second can be. Remembering that x(7) = —1 so that w(w) = —M (7!1)

k+¢ k44 +1

we apply formula (G) to see that the right side is the product of (1 — |7[?)|r| %M(WT’ z 1) and

2
|| My H(@)n(Na)da + |,T7T|_1/ ko ki s e My Ya)n(Na)da
{aGOX|7r"‘+1N(a+7r%V%)EO} {a€OX|r 22  atn ™2 727 €0X}

|m—1
L—k L—k 1 k+1 L41 041

+ M Y (a)n(Na)da + 2 My ()n(Na)da.
{aEOX|ﬂ'k’N(o¢+ﬂ'T’T)eo} {aEOX\ﬂ%’ 2 atn 2 2 €0*}

If k is even 7FtIN (a - w%’%) € oif and only if 7* N (a - w%7%> € o so that, if k is even,

this expression equals

(|Iw|+1) M5 (@)n(Ne)da + ] / M7 (a)n(Na)da

k k i ’ﬂz—l £4+2 042
{a€0*|r2°2a+m2°2€0*} {a€0*|r" 2 "2 atn 2 "2 €0*}
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which equals
(|m] +1)A <M61771+$,7r%’§) A (M()_1V1+s’7r§’é> '

The identity, for even k, follows immediately. If k£ is odd the expression above simplifies to

k=1 k—1 -1 21 m[? —1 ktl kil L1 £41
{a€cOX|n 2 "2 a+n 2 "2 €O} {a€O* |72 "2 atn 2 T2 €0*}

2
(m+13 [ @n(Nayda+ [ Mg a)(Na)da

which equals
(|| +1)A (MO—1771+5,7T%=%) A (M()—IV1+S’7T[_7277) '

The identity, for odd k&, follows immediately.

1

Suppose f > 0. If p is the restriction of M, to 0o* then vnu~" = xo. According to (F'), Ry ¢ is

equal to the product of

prerr Axo, 77 - . it .
(L= [m )| WA(XOJF NMIEEEY = xo(=1)|n] = H M (T1eE+0)
and
M () / M (a)n(Na)da.
{a€OX I/ tha+TI/HeO*}

On the other hand

w(m)
|l =1

T(M, 0, YT(M, v,0) — — 2 (T (M 0,k — 1)T(M, v, £ — 1)

| — 1"

k+e

is equal to the product of (1 — |r|)?|m| = +/ xo(—1)M (IT¢+1+s(k+1) and

! / M (a)p(Na)da + ™ 1 / M (@)n(Na)da

‘ﬂ‘ -1 {a€cO* |Hf+ka+7rf+e€O} ‘ﬂ‘ N {aEOX|Hf+k+la+ﬂf+[+1€OX}

1 _ ™ _
“TTT / My (a)n(Na)da + ‘W; _’ N / My (a)n(Na)da
{acOX |/ HF— 1o/ H 1O} {acOX | ratTfHcO}

Some simple rearrangements show that this is equal to

% My ()n(Na)do+ % My ' (a)n(Na)dor.
(I =1) (Iml=1)

{OCEOX |Hf+k:a+nf+€eo><} {OJGOX |Hf+k:+1a+nf+£+leo><}

The identity follows immediately.
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Finally we have to treat the case that K = k @ k. It is enough to verify that

o o
Z 7 Pw(m?) {Lis1—p,e+1—p — w(T) Li—p,e—p} = Z [T [Pw(7?) {Rt1-p,e41-p — W(T) Rk—pe—p} -
p=0 p=0

The left side is equal to

w(m) T(M,n,k)T(M,v,?0).
|| — 1
For brevity set
(1, n2imy, ma) = / My a)n(Na)da.
{aeO0X |x"1m2a4m™m1m2€0X }

Apply formula (G) to see that Ry, ¢ is the product of (1 — |r|)?|r| * and

n2,ni _ .
an+n2:k+€ M(ﬂ- )Zml-‘er:O ZQSO ¢(n1 +m1 +q E,TLQ +m27m1 +q7m2+£)
||

HEE

M n2,ni 1 _ . 1
anJrnQ:kH ( ) Zm1+m2:0 Y(n1+mi+1—4€ne+maimi +1,ma + )
Thus, S20° ) |[Pw(?) R—p.¢—p is the product of (1 — |r|)?|7| =" and

SToM@Erem 3T T S (i +my 4 q— €ng +ma + pima + q,ma + £+ p)

ni+ns=k+~ mi1+m2=0 p<0 ¢<0

T
+’7T|’_|1 S M@E™) > b+ my+1—Lny +ma+pymy + Lmg + £+ p)
ni+no=k+4 mi1+mo=0 p<0

Now

|7°:|(i)1 T(M,n,k)T(M,v,0)

is equal to the product of (|| — 1)%w(r)|x| =" and
nog,mi mao,m1 —1, 14s ni,no —1, 1+s mi,mo
Zm1-|-mQ=£ Z7’L1-|-nQ=k M(’/T )M(W )A(MO n T )A(MO v ) T )
Replace ni by ny — mo = ny +mq — £, no by ng — mq = ny +me — £, and then my by mo + £ to obtain
ng,m1 -1 _14s _ni+mi—L€na+mo —1. 1+4s _mi,ma+~
Z”1+n2:k+e M(rm )Zm1+m2:o A(MG gt VA(Mg s ).

According to Lemma 1.4 this is the sum of

Zn1+n2:k+£ Zml—l-mQ:O M(ﬂ-nQJ’LI) ZPSO ZQSO ¢(n1 + ma + q - 67 n2 + mo + p7 mi + q7 ma + e +p)
and

16



%Znﬁmz,ﬁz Y mymg—o M (T7172) ZpSO Yy +mi+1—~4ng+mo+p,mg+1,mo+ 0+ p)

and

|7

Tr—1 D nytnamktl Doy tma=o M(T2M) 30 o (n1 +mi 4+ q—Lma +ma+1,my +q,me + L+ 1)

and

<|’T“ﬂ—|1)22”1+"2=k+€ Y gma—o M (T2 ™M) (01 +my + 1 —L,ng +mg + 1;my + 1,ma + £+ 1).
On the other hand
ZZO:O |7 [Pw(7P) Rs1—po1—p — w(T) ZZOZO (7P () Ryt
is equal to (1 — |7|)2|x| =~ w(rr) times the sum of
\J:.i-—‘_212n1+n2=k+z M(rm2m) 0 ma—o¥(n1+my+ 1 —€ng +me+1,m1 +1,mg + £+ 1)
and
\J:T—‘—len1+n2:k+€ M(mm2m) 30 o Yopeo (e my 4 1= Lny +my + pymy + 1,my + £+ p)
and
1T tmg e M) 0 im0 Dog<o V(N2 +ma + g —Lng +mg +1,my +q,ma +£+1)
and
1Dy bt M (T2 S 0 2ap<0 Dag<o V(1 M1+ q —Lng +ma +pymy +q,mae + £+ p),

the contributions of the first infinite series, and

DY iwe(wm’”l) Dy dma=0 2op<o¥(n1+mi+1—£€ns+mo+pimi +1,ma + £+ p)
ni+nz=k+

— X M(mEM) Y ve=0 2o 2o Y+ ma+q—Ene +ma +pima +q,me + L+ p),
ni+no=k+~£ p<0 ¢<0

the contributions of the second. The identity can now be verified by inspection.

2. Representations of the general linear group in two variables over a non-archimedean field. This
paragraph is, in its essentials, a recapitulation of work of Gelfand, Graev, and Kirillov. We adhere to
the notation of the previous paragraph. Let G, = GL(2,k) and let Go = GL(2,0). Ais the group of

- - - - 1
diagonal matrices and N is the group of matrices of the term (0 31”)
A representation o of G, on a vector space V, over C, will be called quasi-simple if
(i) The stabilizer of every vector in V' is an open subgroup of Gy,

(i) Ifa € k* then o(($2)) is a scalar multiple of the identity.
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Lemma 2.1 Suppose o is a quasi-simple irreducible representation of Gy on the vector space V. V

contains a non-zero vector invariant under Ny if and only if V is finite dimensional.

First of all suppose that V' contains a non-zero vector v whose stabilizer contains N,. Let H =
{g € Grlo(g)v = A with A € C}. Since V isspanned by the set {c(g)v|g € G} } itis sufficient to show
that H is of finite index in G. Since H contains the diagonal matrices together with an open subgroup
of GGj, the image of H under the determinant function is of finite index in £*. Thus it is sufficient to

show that Hy = {g € Gk|o(g)v = v} contains all matrices of determinant 1.

Let W be the space of column vectors of length 2 with entries from k. Let us show first that if

w € W and w # 0 thereisan hin H and an x in k* such that

()

If the second coordinate of w is zero this is clear. Since the stabilizer of v is open in Gy, there is g in Hy
Iy [«
g o)~ 3
Lz (o  [a+pz
01/\3) g )

If the second coordinate of w is not 0 we can choose x so that w is a scalar multiple of the vector on the

such that

with § # 0. Then

right.

In particular Hy contains a matrix of the form (2 g) Since
0b 1 —d/e\ (0b
cd 0 1 ~\c0
00\ [1lz 0 1/e\ _(0b\ [(z/b 1/c\ _( 1 O
coJ\o1)\1/b 0 ) \co)\1/b O ) \ecx/b 1)°

H, contains all matrices of the form (; %). since

<(1) i) C; (1)> - <1Z»xz i) - <x/(11—i—xz) (1)> <14sz 1/(10+xz)> <(1) Z/(11+x2)>’

if 1 +zz # 0, Hy contains all diagonal matrices of determinant 1. Since

@2 65) 60 = (o 3) (67) = (s 5%)

18
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Hj contains all matrices (Z 3) a # 0, which have determinant 1. Since

Lz (00\ [(cx b+dzx
01)\cd/) \ ¢ d ’
H, contains all matrices of determinant 1.

Conversely if V is finite dimensional the kernel of ¢ is an open subgroup of G, and there is an

e > O'such that (; ) belongs to this kernel if |z| < e. Since

a0\ /lz é 0y (1 ax
01/\o1/\o1) \o 1
and for any z there is an « in £ such that |ax| < ¢, the kernel of o contains Nj.

Corollary. If o is a finite-dimensional quasi-simple irreducible representation of Gy, then o is one-

dimensional and there is a continuous homomorphism p of k* into C* such that o(g) = p(det g)

Since the kernel of o contains NV, together with an open subgroup of G, the above discussion
shows that it contains every matrix of determinant 1. Also the inverse image of the group of non-zero
matrices is of finite index in G. Thus if g € G}, there is a A in C* and a positive integer n such that

o(g)™ — A= 0. Thus o(g) is semi-simple. The corollary follows immediately.

Again we fix a character & of the additive group of k£ such that the largest ideal on which & is

trivial is O.

Lemma 2.2 Suppose o is an infinite dimensional quasi-simple irreducible representation of Gy on

V. Let W be the set of all vectors v in V' such that for some ideal a of k

[ (1)) e -0

Then W is a subspace of V. Let U =V/W. If v € V let o, be the function k* with values in U

defined by
o= (- (3 1))

where @ is the natural mapping from V to U. The map v — @, s an injection of V into the space

of functions on k> with values in U.

1z

Since the stabilizer of v in Ny is an open subgroup of N, the function a((0 1

))v takes only a finite

number of values on a. Thus the integral involves no limiting processes and is well defined. If a C b

Jaw@io((y 2 )oar =5 @weo((o )| [@@a((4 )0t
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where the sum is taken over a system of representatives of b/a. It follows immediately that if the
integral vanishes for a given ideal then it vanishes for all larger ideals. A simple argument now shows

that W is a subspace of V.

If ¢, vanishes identically then for every o in K* there is an ideal a(«) such that

» 50(0@»)0(((1) "f))vdx 0.

If 3 € 0 and o((J 9))v = v then

[amn(L  war=at(% O [amm (L o

Since the set of all 3 in k> such that a((g %))v = v is an open subgroup of £, there is for each integer

n an ideal a,, such that if a,, C aand o € 0~

/GWJ(G) “f))vdx:o.

1z

There certainly is an integer nq such that the function o ((;,

))v is constant on cosets of p~"0.
Let us show that if ¢, vanishes identically and this function is constant on left cosets of p~" then it is

constant on left cosets of p~"~!. This will show that o((}, ¥))v = v for all z. It will then follow from

Lemma 2.1 that v = 0.

Take any ¢suchthat/ > n+1andp~* D a,. ifz € p~¢ then

(o 3 )=t T olor™) [ Eamiot(g Y ey

By assumption the terms of this sum corresponding to m = n are zero. Since {(an™x) is constant on

left cosets of p~™~! if m > n the assertion follows.

Lemma23 (i) Ifw=o0(( ?))v then @, (83) = pu(Ba)
(i) Ifw=o0o((;7))v then pu,(B) = &(Ba)ps(B)

(iii) Ifv is in V there is an integer k and a non-negative integer n such that o, (a) = 0 if |a| > |x|*

and p,(fa) = () if B € o).

The first assertion is a matter of definition. To prove the second we have to show that

(5 Dot §)e-stana(§ §)e--
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isin W. Letu=o(( {))v. Then

&y 4 e

a

L@J((é y-l-lax))udy—fo(ax)/aw(f((é ?))udy

If ax € a we can change variables in the first integral to see that it equals the second term. Finally it is

is equal to

clear that ifO'((é 7))v =wvfor |z < |x|~* and U((g N)v = v for B € o then p,(a) = 0if |a| > |r|*
and ¢, (Ba) = p,(a) if B € o).

Let v be a character of 0* and let V,, = {v e Vg ((¢ Y))v=v(a)vforalla e ox}. It is clear that
V' is the direct sum of the spaces V,,. Let V be the set of all v in V such that, for some k > 0, ¢, (o) =0
if || > |7| 7% or |a| < |x|*. Let V, = V,, N V. Itisalso clear that V is the direct sum of the spaces V.
Finally let V° be the set of all v in V such that ¢, (a) # 0if o] # 1and let V2 = V,, N V0. V0 is the

direct sum of the spaces V2.

Lemma 2.4 (i) For each v the restriction of ¢ to V.2 defines an isomorphism of V2 and U

S . 7 0 0
(if) V, is the direct sum of the spaces O'((O 1))VU ,kelZ.
(iii) If v is in V, there is a unique vy, in V2 such that if u = v — J((’B_k f))vk then ¢, (a) = 0 if
o = |m[*.

(iv) V is spanned by V and the vectors of the form

0 1
a((_l O))’U
with v in ‘A/

We start with (iii) of which (ii) is an obvious consequence. The uniqueness of vy, is clear. If k is
negative and |k| is sufficiently large we can take v = 0. Thus the proof can proceed by induction on

k. Set

wzv—Ea((W(}e ?))W.

I<k

vula) = 0if|a] > [7%] and g, (a) = po(a) if [a] < |r|*. Set
e () o)

on 7 kq) = |x|7F T 1—&o(axt dx o (o).
ooy =+t [ glar) de gt

Then,

1
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The right side is zero if || < |71 or |a] > |7|. Itis ¢, () if |a] = |7*|. Part (iii) of the lemma
follows.

It is clear that the restriction of ¢ to V¥ is an injection. It follows from (iii) that the restriction of v
to VY is a surjection. Thus U = > ¥(V?). To prove part (i) it is sufficient to show that if u € U and

u = (v) for av in some V2 then there is a w in V;? such that u = t(w). Given v set

s [ o@o(y )ty 7 )was

where z is yet to be determined. Then z is in V,, and since

p-(0) = pu(a) / uir(B)éo(apz)dp

itisin V2. In particular
Y(z) = ¢.(1) = {/ W(ﬂ)fo(ﬂx)dﬂ}u.

Choose z so that this integral is not zero and set
-1
w={ [ wa(sns} s
O><

It follows from (i) that V # {0}. Choose w different from zero in V. Since o is irreducible V is

spanned by the vectors o(g)w, g € Gy. Eitherg = (2 2) org = ({ %) (_Y ) (2 }). Inthe firstcase o(g)w

isin V. In the second case o(g)w is of the form o ((§ *))o((_? 2))u with w in V. It is easily seen that

1z

o 1)) v — v belongs to V. The last assertion of the lemma

if v belongs to V and « belongs to & then o ( (

followvs.

—k

IfvisinV letv = Y v, with v, in V,. Choose vy, so that if u = v, — o ((], f))vk,y then

ou(a) = 0if|a| = |7F|. Setuy,, = ¥ (vy,,) and write, purely formally,

v~ g g w2t
v L7

Leto ((§ ) = w(a)Ifora € k* and letw, be the restriction of w to 0. Let #(a) = wo(a)v ! (a)

ifo € 0*. Ifvisin V2, theno((° ;))visinV;. Let

0 1 L
U(<—1 0>)UNZkUkZ ’
If ¢)(v) = uthe map v — wy, is a linear transformation from U to U. Denote it by T}, .. If v isin V and

’UNE g wp 2t
v V2NN
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then
< ) Z Z {Zm k=t (W_k)Tm,ﬁuk,p}zf.

It follows from the third part of Lemma 2.4 that if v € V there is a unique v, in V° such that
ifu = v — g((’gfklo))vk then ¢, (a) = 0if |a| = |7[*. If w = o((} ¥))v then vy is replaced by

k
Wy = U((loﬂ- f))vk Ifu, = Zy Vg, with Vv in VVO and wy, = Zy Wi,y with Wi,y in VVO then

-y / V(8 (1 57T1x>)vk,ydﬂ.

Consequently
wk,u Z A VM 177Tkx)1/](vk,u)‘

Thus if

v~ Z Ze w2,
wwz Z{ZA ,7rxu€u}

It is also easily seen that

The identity
0 1 1 z 0 1\ (-1/=z O 1 —x 0 1 1 -1/
(6D D=8 26 D6 )
for x # 0 is easily verified. If v isin V and
v~ Zy Ze Ug,vze
then
(( 1 0) /UNZ Z {Z Tk—&—ﬁuufl/} k’
(2 D)o D)o TS st

If 5, = 1 if vis trivial and §, = 0 otherwise, then o((} “))((_Y ))v —o((_? &))v which belongs to V

corresponds to
Z Z {Z Z 77T J?) 5VM—1]W(7T_£)T;€+A§UAD}Ze
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Finally o(( °,' ) ((5 ) ((%",))v corresponds to

Z Z {Zé mw (Vﬁ_ly 7Tm37) - 514]71] W(W_E_m)Tk+m’ﬂTm+g Sy l;}zk
T Z Z Dug,u2”.

On the other hand o((*,7"/%))v corresponds to

Zu ZZ{ZV Alvp™t, —Wz/x)u&l,}zz

and o((_Y ) (% ~1/*))v corresponds to

0
Z# Zk{zé Zk w(ﬂ-_g)A(Vﬂ_l, —WZ/QT)T]C_;_gﬂUg’V}Zk

Letting o ((}, ~)) operate we obtain a vector corresponding to

Z Z {Z@Vn ™ E)A("?M_l,—ﬂkx)A(uﬁ_l,—ﬂz/x)TkM,ﬁua,,}zk

Finally if 1 = 773 with 3 € 0* we apply o((72/*_?)) to obtain
> A, B A~ TR AT ) Tsar e e 2

Thus we obtain the identities

Zm {A(ﬁﬁ_17 7" 2)w () T g Tt .0 — 5aﬂ—1W(W_E_m)THm,ﬁTmM,u} +w(=1)dpu—100k

= 3wl A ) AT~ ) Tigar e

For all we know at present both these sums are infinite. However all but a finite number of the operators

on each side send a given vector in U to zero. Thus as an operational equation the identity has a sense.

We can rewrite the identities as

Zm{[A(zﬁl/flwo, ™3 — 51,”“)0—1]w(ﬂ_e_m)Tk-i-m,uTm—&-é,u} +wo(=1)8,,-1 Ark

= Zn A% )wg (=B (m™ ) A(un ™, = 87 A(wn ™, =1 B) Tia,-
Recalling that A (v, By) = v~ 1(3)A(v, y) we simplify the identities to

Zm{[A(V_lﬂ_le, ﬂ-m) - 61/#0.;;1]w(ﬂ-_m)Tk"rmyﬂTm‘f‘@yV} + wo(_l)éupwalw(ﬂl)

=g (=) Y A~ 7 )An ™ 7) T,
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Making use of Lemma 1.1 we can simplify these identities further. If the order n of uuwo_l is

positive the identity becomes
AW " wo, m M) w(r™) T T = prwy ' (—1) Zn Alpn ™, 7)) Awn™ 7 ) Ty (A)

If vuwy ' = 1 the identity becomes

—2

Z B (") T, p Dot + ———w
m=—00 |m| — 1

= Zﬂ A(:U'n_lv Wk)A(l/n_lv WE)TIH-@,??

(W)Tk—l,uTE—l,V + wO(—1)557kw(We)
(B)

Lemma 2.5 (I) For all k}, E, M, and v, Tk,,uTé,u = TE,uTk,p-

(i) There is no non-trivial subspace of u left invariant by all the operators Ty, .
If vpwy ' is not trivial the identity
T Tow = Tow Tk

follows immediately from (A). If uuwo‘l is trivial let w be in U. For agiven k and ¢ and for m < 0 both

Thtm,pwand Ty, ,u are zero. For such m

Tk+m,uT€+m,l/u = T€+m,l/Tk+m,uu-

Using the identity (B) and induction on m one shows readily that this relation iw valid for all m.

Suppose that U’ is a nontrivial subspace of U left invariant by all the operators 7j, ,,. Let V/ be the
setofall v in V such that ¢, (o) € U’ forall av. If v € V2 then v € V' ifand only if ¢)(v) € U’. Thus V'
is neither {0} nor V and V' N V0 # {0}. Itis clear that V' and V' N V' are left fixed by the operators
a((2 %)), since V is irreducible it is spanned by V' N V together with the set o((} %)) ((_% ))o,

v € V' N V. Thus to obtain a contradiction we need only show that if v isin V/ N V then a((_9)vis

in V’. This is however an obvious consequence of the assumption.

It follows from this lemma that each T}, , is either zero or an invertible linear transformation. Thus
for each y there is an integer k(1) such that 7j, ,, = 0if & < k(). Moreover one of these operators can

have a non-trivial eigenvector if and only if it is a scalar.

Now | would like to make some remarks which are not relevant to the main purpose of the letter.
First of all let me observe that if k, ¢, u, v are arbitrary there is a scalar a and scalars a,, , all but a finite

number of which are zero such that

ThuTo, = a+ Zp > am Ty
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If uywo_l is not trivial this follows immediately from identity (A). If uuwo_l is trivial consider the set
of integers p for which T}, ,/ Ty, . is a linear combination of the identity and the operators 7,,, <. If
p <0, Tkyp . Tiyp,, = 0and p belongs to this set. Using identity (B) and a simple induction argument
one shows that the set contains all integers. It follows from this observation and the previous lemma

that if u # 0 belongs to U then U is spanned by « and the set {7;,, ,u}.

Choose a fixed v and let the order n of 1 be positive and so large that the orders of v~ ~1wg and
vu~tarealsonand T, , # 0 for some ry > —n. Take £ = ro +n > 0 in identity (A) and cancel 7, ,,
to obtain

AW oo, 7 M)w(7™) Ty = vy (=) A(ur ™, ")

As a consequence for all but a finite number of characters of o* the operator 7T}, , is a scalar for all k.
If, for all p, T},,,, = 0 if m > —1 the there are only a finite number of operators in the set {7},, ,} which
are not scalars. Consequently U is finite dimensional and each of the operators 7,, , has a non-trivial

eigenvector and is thus a scalar. It follows that U has dimension 1.
It is very unlikely that our assumptions (i) and (ii) together with irreducibility imply that U is
one-dimensional. Consequently we make the further assumption which can certainly be useful in the

case of interest to us at present.

(iii) No representation of GG, occurs more than a finite number of times in the restriction of o to G,,.

If pis arepresentation of G, let V, be the set of all vectors in V' which transform according to p. Any
operator on V' which commutes with all the operators o(g) must leave each of the finite dimensional
spaces V,, invariant. Thus it must have a non-trivial eigenvector and, because of the irreducibility, must
be a scalar. It follows immediately from the first part of Lemma 2.4 that the map v — ¢, maps V onto
the set of all locally constant functions on £* with values in U which vanish outside of some compact
set. Suppose T is an operator on U which commutes with all the operators 7,, ,. If ¢ is a function on

k> with values in U define T'p by (T¢)(c) = T(p(a)). Ifv € V and

I SR
then T', = ., where

w ~ g g Tukuzk.
B k ’

Then

y <<—01 é)) D) Zk{zm_e:kw(w‘f)Tm,ﬂw,ﬂ}zk,
(2 ) X, St el s}
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It follows immediately that 7" takes the image of V to itself. Thus it determines a linear transformation
of V which is easily shown to commute with all the operators. As a consequence of assumption (iii)
this linear transformation is a scalar. Thus 7' is a scalar. In particular all the operators 7, , are scalars

and U is one-dimensional.

In the next two lemmas it is assumed that U is one dimensional. Thus the operators 7;, , are taken

to be complex numbers.

Lemma 2.7 Suppose that there is a character ji, of o* and a ky > —1 such that Ty, ,, # 0. Let
K =k@®k. There is a continuous homomorphism M of K* into C* such that for all ¢ and v

To, =T(M,v;0)

Let me observe immediately that it was shown in the previous paragraph that if the restriction of
M to k> is w the identities (A) and (B) are satisfied if 7}, is replaced by T'(M,v;{). Set us = ,ul_lwo.

It will perhaps require less mental effort if the cases 1 = s and uy # uo are treated separately.
Suppose first that ;1 = ps. Inidentity (A) take v = uq, i # pq, and take £ = k1 + n > 0 to obtain
A(Mlﬂ_la W_n)w(wn)Tk—n,uTk1,u1 = :U’Ml_l (—1)A(M,U,1_1, Wk)Tk—Fﬁ,LLl :
The right side is zero unless k = —n but if K = —n we can cancel T}, ,, from both sides to obtain

-1 —1 —
Ky (_1) A(:U'Ml X n) 2|, |—n —n -1 —n2
T = =(1- A .
2t w(m™)  A(pp~tmm) ( )|l ){ oo }

Thus if w; and wy are two complex numbers such that wiws = w(7) and M is defined by M (7Pa &
m16) = wiwip (af) fora € 0%, 8 € 0™ then Ty, , = T (M, k, p) for pu # p11.
Take 4y = v = 7 and k = £ in identity (B). If & < —1 the right side is a sum over those 7 such that

the conductor of p;n~ " is p~¢. For such n

-1 _k -1 _k k -1 -1 _k -1 _k w(w"’)!w!"’
Alpan™ ", m) Alpan " 7)) Toky = w(m ) ppy (=) AMmpy -, 7°)A(pan ™, ™ ):m

Since the number of such characters is |7|~*(1 — |r|)? the right side of (B) is equal to w(7*). Since
wo(—1) = p3(—1) = 1 we have, for k < —1,

-2 —m w(m)
Do =T T T + mTk—l,ulTk—l,m =0

It follows by induction that 7;,, ,, = 0ifm < —2.
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Now take 4y = v = p3, £ = —1,and k > 0 in (B) to obtain

w(m)
|| =1

||
= —T_
‘W‘ ] k—1,p1

Tk_lv[—"l T_27N'2

Since Ty _1,,,, # 0 for some k£ > 0 we conclude that w(m)T_5 ,,, = |7|.

Choose wy and ws to be the two solutions of the equation

172
(rl ~ D 2 e T2y

X
w(T)
It is easy to see that

(1 —wi e 2) (A — wy e |x]'/?)
(1 —wiz|x[1/2)(1 = wz|x]'/?)

S T -
if x| > 0and |z| is sufficiently small. Thus 7, ,, = T'(M, p1,m) ifm < 0. Taking p = v = p1, k =0,
and ¢ > 0 in (B) we obtain

2_2 -myp T, wm) oo —1)5 =T,
T T T g +\7T\7—1 "t Te—1, +wo(=1)0kw () = Ty,

Since the same formula is valid if T, ,, is replaced by T'(M, 111,p) we can show inductively that

Ty = T(M, pq,m) for all m.

Now suppose (11 # uo. Let n be the order of ulugl. Take y=v=pu, =k +1,andk =—1in
identity (A) to obtain

- -n n — T
A(MQM 177T )w(w )T—l—n,ulTE—n,ul = H1lo 1(_1)|7T‘|7_‘1Tk1,,u1 .
ThusT_i_, ,, # 0. Now take ¢ = k; +n, k < —1 to obtain

A(Hﬂh_laW_n)w(ﬂn)Tk—n,mTk,m = 0.

Thus Ty, = 0ifk < —1.

Now let us look at the identity (B) with pn = i1, v = po. If K > —n and £ > —n the right side is

zero because the order of either ;317! or pon ™1 is at least n. Thus in this case

-2 —m w(m
Zm:_oo —w (™) Tt Lo,y + |7T|(7_)1Tk—17u1T€—17u2 +wo(—1)dgpw() =0.  (C)

In particular take £/ = n + 1 tosee thatif £ > —n +1and 7}, ,, = 0so does Ty _5 ;.
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If k < —n and ¢ # k the right side of (B) is zero for u = py, v = u9 because k < —2 and if the

order of i1y~ ' is —k so is the order of pon~!. Thus in this case

-2 _m w(r)
>~ ) T Tema + =1 et Tema =0

The same result is valid if / < —n and k # (. Take k = —ntoseethat T, ,, = 0ifm < —n — 1.
Thus if T;, ,,, = 0 for all m > —1 then the only m for which 7T;,, ,, # 0 is m = —n — 1. Taking
¢ = —n — 1in (C) we would find that 7;,, ,, = 0 for m > —n which is contrary to assumption. At this

point ;1 and ps play identical roles.

Taking k = —n + 1in (C) we see thatif £ > —n
Lot Tn = (7] = Dw(m) Lo, T-1-n, s -
ThusT_, ,, #0and Ty ,, #0if{ > —n. Set, if £ > —n,

(.U1|7T|1/2 = Te;—l,[J«Q = (|7T| — 1)(,{)(7T)T7T17n,u1 .

£, —n,p1

Similarly 7_,, ,,, #0and Ty ,, #0if{ > —n. If £ > —n, set

(.d2|7T|1/2 = Te+1,u1 = (|7T| — 1)(,{)(7T)T7T17n,u2 .
t,p1 —n,ng

Now take v = = 1, £ > 0, k = —1in (A) to obtain

_ _ _ T
A(ps 1,“27” n)w(ﬂn)T—l—n,mTf—n,m = H1ftg 1(_1) ‘ﬂ" _’ 1Tf—1,u1-

Thus

In the same way

Tippus = I —1 “i Alpgpy 7™
|n|*z w(7™)
Thus if v = “:}l(jg
T_l—n,ul = ’Yn% wij? A(Hz_lﬂhﬂ_n)y
Topr = 7" (= [P 2o o " Ay i, 7", L2 -,
Tt =" I L A1, 7).

7 when
_ L _ _ _
Tryn =7 (1= )0 B0y " " Ay a7, €2 .
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If we take p different from pq and e, v = w1 and £ > 0 in identity (A) we obtain

A(:U’2:U’1_17 W_nz)W(WHQ)T’C—TLQMT(—TLQ,LH = Hﬂ;l(_l)A(MHflu ﬂ-k)Tk-i-@,Ml

if ny is the order of y; 1=t and ny is the order of pop™t. Thus T,,, , = 0if m # —ny — no but

—ni]—ng

Ty = (L= )2 ] = 20y ™™ Ay, 7™ ) A g ).

If we can show that v = 1 we will have proved that if M (ma & 713) = wiwhuy (a)pa(B) then
T(M,p, m) =T, forall xand all m.

Take 1 = i1, v = pp and k = £ = —n in (B). If the order of both nu; * and nu; * is n, the value of
the corresponding term on the right side is

=" 1
1—|x)? w(@m)’

/1’1/1’2(_1) (

1—|7]
|

are all zero so the right-hand side is 242D 12217l ¢4 — 1 there are =217 such characters. However

w(mn)  1—|m]| |7

the terms corresponding to n = u; and n = u» give a total contribution of

If n > 1 there are

(1 — 2|n|) such characters 1. The terms corresponding to the other characters

papz(=1) |72 + papp(=1)  |a?
w(m) (1= |x])? w(m) (1= |x])*

Thus the right side is again 220 12211 The |eft side is

w(m™)  1—|x|

n—1

g

|| papa(=1)
w(mm) +

T =1 w(m)

ppo(—1)

Consequently v*~1 = 1. Now take k = ¢ = —n + 1 in (C) to obtain

papz(—1)
w(mn=1)

papa(=1) o

— g g (—1
papz(—1) =

(T

|| + (Irl = 1) + =0

Thusy" 2 =1landy = 1.

It will be convenient to record here the closed expressions for

ZOO_ T(M,pu,n)z" =T(M,u,z)

The series of course converges for |z| > 0 and sufficiently small.
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Lemma2.8 (i) Let K =k @k and let M(7Pa @ 718) = wlwhpi (a)p2(B) if « € 0™ and 8 € 0*.
@) If p1 = p2 then

(L—wy =M rV2) (1 —wy 2 Ym|'?)
(I —wizlx1/2) (1 = waz|x[/?)

T(M,p,z2) =
and if i # py and the order of p=py is n

T(M, 1, ) = (1= )]~y " " Ay o m™ Ay, o, ™),

(b) If p1 # pa then

1—w2_12’_1’7T’1/2) .
(1= wpelei72)
1—w1_12’_1’7T’1/2)
(1 — wiz|m[/2)

T(M, . 2) = (1— ) el 2™ Ay, 7 )

—n

T(M,p2,2) = (1~ [l el Foog " A iz )
if n is the order of ,ul_lug. If p is different from py and po and the order of =ty is ny and the

order of =ty is ny then

—n1—n2

T(M,p,z)=(1- ]W])QW 2 wQ_mwl—mA(uflu,ﬂ_"l)A(uglu,7r_"2)z_”1_”2.

(ii) Let K be an unramified extenson of k.

(@) Suppose there is a generalized character My of k™ such that M (a) = My (a*™%). Let M;(nP3) =
wipi(B) for B € 0*. Then

1 — w22 2n| 1= witz Y m V2 1wt | 2
1—wi22|m| 1 —wiz|n|l/? 1+ wyz|w|1/2

T(Mvuhz) =

If i # py1 and the order of u,ul_l is n so that the order of ,u1+sMO_1 1s also n then
T(M,p;2) = (1= |m|*)|a|T"wpr " A(Mg  pt e T2 720
n —n _ _ 2
= (1= |a)*|7| " wi ™ (~wn) T { Ay T 2T
(b) If there is no such character then for all u
T(M,p,2) = (1= |m|*)|a| "M (I A(My 't +e, 1) 22
if n is the order of My ' pt+s.
(iii) Let K be a ramified extension of k.
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(@) Suppose there is a character My of k* such that M(a) = My(a'™®). Let My(nPf3) = w¥u1(83)

if B € o0*. Then

1— wl_lz_lhr]l/z)
(1 = wiz|n]/?)

(1= w2 Ma['/?)

(1 —wiz|n]/?)

z

L -
T(M, p152) = (1~ |||~ =0y Alxo, 7 )

- _
T(M, xop1,2) = (1 = |w])7|~ 2w Alxo, 1) z

and if u is different from py and xopr then

_ _n—f —n— _ s —n— —n—
(M, 2) = (1~ [ Ao, 7|~ oo A b+, T 1)

—nq]—ng

= (1 — ‘7T|)2‘7T| wl_nl_HQA(Hl_l,Uz,W_nl)A(HQ_IHﬂT_nQ)Z_nl_nQ

s

if o = xop1, n s the order of Mo_l,u1+ , ny1 s the order oful_l,u, and no is the order ofuz_l,u.

(b) If there is no such character My then, for all pu,

—n—f

T(M, p1,2) = (1 - ][ =5 Ao, 7 ) M(IT D) A (M o, 1)z

if n is the order of My ' p'+s.

The formulas of this lemma follow from the definitions together with Lemmas 1.1 and 1.5. |
would like to observe in cases (ii, a) and (iii, a) that if M’ is the character of (k @ k)* defined by

M'(a & 8) = M(a)Mi (8)x(5), the, for all 1

T(M,p,2) =T(M, p,z).

It follows from Lemmas 2.7 and 2.8 that if the collection {7;,, ,,} satisfies identities (A) and (B) the

series
T P
Zm ’

converges for |z| > 0 and sufficient small and its sum 7),(z) is a rational function. If we return to
the discussion of the representation o we can choose some isomorphism of U with C and regard the
functions ¢, as scalars. Let L’ be the set of all locally constant complex-valued functions, i.e. invariant
under some open subgroup, on k*. If v is a character of 0* let L, be the set of all functions ¢ in L'
such that p(Ba) = v(B)p(a) if B € o*. Itis clear that L' is the direct sum of the spaces L.,. If o € L’
we write o = Y, with ¢, € L/, and set uy, , = ¢, (7"). Let L be the set of all functions ¢ in L’ such

that, for each v, u;, , = 0 for £ < 0 and

ou(z) = Zk Up 2"
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converges for |z| > 0 and sufficiently small and represents a rational function. If H is the set of all
functions in L’ with compact support then H C L. His clearly the image of V. By the way, it will not

conflict with our previous notation if when ¢ =" ¢, liesin L' and uy, , = ¢, (7*) we set

k
© ~ g E Uk, 2.
v k

Now suppose {7, ,} is the collection corresponding to the representation o. If v € V and

p=wuy D ukp®
then

P TEIIT20 30 3 ) SN

Thus ¥ = ¢,, isalso in L and
Yo(2) = Tp(2)pp(w™ ! (m)27")

IfT,, ., = 0whenever m > —1thenV = V so that

ou(2) = wo(—1)Tp(2)hs (W (m)z71).

Thus, in this case,

wo(=1)T,(2)Tp(w H(m)z"1) =1 (D)

On the other hand if one notices that M M® = w! ™ so that M 1wty =175 = (M~1u!*%)~=% one can
verify by inspection that
wo(—)T(M,v,2)T(M,0,w  (7)271) = 1.

Thus the identity (D) is valid whenever ¢ is an irreducible representation satisfying (i), (ii), and (iii).

Now let us suppose thatw is acontinuous homomorphism of £* into C* and that the family {7}, ,, }
satisfies the relations (A), (B), and (D). If ¢ belongs to L’ and (¢ %) belongs to Gy, let 7((% ) )¢ be the

function whose value at «v is w(d)& (%b) %) (%) T is a representation of the group of upper triangular

a 0

matrices in G on L'. H is an invariant subspace of L’ for 7. Itis clear that the operators T((0 b

)) leave
L invariant. If ¢ € L then, for all x € k, the function ¢ defined by ¥ (a) = &(ax)e(a) — p(a) liesin
H. Thus the operators 7((5 %)) leave any subspace of L containing H invariant. Define ((_94)) by

the condition that if ¢ € Land ¢ = 7((_{ )¢ then

U (2) = Tp(2) o (W™ (1)271).
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It is easy to verify that

(I L e (A I G !

Thus the operators 7( (% %)) and 7((_? 1)) leave the space spanned by H and the functions 7((_% 1)),

p e H invariant. Call this space H. Every matrix in G which is not supertriangular can be written in

NEOIHIEHICHI)
set7(9) =7((5 0))7((6 D)7((LL o)7((5 D)T((G Y)). Thus 7(g) is defined for all g in G

Let us verify that 7(g192) = 7(g1)7(g2). This s clear if g1 ~ g is a supertriangular matrix. Thus

n=(0) (o )
w=y 1) (1)
The case « + y = 0 is taken care of by identity (D) so suppose = + y = u # 0. Then
(26 D6 )
(o =(( ) o pr((y YD o)
g =g O r(o (S o )ee(s Y )

However if one examines the derivation of the identities (A) and (B) one sees that they are equivalent

exactly one way as

it is enough to verify this when

to the assertion that these two operators have the same effect on an element of H. To verify that the

two operators are equal we need to show that if ¢ € H then

rlaar( ) e =rlovrtar(( 9 o)

The left side is equal to

e (g De=rtanrton (3 g De=rlanrtarn( ] )

The representation 7 on H certainly satisfies condition (ii). If (? 3) €Goandcep

(£ a)= (% D) ale)
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It is clear that for any ¢ in H the sets

{9lm(9)¢ = ¥},

{orar((3 o De=r(( 1 5 )}

both contain an open subgroup of th group of upper triangular matrices. Thus the first set contains
an open subgroup of the group of lower triangular matrices. It follows from the simple identity above

that it contains an open subgroup of Gj.

To prove that the third condition is satisfied we need only show that if U is an open subgroup of
the group of upper triangular matrices then the set X of all ¢ in H such that U is contained in the
isotropy group of both ¢ and T((_(l) é))cp is finite dimensional. If ¢ belongs to H then ¢, has poles
only at 0 and oco. In general the poles of ¢, at any point besides 0 and oo are of no higher order than
those of T;(z). Itis clear that, if o € X, ¢, = 0 for all but a finite number of v. Thus to prove the
assertion all we need to do is obtain, for each v, a bound on the order of the pole of ¢, at 0 and oo
which is valid for all ¢ in X. A glance at the form of the operator (({ ¥)) convinces one that there is
anumber N such that if U is in the isotropy group of ¢ then ¢(a) = 0if |a| > |7[V. Thus the order of

the pole of ¢, (z) at 0 is at most —N. If ¢ is in X the order of the pole of
T, (2)pu (W™t (m)z ™)

at 0 is also at most — V. The assertion follows.

Arguments similar to those used to prove Lemma 2.4 show that any invariant subspace of H
different from {0} contains a non-zero vector in H and that H is irreducible under the action of the

upper-triangular matrices. It follows immediately that 7 is an irreducible representation of G on H.

Thus to completely classify all irreducible representations of Gy, satisfying (i), (ii), and (iii) all we
need to is study the families {7}, , } of complex numbers which satisfy (A), (B), and (D) and have the
property that, for all i, 7;,, , = 0 if m > —1. In this case, which is the case we shall discuss in the rest
of this chapter, H = H.

Before going on let me observe that if ¢ is another homomorphism of £* into C* and w is replaced
by w(¢? and T, is replaced by C(”m)Tm,cglu the relations (A), (B), and (D) continue to be satisfied.

Thus, for our purposes, there is no harm in assuming that w is a character.

Define an inner product on H by

(o, 0) = /kx o(a)Y(a)da.
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It is clear that, if g is an upper triangular matrix, (7(g)y, 7(g)¥) = (¢, ). Itis also clear that if (p, 1)

is another inner product with this property it is of the form

<§0, ¢> = ZV au(@ua ¢u)

Thus if T' is the operator on H defined by

(3 e) =Y an

(@) Ty, 7(9)¥) = (T'T(9)p,7(9)¥),

sothat 7(g)T = T't(g) for all upper triangular matrices g. Thus each eigenspace of T is invariant under

7(g); so T is a scalar.
Let ¢y, be the function in H,, = H N L, satisfying ¢, (7*) = 1 and ¢, () = 0 if |a| # |x|’.

The collection {¢y ., } is an orthonormal basis of H.If pisin H and

l
@~ E E Up,p2
v 4

then

Y = ZV Z( Up,vPe,v-

(B 0 1 z 0 1 7 0 a 0 1y
9=%o s)\o 1/\=1 0)Vo 1)\o 1/)\0 1
with a € 0* let us find the effect of 7(g) on ¢. We iterate the effect of the various factors entering into

the expression of 7(g) as a product.

ST S e

Applying 7((§ 1)) to this one obtains

Zz,u {V(a) Z” A(Ny_ly Wey)ue#} Do,

7((3"Y)) sends this to

Z { Z Atz )W+n,u}w,y-

Now apply 7(({ ¥)) to obtain

Zz,u {Zm—k:eTm”’w Z A(pp~t, 7t )Uk+n,u}W,y
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Finally 7((g 2))7((; 7)) transforms this to

~ —k B —1 ¥/ ~—1 k+n
S Ao Y e T s Ay ) A T i
Thus if g has the above form the matrix element (7(g) vk, .0¢,.,) is equal to

(B Y 50 Tsen Ao H ) A7)

Ifg= (g 2) (T (2 9} Y) then (1(g) @k u» e, isequal to 0 if k # £ + n but if k = £ + n it equals

w(B)v()A(ur~, 7y).

A subset X of G will be called pseudo-compact if there is a compact subset Y of (G5, such that

X CUnerx (5 )Y

Lemma 29 If T, ,, = 0 for m > 1 the functions (7(9)@k u, o) have their support in a pseudo-

compact set.

Itis clear that the intersection of the support of (7(g) ¢k, 4, ¢e,.,) With the group of upper-triangular

matrices is a pseudo-compact set. If
(B 0 1 =z 0 1 ™ 0 a 0 1y
9=%o s)\o 1)\ =1 0)Vo 1)\o 1/)\0 1

(B 0 —7m"za 1 —7m"oxy
9=\ o 154 -1 —m"ay '

Thus, if N > 0 and n varies over {n|n > —N} while z and y vary over {z € k | |r|%|z| < N} and 8

then

varies over k* the matrix g varies over a pseudo-compact set.

For a g of this form set

folg) = w(B)w(m™ M) p() Thgomn s A(pr " T 2) A(up ™ 75 y).
The support of f, is certainly contained in a pseudo-compact set. As we saw some time ago, if the
order of p is sufficiently large,

Alprg ' ) Awg tvop, m™)
|A(w trop, m=m)|?

Tk—m,p = w(w‘m)

where 1 is a fixed character and m is the order of p. Thus, if the order of pis sufficiently large, f,(g) = 0

unlessn = k + £ + 2m, |7 2| = 1, and |7***y| = 1. The lemma follows.
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If ¢and v are fixedand C;, = {((§ ))) | a € k*}
<(pv¢> = / (T(g)()pv(Pf,u)(T(g)¢v(P€,u)dg
G /C

is a non-degenerate inner producton H. Clearly (1(9)p, T(9)¥) = (p, ) forall gin Gy and in particular
for the upper-triangular matrices. Thus there is a positive constant C; ,, such that (p,¢) = Cy .. (¢, ¥).

Consequently the representation 7 is unitary.

Lemma2.10 If the family {T, .} of complex numbers satisfies the relations (A), (B), and (D) there
is a two-dimensional semi-simple algebra K over k and a homomorphism M of K* into C* such
that

T = T(M, 122 m)

for all m and p.

Because of Lemma 2.7 we need only prove this when the associated representation 7 acts on I;T,
is unitary and the matrix element (7(g)¢k, ., ¢e,,) have compact support. To do this we need the
Plancherel formula of Gelfand and Graev which will require a paragraph by itself. For now let us

assume Lemma 2.10 and go on to its applications to the theory of automorphic forms.

3. The local functional equation for non-archimedean fields. For the sake of brevity we shall call an
irreducible representation o of G, which satisfies (i), (i), and (iii) of the previous chapter a simple

representation.

If 1 is a continuous homomorphism of Ay, the group of diagonal matrices in Gy, into C*, let L(n)
be the space of all locally constant functions on G, satisfying ¢(ag) = n(a)y(g) for all a in A. Since

L(n) is invariant under right translations we obtain a representation g — p(g) of Gy, on L(n).

Lemma3.1 No infinite-dimensional simple representation of Gy, is contained more than once in the

restriction of p to L(n).

We may take the simple representation to be the representation 7 on H considered in the previous

paragraph. Suppose V' is a subspace of L(n) and T is an isomorphism of H with V' such that

forall p. Set A(p) = T'w(1). ThenT'v(g) = (p(g9)T)(1) = A(7(g)p). ThusT iscompletely determined
by \. Ifa € Ay then



Let us verify that up to a scalar factor there is at most one linear function on H with this property. Let
n((¢ 2)) = m(a)n2(b) and, assumed, let 7(($ 2)) = w(a)I. There is no such function unless 77, = w.
Ifope H, = HNL,and o € 0* then 1 (a)A(p) = v(a)A(¢). Thus A vanishes on H,, unless v = vy,

1o

the restriction of 7, to 0*. If p € H,,, and ¢ = 7((", |

))e — mi(m) L or, what is the same, if

U(z) = (z =0y (1)) (2) (A)

then A\(¢) = 0.

If H,, = H,, then {¢(z) | ¥ € H,,} consists of all rational functions with poles nowhere but at
0 and co. Then 1(z) can be put in the above form if and only if 7, *(7) is a zero of 1(z). The assertion
follows in this case. If H,,, # fI,,O either

(z=m) (2 —2)
(Z — 51) (Z — (52)

Ty (2) = c2™"

or

k%N

s, (2) =
o (2) = cz p—

Here c is a complex constant, & is an integer, and 1, 2, 61, d2 are complex constants. In the first case
we may suppose that ; # 6; for 7,7 = 1 or 2 and in the second case we may suppose that v; # 6;.
In the first case {¢(z) | Y € H,,} consists of all rational functions with poles of arbitrary order at 0
and oo, poles of order at most 1 at 4; and J> and no other poles. In the second case it consists of all
rational functions with poles of arbitrary order at 0 and oo, a pole of order at most 1 at &, and no other
poles. In any case 1(z) is of the form (A) if and only if the order of its pole at 7, ' () is 1 less than the

maximum allowable. This completes the proof of the lemma.

If £(z) is a non-trivial character of k let L(&) be the set of all locally constant functions on Gy, satis-

fying (p((é f)g) = {(z)p(g) forall x € k. Let p(&) be the restriction of the right regular representation
to L(&).

Lemma 3.2 Every infinite-dimensional simple representation of Gy, occurs exactly once in p(§).

Choose vy in k* sothat £(z) = & (yz). Let the simple representation 7 act onH, as before. Suppose
there is a homomorphism 7" of H into L(¢) such that T'(7(g)) = p(g)(Ty). Set A(¢) = T'p(1). Then
AT ((§ D)) = &o(vz)A(). Since T(g) = A(7(g)¢), T is detrmined by A. Conversely if X is such a

linear function and Ty is defined by T'o(g) = A(7(g)¢) then T' commutes with the action of G,.

39



Such alinear function mustannihilate all functionsin H ofthe form¢(ar) = {&o(vz) —&o (o) }o(w)
with ¢ in H. Since any function in H which vanishes at  is a linear combination of such functions the

assertion follows.

Suppose T is a simple representation of G. Let K be a two-dimensional semi-simple algebra over
k and let M be a homomorphism of K * into C*. Suppose 7 is associated to the family {T'(M, u,n)}.
Let the restriction of M to k™ be xw. Suppose ( is a continuous homomorphism of A; into C* such
that ¢((§ o))w(e) = 1. Let ¢((§ 5)) = Gi()Ca(f)- Let o be the restriction of ¢; to o* and let
CGi(am™) = (o(a)|r]® for a € o*. ( is uniquely determined by (y and s and we shall occasionally
write ¢ = ((s,(p). let L(&,7) be the unique subspace of L(£) which transforms according to the

representation 7.

If n is any continuous homomorphism of A; into C* let 77 be the homomorphism defined by

(&9 =n((22)).

Lemma 3.3 If 7 is given there is a number N such that if ¢ belongs to L(&,7) and ¢ = ((s,(o) the

vaco) = [ w5 O he(y | )

integral

is defined for Re(s) > N.

(i) Suppose K =k @k and M (mPa & 116) = wiwipi(aB) if a, 8 € 0*. Suppose also that neither

oL nor 22 s equal to 7). If pp = C5t set

®'(9,¢, ) = (1= wn|n"TV2) (1 = wolm /%) @(g, ¢, ).

Then, for each g, ®'(g,(,¥) is a polynomial in |7|* and |7|~% and for a suitable choice of g and ¢

it is a constant. Moreover if p~@ is the largest ideal on which & is trivial

Cl(ﬂ'd)(l)/(<_(1) é) g.m, ) = G (r)® (g.¢, )

If uy # ¢yt set @'(g,¢, ) = ®(g,¢, ). Then, for each g, ®'(g,¢, @) is a polynomial in |7|~° and

|7|* and, for a suitable choice of g and ¢ it is a constant. Moreover, if £(x) = &y(vyx),

Q] §) 91600 = 1= D2l 20 G ) (MG, Y (9.)

if n is the order of pu1(o.
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(ii) Suppose K = k& k and M (rPa®mif) = wiwiui (af) if a, B € 0. Suppose also that = |7|.
If pn =Gy " set
®'(9,¢,0) = (1 —wr|n*T/2)2(9,¢, )

Then, for each g, ®'(g,(, ) is a polynomial in |7|* and |7|~% and for a suitable choice of g and ¢

it 1s a constant. Moreover,

aw (] §)ace) =T amwiede

2

If iy # C5t oset ®(g,¢,0) = ®(g,C, ). Then, for each g, ®'(g,¢, @) is a polynomial in |7|° and

—S

|| =% and for a suitable choice of g and ¢ it is a constant. Moreover,

A (] 1) 060 = 1 2l G ) G, Y ¥(0.)

(iii) Suppose K = k@k and M (mPa®mi3) = wiwiu (af) if o, B € 0*. Suppose also that 2= |7|.
If py = (:0_1 set
(I)/(97C7 SO) = (1 - w2|ﬂ|s+1/2)@(g7cagp),

Then, for each g, ®'(g,(,¥) is a polynomial in |7|° and |7|~% and for a suitable choice of g and ¢

it is a constant. Moreover,

’—1/2—5 B

01 G (7@ (g, ).

@(wd)@’((_l 0) 9:¢,0) =

|

w1

If uy #ngt set ®(g,¢,0) = ®(g,¢, ). Then, for each g, ®'(g,¢, ) is a polynomial in |7|° and

||~ and for a suitable choice of g and ¢ it is a constant. Moreover,

A (( ] ) 9.6 = (= P2 G () A GG, )P (9.8

(iv) Suppose K = k& k and M (7Pa & 1103) = wiwipi(a)u(B) if a, 8 € 0* where py # py. If
pr = (ot oset
®'(g,¢ ) = (1= wr|n*T/2) (g, )

Then, for each g, ®'(g,(,¥) is a polynomial in |7|° and |7|~% and for a suitable choice of g and ¢

it 1s a constant. Moreover,

AP(( ] §) 919 = (1= DI F "5 " AlGos ) (1) 4.
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if n is the order of ul_l,ug. If po = (:0_1 set

(I)/(ga C7 SO) = (1 - w2|ﬂ-|s+1/2)@(g7 Cu 90)
Then, for each g, ®'(g,(,¥) is a polynomial in |7|* and |7|~% and for a suitable choice of g and ¢
it 1s a constant. Moreover

<1<w><1>’<(_2 3) 9.C.¢) = (1= ) =G (1)wr " A Gopr, 7 ) (9., )

If ¢;t is different from both py and po set ®'(g,¢,p) = ®(g,¢,@). Then, for each g, ®'(g,(, @) is

a polynomial in |7|* and |w|~° and for a suitable choice of g and ¢ it is a constant. Moreover,

ame (] §)ace)

1$ equal to
—n1—n2)(2+s) F —nz, —Ni —ni —n2 %
(1= |])?|m|C V@I (y)wp ™2wy ™ Apao, 7)Ao, m"2) 2 (g, ¢, )
if ny is the order of uaCy and no is the order of 1.

V) Suppose K is an unramified extension of k and there is a homomorphism My of k* into C*
pp P

such that M (o) = My(Na). Let My(7P3) = whuy(B) for p in o*. If uy = (5" set

'(g,¢,0) = (1= wi|n*T)2(g, ¢, ).
Then, for each g, ®'(g,(,¥) is a polynomial in |7|* and |7|~* and for a suitable choice of g and ¢
it is a constant. Moreover,

ae (] §) oo =ame.de

If uy # Co* set (g,¢,0) = ®(g,C, ). Then, for each g, ®'(g,¢, ) is a polynomial in |7|° and

||~ and for a suitable choice of g and ¢ it is a constant. Moreover,

<1<fy><1>’<(_(1) })) 9:C9) = QN = [ 720y 2 A (o), TT) 8 (9, )

if n is the order of pu1(o.
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(vi) Suppose K is an unramified extension of k and there is no homomorphism My of k* into C*
such that M (o) = My (Na). Set ®'(g,(, ) = ®(g,(, ). Then, for all g, ®'(g,(, ¢) is a polynomial

S

in |7|* and |w|~° and for a suitable choice of g and ¢ it is a constant. Moreover,

<1<fy><1>’<(_(j 3) 9:C) = G (L= [ ) 72 M)A (M woGo) 5, TT )8 (9, 0).

(vii) Suppose K is a ramified extension of k and there is a generalized character My of k™ such

that M(a) = My(Nc). Let My(7PB) = wPuy(B) if B € 0*. If uy = ¢y " set

?'(g,¢, ) = (1 —wi|n[*T2)®(g,¢, )

Then, for each g, ®'(g,(,¥) is a polynomial in |7|* and |7|~% and for a suitable choice of g and ¢

it is a constant. Moreover,

a@(( ] §) 060 = 1= Dlal 5 G AN 7 (0.)
If pixo = Gy ' set
(P/(97C790) = (1 - w1|7r|s+1/2)@(g’C7 SO)

Then, for for each g, ®'(g,(,¢) is a polynomial in |7|* and |7|~* and for a suitable choice of g

and ¢ it is a constant. Moreover,

A (] §) 960 == DIl £ G0 AR 7 (0. )

If ¢ " is equal to neither py nor pixo set ®(g,¢, @) = ®(g,¢, ) Then, for each g, ®'(g,¢, @) is a

S

polynomial in |w|° and |7|~% and for a suitable choice of g and ¢ it is a constant. Moreover,

ame (] §)ace)

1 equal to

2=l _(n s, ,—n—fx — s TT—n— — ~
(1= ||| =7 = Do G () A (M H(wolo) o I ) Axo, 7 )@ (g, ().

(viii) Suppose K is a ramified extension of k and there is no homomorphism My of k™ into C* such
that M () = My1(Na). Set ®'(g,(,») = ®(g,(, ). Then, for each g, ®'(g,(,¢) is a polynomial
in ||® and |w|~*. Moreoever,

ame (] §)ace)
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1$ equal to

n—

71D () M(IT D) A (o, 7 ) A (Mg (wolo) 4, T T) @ (9, C, ).

(L= |m[)?|=|~

Of course, ¢((% 7)) = Ci(a)la(b). Thus {; = . Since (16 = w™!, { = w™'¢ " In particular,

o = wy ¢yt sothat{o = (o if (52 = wo. IF&(x) = & () thenthe map ¢ — 1 with ¥ (g) = ¢((7 V)g)
is an isomorphism of L(&y, 7) with L(&, 7).

/kxlb((g ?)9)6((3 ?))da:Cfl(v)/kxw(@ ?)@C((% ?))da.

This, together with the previous observation that fo = (y if Co_l = wy, Makes it clear that it is enough

to prove the lemma for £ = &.

Since L(&, 7) is invariant under right translations it is enough to prove the assertions of the lemma

for g = 1. The map ¢ — T where

is an isomorphism of H and L(&y, 7). If ¢ = T then

(5 UNe( | da= [ wl@a@da.
Joot B WP 2= ).

Since H C L the integral on the right converges if Re(s) is sufficiently large and

(1,6, 0) = Yo ([7]")

The proof of Lemma 3.1, together with Lemma 2.8, shows that there are at most two points, which are
independent of v and 1, besides 0 and oo where v, (z) can have a pole. This shows that for Re(s)

sufficiently large the integral on the right converges for all . Let ¢/ = 7((_{ 1))%. Then

o(( ) § )60 = vt lal)
= Tauo (Il Vngy (™ ()| ~)
and
B(1,,9) = Yungy (™ (R| ).

The lemma follows from these two relations, the formulae of Lemma 2.8, and the observations about
{¢(2) | ¥ € H,} made while proving Lemma 3.1. It is a matter of inspection which must be left to

the reader.
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Lemma 3.4 There is a vector in H whose isotropy group contains G, only if wg is the trivial char-
acter. If wg is trivial the only cases of the previous lemma for which H contains such a vector are

(i) and (v). In cases (i) and (v) H contains such a vector if and only if uq is trivial.

It is clear that such a function (or vector) can exist only if wy is trivial and that if 1 is the trivial
character of o™ it must lie in Hyy. Suppose there is a function ¢ in Hyy invariant under G,,. Then ¢(z)

has no pole at zero and

p(2) = Tro(2)p(w™ ()21

In all cases, T,,,(Z) has a pole of order at least two at 0. Thus ¢(w™!(7)271) has a zero of order at least
two at 0 and ¢(z) has a zero of order at least two at co. Consequently it has at least two poles in the
finite plane. The discussion during the proof of Lemma 3.1 shows that this is possible only in the cases
mentioned. Besides these two poles there can be no others. Thus the only zeros are at infinity and ¢(z)

is a constant multiple of
1 1

(1= wizfn|/2) (1 = waz|m|'/2)

in the first case and of
1

1 — w?z2|m|
in the fifth.

Conversely if wy is trivial, ¢ lies in Hyy and ¢(z) has this form, the isotropy group of ¢ contains

01

(_7 ¢) and the upper triangular matrices in G,. However G, is generated by (_J |

1o ) ad the upper

triangular matrices in it.
Lemma 3.5 No one-dimensional simple representation of Gy, is continual in p(§).

According to the corollary to Lemam 2.1 any function on G} which transformed according to a
one-dimensional simple representation of GG;; would be invariant on the right, and therefore on the left,
under the group of matrices in Gy, of determinant 1. In particular it would satisfy ¢((; 7)g) = ¢(9)

for all z in k. Such a function could not possibly lie in L(§).

Let Ly be the space of all functions on NV, ~. GG}, which are G, finite on the right.
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Lemma3.6 (i) Let K =k ®k, let M (a1 ® az) = x1(a1)x2(az) be a continuous homomorphism of
K> into C*, and let T be the representation associated with the family {T (M, pu,m)}.

(8) Suppose x1x5 ' is not one of the characters a — 1, a — ||, a — |a|™'. Then there are
two subspaces Hy and Ho of Ly which transform according to the representation T and have the

property that o(($ 3)g) = |2]"*x1(@)x2(B)elg) if o € Hy and o((5 D)g) = 3] *x1(B)xa(@)el9)

if p € Hy. Moreover, any subspace H of Lo which transforms according to T is contained in Hi+Hs.

(b) Suppose x1 = x2. Then there are two subspaces Hy and Hs of Lo which transform ac-
cording to the representation T and an isomorphism T of Hs into Hi which commutes with the
action of Gy and is such that o(({ g)g) = ‘%|1/2X1(a)xg(ﬁ)<p(g) if ¢ € Hy and ¢(({ g)g) =
151" x1(@)x2(8){e(9)
+T(g) log|%|} if ¢ € Hy. Moreover, any subspace of Lo which transforms according to T is
contained 1n Hy + Hs.

(c) Suppose Xlxgl(a) = |a|. Then there is a subspace Hy of Ly which transforms according
to the representation T and has the property that o(( g)g) = ‘%|1/2X1(a)xg(ﬁ)<p(g) if ¢ € H.

Moreover Hy is the only subspace of Lo which transforms according to T.

(ii) Let K be a separable extension of k and let M be a continuous homomorphism of K* into
C*. Let T be the representation associated to the family {T'(M,m,u)}. If there is no continuous
homomorphism My of k* into C* such that M(«) = M;(Na) then there is no subspace of Ly

which transforms according to T.

As in the proofs of Lemmas 3.1 and 3.2, there is a one:one correspondence between G-invariant
homomorphisms T of H, the space on which 7 acts as in paragraph 2, into Ly and linear functions
A on H satisfying A (7((;, 7))¢) = A(p) for all ¢ in H and all z € k. Given such a linear function
(Te)(g) = AM(7(g)¢). Alinear function X is of the required type if and only if it annihilates all functions

of the form

Y(a) = (§(az) — 1)p(a) o€ H, z€ek.

The space spanned by such functions is just H. Now }AL, = H, for all but one or two characters v.
Moreover if H, # fI,, then \(¢,), ¢, € H, can depend only on the coefficients of the principal parts
of ¢, (z) at the finite poles different from 0.
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Part (i) of the lemma follows immediately. For part (i) let x;(7Pa) = w! u;(a) if & € 0*. If we are

in case (i,a) set

(Z (Pu) = ‘Pm( )|%7

ul\‘rr\l/Q

(Z@V) = @Mz( )|w2‘ﬂ|1/2*

Then X is a linear combiantion of \; and X,. If we are in case (i,b) let

a1 + as
1 1
(2= Gpr)* (2= Spre)

be the principal part of ¢, (z) at W and set A (@) = A1 (3 ¢n) = a1 and Xa(p) = X (X wu) =

as. Then X is a linear combination of A\; and \y. If we are in case (i,c) let

(#) =M (30w ) = Re(s)eu ()] _,

wy || 1/2

In all cases H; is the image of H under the map T; associated to A;. In case (i,b) take T, =
log Tog 7] Ty . L. The other assertions of the lemma follow from the form of the mapping associated to

a given linear function, the fact that 7((& °))¢ = x1(a)x2(a)p, and the fact that if v = 7((™, %) )¢
with a € o* then ¥, (z) = v(a)z Py, (2).

4. The local functional equations reconsidered. In mathematics also “our beginnings never know our
ends.” In order to give the main theorem a more striking form than was previously possible I want
to reformulate the local functional equations. First of all let me recall the functional equations of the

Hecke L-series.

Suppose K is a local field. We shall associate to each generalized character x of K* a function
&(s, x) of the complex variable s. We shall introduce a local factor (s, x). (s, x) will depend upon
the choice of a character £ of K. (Notice that the symbol &, like the symbol s, is used to denote two

different objects.)

If K is a global field, x a generalized character of K>\, and £ a character of K'\A let x,, and &,
be the restrictions of x and & to K, and K, respectively. Define £(s, x,) and &(s, x;) to be the local

factors corresponding to &,. The (modified) zeta function associated to x will be

p&(s, xp) = &(s:x)
It will satisfy the functional equation
&(s,x) = e(s,x)€(1 — s, x71),
e(s,x) = Hpe(s, xp),
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both products are taken over all primes, both finite and infinite.

Let us describe the functions £(s, x) and (s, x) for local fields.
(i) K =R. Let x(a) = (sgna)M|a|”, with m = 0 or 1, and let £(z) = €%, Then

E(s.x) = - Hetremp (AT EM)
b 2 )
~ (isgnn)™
e(s,x) = W

(i) K = C. Let |a| be the square of the ordinary absolute value. Let y(a) = ]a|7“( aﬂi) with

mn =0and m +n > 0. Let £(z) = e Rew= Then

m-4n

§(s,x) = 202m)CTHEID (s 4 r

m—i—n)
2

m—+n

e(s,x) =1

x(w)|w]*” 2
(iii) K is non-archimedean. Let 3~ be the largest ideal on which ¢ is trivial. If IT is a generator of 3

and the conductor of x is 0
1

o) T
e(s, x) = x (%) |me|*==

If the conductor of  is P" withn > 0

£(s,x) =1,

n s—1 1— |10 (6% _
(s, x) = X(IIH) | Q‘H,J/g’ = P

Before restating the local functional equations let me introduce some conventions. Let k be a local
field. Let us introduce some language which, though rather bizarre, will be useful. If £ = R a simple
representation of Gy, is an irreducible quasi-simple representation of {o,2} (the notation is that of
paragraph 2 of my letter to Weil). If K = C a simple representation of Gz, is an irreducible quasi-simple
representation of 2 (the notation is that of paragraph 4 of my letter). If k is non-archimedean the simple
representations of G, have been introduced in the previous paragraph. If 7 is an infinite-dimensional

simple representation of G, and ¢ is a character of k the space L(&, 7) has been defined.

If x is a homomorphism of £* into C* and s a complex number and ¢ belongs to L(&, 7) set

(g, s,0,x) = /k o ((‘5‘ (1)> g> O
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The integral converges for Re(s) sufficiently large. We shall introduce factors' (s, 7, x) and (s, 7, x)

and set

@/(97 87 (P7 X) = 5(5 T X)

Then the local functional equation will be
(I)( -1 0 g,—38,%, ("7)() ) 25(877—7X)(I) (gvsv(an)'

it 7((5 2)) = n(a)I. I'shall write down the factors £(s, 7, x) and (s, 7, x) but | will leave to the reader
the task of verifying that the local functional equation takes the above form. He will probably require
paper and pencil. Since the analytical properties of the functions ¢’'(g, s, 7, x) follow immediately from

previous results | shall not formulate them explicitly either.
(i k=R
(a) Let M be a continuous homomorphism of R* x R* into C*. Let

M(11,2)) = ] el ()™ (12
[t1] |t2]
with m; and my equal to 0 or 1. Suppose (s; — s3) — (m1 — m2) is not an odd integer. Set x1(t) =
M((t,1)), x2(t) = M((1,t)). Let 7 = 7)s be the simple representation ,, introduced in paragraph 2
of my letter to Weil. Set

1 1
5(877—7 X) = §<§ + 87X1X)5<§787X2X)7
1 1
5(877—7 X) = 5(5 + S7X1X)5<§ + SaXZX)'

(Notice when verifying this that there is an error in part (i) on page 3.34 of the letter to Weil. * The
second factor in the denominator on the right should be F(z + |mo — €] + 5 — %) )

(b) Let M be a continuous homomorphism of C* into C*. Suppose

ramtan
|| 72
with mn = 0, m + n > 0. Let w be the homomorphism (t1,t5) — [t1ta]" | | sgnt1 of R* x R*

into C* and let 7 = 7,4 be the unique infinite-dimensional irreducible representation deducible from

t They, too, will depend on the choice of a character of k .
F 1 leave it to the reader to give a meaning to 7(({ 7)) in the case of the real or complex field.
*in Lemma 3.6 (1998)
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7. If € is acharacter of R then £'(z) = (2 + Z) is a character of C. If y is a homomorphism of R* into

C* then /() = x(Na) = x(aa) is a homomorphism of C into C*. Set

§(s,mx) =¢ <8+ %,Mx’> ;
e(s,7,x) = (isgnu)e (8 + %,M}() .

Of course the expressions on the left are for the character £ and those on the right are for the character
g,

(c) Suppose M is a continuous homomorphism of R* x R* into C* of the form (¢1,t2) — |t1t2|"sgn t1
or (t1,ta) — |t1t2|"sgnts. In the first case let x1(t) = |t|"sgnt, x2(t) = [¢|"; in the second case set
x1(t) = |t|", x2(t) = |t|"sgn t. the representation 7, introduced in paragraph 2 of my letter to Weil is
irreducible. Let 7 = 75, be 7. Set

£(s,m,x) = 5(% + s,xlx)é(% + 87X2X>7

1 1
e(s, 7, x) = 5<§ + s,xlx)€<§ + s,xQx>-

(ii) k = C. Let M be continuous homomorphism of C* xC* into C*. Let M ((t1,t2)) = [t1]|* ]t2\52(Itlt‘ll/z)ml(“;ﬁﬂ)m
and suppose that neither 21552 — (1 + '"‘1;2’”2') nor £2251 — (1 + “”1;27”2') is a non-negative integer.
The representation 7, introduced in paragraph 4 of my letter to Weil is irreducible. Let 7 = 7, be

. Set
1 1
6(577-7 X) = 5(5 + §7X1X)€<8 + §7X2X>7
1 1
5(8,7’)() = €<8 + _7X17X>€<8 + _7X2X>7

2 2
if x1(t) = M((t,1)) and x2(t) = M((1,1)).
(iii) k is a non-archimedean field.

(@) Let M beacontinuous homomorphism of £* x k* into C*. Let M ((«, 8)) = x1()x2(8). Suppose
that neither Xlxgl nor X1X1_1 is the character & — |a|. Let 7 = 1), be the simple representation
associated to the family {T'(M, u, m)}. Set

§(s,mx) = 5(8 + %7X1X)§<5%7X2X>

1 1
e(s,7,x) = 6(8 + 57X1X>5<8 + §,><2><)
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(b) Suppose K is an unramified extension of £ and M is a continuous homomorphism of K* into C*.
Let 7 = 1), be the representation associated to the family {T'(M, u,m)}. If £ is a character of k then
¢ (x) = &(Sx) is a character of K. If y is a continuous homomorphism of £* into C* let x’ be the

homomorphism a — x(Na) of K> into C*. Setf

1
5(577—7 X) = 5(5 + EaMX/)
1
(s, 7.x) = p(K/k)e (s + 5, M)
The factors on the left are taken with respect to £ and those on the right with respect to &

(c) Suppose K is a ramified extension of k and M is a continuous homomorphism of K* into C*.
Let 7 = 1), be the representation associated to the family {T'(M, u,m)}. If £ is a character of k then
¢'(x) = &(Sx) is a character of K. If y is a continuous homomorphism of £* into C* let x’ be the
homomorphism o« — x(Na) of K* into C*. Set

(5,7 x) =€(s+ 5. M),

e(s,1,x) = p(K/k:)E(S—i- %,Mx'),

/1) = (1= D0 () [ €(5) i @)

if p—< is the largest ideal on which ¢ is trivial. Notice that this expression is independent of the choice

of w but not of £. x is of course the unique non-trivial character of £* /N K*.

(d) Suppose M((t1,t2)) = x1(t1)x2(t2) is a continuous homomorphism of £* x k* into C* and
suppose x1X, ' (@) = |a|. Let 7 be the representation associated to the family {T'(M, u, m)}

£(s, 7 x) = €(S+ %,xlx)

e(s, 7, x) = —xx1(m (2d+1)(s=1/2)

2d+1)’,ﬂ’

if the conductor of xx; is o and

2
—d—2n n n)s - -1, -
£(5,m ) = (1= el 2| =172y (w2427 ar| 2 20) {/ () 1x11<a>d0‘}

if the order of xx; is n.

T If p~? is the largest ideal of k£ on which ¢ is trivial and if o is the unique non-trivial character of
kX /NK> then p(K/k) = xo(7?). It is independent of the choice of 7.
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(e) Suppose M ((t1,t2)) = x1(t1)x2(t2) is a continuous homomorphism of £* x k£* into C* and
suppose x; 'x2(a) = |a|. Let 7 be the representation associated to the family {T'(M, i, m)}. Set

£(s,mx) = 5(8 + %7X2X>7

e(8,7,x) = —x X (m24T) || 2D (=1/2)

if the conductor of xx; is o and

2
—d—2n n n)s - -1, -
£(5,70) = (1= el 2| =172 o (2427 ar| 2200 {/ X 1x21<a>d0‘}

if the order of xx2 is n.

The representations of (d) and (e) are anomalous. | do not know if they have any role to play in the
theory of automorphic forms. Before coming to the main theorem there is an observation we should
make. Suppose k is a local field, K a two-dimensional semi-simple algebra over k, and £ a character
of k. If k is non-archimedean and K is a field we have introduced the symbol p(K/k) = p(K/k,§).
If k = Rand K = C and £(z) = €2™® set p(K /k,&) = isgnu. If K is not a field set p(K/k, &) = 1.
Now let k be a global field, K a two-dimensional semi-simple algebra over k, and £ a character of A /k.

If pisaprimeof k let K, = K ®; k, and let &, be the restriction of £ to k. | claim that
I p(Ky /Ky, &p) = 1
This is clear if Kis not a field. If K is a field the (modified) zeta function of K is
Hp&(s, Lp) = Exc(s,1)
On the other hand if x is the unique non-trivial character of I, /k* NI itis
€ (s, 15)€(s, Xp)
Taking as our character of Ax /K the character x — £(Sx) we find that

s, 1
% = Ilpe(s, 1) = Mpe(s, 1p)e(s, xp)

Checking things case by case we find that, for all p,
{Tgype(s, 130) by /by, &) = (5, 1) (5, x)

The result follows. it is of course well known. | remark it because it shows immediately that the main

theorem is applicable to the Hecke L-series over a quadratic extension of the ground field.
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Appendix. There are a few facts which it will be useful to have at our disposal when proving the main
theorem. For lack of a better place | record them here. Suppose 7((§ 2)) =n(a)l. Let { = ((x, s) be
defined by

(5 5)) =nensaisay,

90_>(I),( : 787907X)

Then the map

is a homomorphism of L(&, 7) into the unique subspace of L(() transforming according to the repre-
sentation 7 (cf. Lemma 3.1 and Lemmas 3.1 and 5.1 of the previous letter). Since we know that, for a
suitable choice of g and ¢, ®’(g, s, ¢, x) is a non-zero exponential in s, this homomorphism can never
be zero.

On the other hand we know (cf. Lemma 3.5 and the appendix to paragraph 7 of the previous letter)

that for some 7 and some continuous homomorphisms w of A, = {(8‘ g) | a€ek* pe kX} into C*

there is a “G,-invariant” map of L(¢, ) into the space of function on G, satisfying ¢(({ ¥)(3 5)g) =

08
w((5 9))e(g). Theimage of (&, 7) will, in particular lie in L(w') it (5 9)) = |4]"w((3 3)). Thus

if w' = (s, x) it must be a constant multiple of the map ¢ — @'( - , s, ¥, X).

Suppose L(¢ 7) isan invariant subspace of L(w’) which transforms according to the representation
7. Suppose N7 and N5 are two spaces of functions on G, invariantunder the right regular representation
(of {o,2}, A, or Gy, according as k is real, complex, or non-archimedean). Suppose N; and N, are
irreducible and transform according to 7. Suppose also that there are isomorphisms 77 and 75 of N;

and N, respectively, with L(¢, 7) such that if ¢ € N;

w((% 2>g>=c((‘g 2)) {w(g)Jrcllog(%‘Tw(g)}

where ¢;, 7 = 1,2 is a non-zero constant. SetT" = T2‘1T1. Then, if o € Hy, cop— 1T € L(¢, 7). Thus
N1+ L(¢,7) = Na+ L(¢, 7). if C((§ g)) = n(B)x(Ba~1)|Ba1|? then the set of functions

%@/( . 87907X)7 ¥ € L(C7T)7

would be a possible choice for N;. On the other hand if 7 = 1, where M is a homomorphism of
k> x k* into C* of the form M ((«, ) = x(a)and ' ((§ 5)) = |%|1/2X(aﬁ) then both L(w’, 7) and
N, can be taken' to lie in the space of functions on Gj, satisfying w((é f)g) = p(9).

5. The Main Theorem. Now let k be a global field and let A be the adéle ring of k. The corrected form

of Lemma 7.1 of the previous letter is

t Notice that in part (ii) of Lemma A in the appendix to paragraph 7 of the previous letter one should
have s = 0and m = 0.
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Lemma 5.1 There is a constant cg such that if g belongs to G there is a v in Gy such that

Iy max(|clp, |dy |) < ealdet g2 if 75 = (¢ )

There seems little point in including a proof of this.

Let us take the space L as in the previous letter except for making the modification in condition

(iii) required by the change in Lemma 7.1.

Suppose that V' is a complex vector space and for each real prime p we have a representation
of {o,,U,} in V, for each complex prime a representation of 2, on V. If any two operators asso-
ciated to distinct primes commute we shall, for the purposes of this paragraph, say that we have a

“representation” of G, on V.

Suppose in particular that for each prime p we are given a simple representation 7, of G, (in
the sense of the previous paragraph) on a vector space V,,. Suppose moreover that for almost all non-
archimedean primes V,, contains a non-zero vector invariant under G,, . since this vector is determined
up to a scalar factor we have in all but finitely many of the 1}, a distinguished one-dimensional
subspace and we can form the tensor product @, V,,. The natural “representation” of G4 on V will be
denoted ®,7,. A “representation” of G, equivalent to such a representation will be called a simple

representation of G, .

Certainly we have a “representation” of G, on L. An invariant subspace of £ which transforms
according to a simple representation of G, will be called a characteristic space of automorphic forms.

Suppose L is a characteristic space of automorphic forms and let £ be a character of k/A. If ¢ € L set

@0<g>zm/kw<<3 >9> o

o0~ i o (& 1))

— 8

As before
olg) = polg) + ) . e <<§ (1)> g) :

Suppose the “representation” of G, on Lis equivalentto ®,7,. If one of the 7, is finite dimensional
it follows rather easily from Lemma 3.5 of this letter and the corollaries to Lemma 3.2 and 5.4 of the
previous letter that, for all p in L, ¢1(g) = 0. Then p(hg) = ¢(g) ifh € Grorh = ((} 7)) with = € A,
The argument used in the proof of Lemma 2.1 shows rather easily that, if GY is the group of matrices
of determinant 1 in G, ¢ is a function on G4 \GY. Consequently L is one dimensional. We exclude this

case from the following discussion.
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With this case excluded the function ¢ can never vanish identically. For a suitable choice of ¢ it

is of the form
©1(9) = p1(Iygp) = Hppp(gp)

with ¢, in L({,,7,). Moreover we can suppose that for almost all non-archimedean primes
pp(l) =1

Lemma 5.2 Suppose g is different from zero for some @ in L. Then there is a continuous homo-
morphism M of k*\I x k*\I such that 7, = Tar, for any prime for which Ty, is defined. If Tar, is
not defined and p is archimedean then T, is the unique infinite-dimensional simple representation
deducible from may, . if Tag, 8 not defined and p is non-archimedean T, is the simple representation

associated to the family {T(My,p,m)}. Let M((a, @) = n(a).

(i) Suppose M ((c, ) = n(B)x(Ba—Y)|Ba=t|%0. If M((a,1)) £ M((1,)) there are constants ci

and co such that when @1 is of the above form

1 1 o
wo(g) = clﬂp@’<gp,80 — §,<pp,xp> + 02Hp¢”<gp,—§ — S0, %, (N7 X 1)p)

If M((a, 1)) = M((1,v)) there are constants ¢ and co such that when @1 is of the above form

1 d 1
vol(g) = Cal(I)/ (gpvso + Qaﬁpanp) + CQEHp(I)/ (gpaso - 5790)37)(]3)'
(i6) Suppose M((,)) = n(A)x(Ba~")|Fa~t %172, If M((a,1)) # M((1,a)) there are con-
stants™ ¢ and ¢y such that when w1 1s of the above form

1 1 o
wo(g) = cQHp@’<gp,80 — §,<pp,xp> + 01Hp¢”<gp,—§ — S0, %, (N7 X 1)p)

If M((a, 1)) = M((1, ) there are constants ¢ and co such that when o1 is of the above form

1 1

d
()OO(g) = CQHpq)/<gp780 - §7gpp7Xp> + CIEHPCI)/(%MSO - 57@]37)(]3)

The proof of this lemma will be based on the appendix to paragraph 4 and Lemma E of the
appendix to paragraph 7 of the previous letter. However the proof of that lemma was written up rather
hastily so | do not have complete confidence in it. | will examine it more carefully later. If it turns out
to be unsatisfactory | shall let you know. In order to get on to the main point | will take Lemma 5.2 for

granted.

T The constants of parts (i) and (iii) are the same.
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In proving the main theorem I shall not enter into questions of convergence. Anything which is not
discussed in the previous letter is taken care of by Lemma 5.2 Thus if y is a continuous homomorphism

of £*\ into C* and ¢; is of the above form

[er(§ 1)) an@laraa

converges absolutely for Re(s) sufficiently large. It is equal to

{pr(s, Tp, XP)} {Hpq)/(gpa S, @anp)}

On the other hand it is equal to

/W {*D<<3 ?) 9) - %((3 (f) g)}xwawsm

This is equal to the sum of'

{a||a>1}{¢(<(g ?)g)—%(%‘ 2)9)}X(a)\alsda
{a||a<1}{¢(<(g ?)g)—%(%‘ 2)9)}X(a)\alsda

The first of these integrals is an entire function of s

and

On the other hand if ¢((§ ©)g) = n(a)¢(g) for a € I

{a||a>1}{@<<3 D2 0)o-at(g D) §)of o @laraa
e ()5 (0w (5 9)(L o) o} mlarae
- {a|a|§1}{*”(<§ D a-al(§ 1) o} x@larda

*/{a|a<1}{%<<3 Da-n@al(§ )0}l

Let us suppose that ¢ is not zero for all p and consider the last integral. Let M be the homomor-

phism of Lemma 5.2 and let M ((«, 3)) = x1(a)x2(8). If neither x;x nor x2x is trivial on the ideles of

t At first we shall discuss the case of a number field. Afterwards the necessary modifications for a
function field will be indicated. The argument of the previous letter was not correct for a function field.

56



norm one this integral is zero. Suppose that x; x is trivial on the idéles of norm one but x> is not. Let

X1X(@) = |a|~#%°. Then the integral is equal to

1

_ 1 _ _ —sp—%
el @ (gwso—%a%aXp)/ots S““%—Czﬂp‘l”((_? 0)9p: =50 =3, p (171X l)p)/ots g

01 -
= 1+S SOHP‘I’,(QmSO_%ﬁDmXp)‘*‘ [ ——— Hp‘I’((—l o)gpv_ _5%7(77 "X Dp)-
On the other hand if x2 ) is trivial on the idéles of norm one and y x is not, let xox (o) = || ~%°. Then

the integral is equal to

c2 1 c1 0 1 1 1 -
711 D' (gp, 50 — =, Pp, Xp) + ————— I, &’ =80 — =, @p, (X))
I s—s0 p®'(9p, 50 o1 ¥p Xp) I s+ s p®( 1 0)9 7507 5% (X" )p)

Since

-1 0 1 1
Hp‘I’,(< 0 _1> Gp, S0 — 5;@%)@) = Hp@'(gp,so - Eaﬁmep)
it is clear, in this case at least, that these expressions do not change if g is replaced by (_? é)g, x by
n~'x~!'and s by —s.
Now suppose that x; # x2 but both x;x and ysx are trivial on the idéles of norm 1. Let
x1x(a) = |a|~*1, xax(a) = |a|~%2. Then the integral is equal to

Hpq) (9p751 - %y%panp) + %_,_22_821_[;:(1)/ (gp732 - %NPmXp)

2+S S1

2 (L ) gp —s2— 5@, (X T )2 @ (L) o) g —s1— 500, (07X T)p).

When Y is replaced by n~ !y, s; is replaced by —s, and s is replaced by —s;. Thus this expression
is not changed if s is replaced by —s, x by = 'x !, and g by (_} })g.
Finally suppose that x1 = x2 and x1x(«) = |a|~*°. Then the integral is equal to

d dt

1 1
_+ —
CQEHPCD/(QWSO_Q’(‘OP’XP)/O t271s so?

1 1 dt
+ 11,9 (gp, 50 — 579%7)(;3)/ (1 — e logt)t%“_s“?
0

d / O 1 1 —1 ! s— so—ldt
_CQEHpCI)(<_1 O)Qp,—80—§,wp,(n><)p )/O ¢ "

0 1

1 oy [ s—so—3 dt
—Hp‘P'((_l 0>9p,—80—§s0p7(77x)p1)/0 (c1 +czlogt)t™ 072 —.

This is of course equal to
© 47, ¢/ 1 e dpg(( 01 ! -
Ifs—sgds P (gp730_§,(,0p,)(p)+ T sfsods P ( -1 0 gpv_80_§790p7(77X)p )

c c 1
* { Troso T (Brees)? } Ty @ (gp: 50 = 5+ % Xp)

0 1

c c / 1 -1
T { %—sl-‘rso + (%—siso)z}ﬂmq) (<—1 0) 9p> =50 — 5’('01”(77X)P )
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It is clear that this does not change if s is replaced by —s, x by n='x~!, and g by (_? é)g.

Putting everything together we see that

{pr(57 Tp, Xp)} {Hp‘l’,(gpa =5, Pp; Xp)}

is meromorphic in the whole complex plane and equals

{Tp&(=s,7p, (1x); 1) } {Hp<1>’( ( _(1) é) Gp» =5, Pp) (nx);l)}

The second factor is equal to

{pe(s, 7, Xp) } {Hpq)/(gpasaﬁpanp)}
Thus if
5(87L7X) = pr(SaTmXp)a
5(87L7X) = HPE(SvT]ﬂXP)v

&(s, L, x) is meromorphic in the entire complex plane and satisfies the functional equation

&(—=s, L, (nx)~e(s, L, x) = &(s, L, X)-

To investigate its poles we use the fact that for a suitable choice of p and g

Hpq)/(gpv S, @anp)

is an exponential in s. Thus if neither y;x nor y2x is trivial on the idéles of norm 1 it has no poles. If
po = 0 forall ¢ in L then it has no poles for any choice of y. To find the principal parts at the poles in
the other cases we observe that

1

1
— <, D' (gp, S, Pp, — 1,9 80 — =, Pp,
%+8_80{ 2@ (9p, 5, 05 Xp) p <gp 07 5 Pp Xp)}

and
1

1
1 2{Hp¢’/(9pvsv‘vaXp)—Hp <9p750—§a<ﬂpa><p>
(5 + s — 80)

1 d 1
- <§ +s— 80) £Hp¢/ <gp730 — §aﬁpanp>}

Thus if yx is trivial on the idéles of norm 1 there are simple poles at sg — % and sg + % with

are entire functions of s.

residues —c; and coe (sg + %, L, x) respectively. If yox is trivial on the idéles of norm 1 but y1y is
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not there are simple poles at sy — % and sg + % with residues —co and cie(sg + %, L, x) respectively.
If x1 # x2 but both x1x and x2x are trivial on the idéles of norm 1 there are simple poles at s; — %

so — 2,51+ 3, and sy + 3 with residues —ci, —ca, c2e (s1+ 3, L, X), c1€ (s2 + 3, L, x) respectively.

If x1 = x> there are poles of order two at sy — 1 and so + 1. The principal partat s, — 3 is

C2 c1
(s—s0+1/2)2 s—sp+1/2

The principal part at sg + % is determined by the functional equation.

For a function field we write our integral as the sum of

/{a|a|>1}{w(<g (1)>g)_%(<(())[ ?)g)}X(a)Wsda
! {a|a|>1}{¢<<g (S 5)a-wt(5 9 (] o) oo @laida

/a|<1 W(B“ (1)> 9)x(a)|a)*da

and

and

- {a|a|:1}<ﬁo(<g 1) an(@lafda+ /{ M}sao((a; ! ) aen(@ardo.

The first two of these expressions are clearly entire functions of s which do not change when g is
replaced by (_¥ ')g, sby —s,and y by n~1x L.

Again let us consider the last expression when ¢ is not zero for all ¢ and at least one of x;x or
X2X is trivial on the idéles of norm 1. If x;x is but x2x is not, let x1x(«) = |a|~°. The expression

equals

‘1 / 1 - €2 / 0 1 - _l -1,-1
_mﬂp@(gpaSO_QanXp) —1_q_%+s_80ﬂpq’(<_1 o ) 9750 27%,(77 X )p)

If x2x is trivial but x7x is not, and x2x () = |a| =% it equals

C2 1 c1 0 1 1 4
Hp‘l’/(gpyso——780anp)_—Hp‘I’/(<_1 0)91:7_30—57%7(77 1X l)p)

1— q—%—s—&-SO 2 1 — q—%—l-s—SO
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If x1 # X2 but both x;x and x2x are trivial on the ideles of norm 1 let x;x(a) = |a|~°* and

X2X(a) = |a]~%2. The expression equals

S S ) T T, (g5 — 100X
1_q_%_s+slﬂpq> (917,51 5 Ppr Xp 1_q_%_s+szﬂpq> 9p: 52 = 5 Pps Xp

&1 / O 1 1 1 -1
——1_q_%+s_52ﬂp<1>(<_1 0)9,3,—82—5,%(?7 X )p)
C2 01 1 1
B 1_q—%+s—51Hp¢)/(<_1 O>9P7_81_§7WP7(U 1X l)P)

Finally suppose that x1 = x2 and x1x(«) = |a|~%°. The expression yields

P 0 1
_ c d 1. &’ (g S0—%,0p,X >_752 417, '( gpr—50%5,05,(1X)p 1)
17q7%75+50 ds P P 2°FpPHrXp 17(]7;4’»5750 ds P 1 0 P PREZE) P
di<l_q7%7s+so di 1_q7%+5750>
23 23
c1 ’ 1 c1
- +c2 My @ (gp,50—35,¢psXp ) — —c2
T 2 P P 2'FpPrXp T _ _ 2
1—¢q 27 5F%0 (1_q7%75+50> ( ) 1_q 3t %0 (17(; 1/2+s 50)

The functional equation follows as before. The principal parts at the poles can also be detrmined.
Since | am principally interested in the case of a number field I shall not bother to discuss them explicitly.
Moreover for the converse theorem | shall limit myself to the case of a number field. The statement

and the proof for a function field will differ only in minor points.

For the converse theorem we suppose that, for each prime p, we are given an infinite-dimensional
simple representation 7, of G, on V},. We suppose that for almost all non-archimedean primes there is
anon-zero vector in Vj, whose isotropy group contains G,, . For such a prime there will be a continuous
homomorphism M, ((c, 8)) = x; (@) x;(6) of ky* x ky° into C* such that 7, = 7,. We suppose that

there is a constant N > 0 such that for all such p

(@] < Inl™ g (m)] = x|~

if 7 is a generator of the maximal ideal of o,. Let 7, ((J ) = ny(a)I if « € k. We suppose that

n(a) = n(lpay) = Iy, (ap)

which is a continuous homomorphism of I into C* is trivial on k*.

If x is a continuous homomorphism of £\ I into C* the product
Hpg(SanaXp) =&o(s,x)
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converges for Re(s) sufficiently large. We suppose that for each x it is meromorphic in the whole plane,
that it has only a finite number of poles, that it is bounded in the regions obtained by removing circles

about its poles from any vertical strip of finite width, and that the functional equations

€o(=s, (mx)"Héo(s,x) = &o(s.X),
with

60(87 X) = HPE(Sv Tpv XP)v

are satisfied.

We suppose that there are two continuous homomorphisms x; and x» of £*\I into C* with
X1X2 = nand two complex numbers ¢; and ¢z such that &y (s, x) has no poles unless either x1x or x2x

is trivial on the idéles of norm 1.

(i) If x1x is trivial on the idéles of norm 1 but 2 is not and if x;x(a) = || ™% there are simple poles

at so — 3 and so + 3 with residues —c; and ceq (so + 3, x) respectively.

(ii) If x2x is trivial on the idéles of norm 1 but x; x is not and x2x(«) = |a|~® there are simple poles

at so — 3 and so + % with residues —c and c1& (so + 3, x) respectively.

(iii) If x1x(@) = |a|7** and y2x(a) = |a| %2 withs; # s, there are simple poles at s; — 3, so — 1,

s1 + % So + % with residues —cy, —ca, c2g (81 + %,x), C1€0 (82 + %,X) respectively.

(iv) If x1x(@) = x2x(cr) = |a =% there are poles of order two at s — 3 and s + 3. The principal part
at sy — 3 is

(6] C1
(s—so+1)? s—so+1/2

The principal part at sy + % is determined by the functional equation.

We allow the possibility that ¢; or ¢, or both are zero. In particular if

1 _
Y1(g) = Y1(lypgp) = Hpq)/ (gpa_aaﬁppa)(m}.)

is not, for any choice of the collection {(, } with ¢, in L(§,, 7,) such that G, lies in the isotropy group
of ¢, for almost all non-archimedean primes and ¢, (1) = 1 for almost all non-archimedean primes,
a function satisfying ¢ ((; 7)) = t1(g) for all z in A we demand thate; = 0. Also if y1 # x2 we

demand that ¢, = 0 if for the same choices of the collection {¢, } the functions
/ 1 -1
¢2(g) :Hpq) gpa—?%@anzp
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do not all satisfy 1 ((; ¥)g)= w2 () forall z € A. If x; = x> we demand that c, = 0 if

d 1 _
¢2(9) = EHP(I)/ (gpv _5790337)(17;13)

does not satisfy this condition. Notice that given x; and x» and the collection {7, } we can, according
ot the appendix to the previous paragraph, decide whether or not ; and 1), satisfy these conditions.

Notice also that our theorem will be most interesting when both ¢; and ¢y are zero.

In any case the converse theorem states that when all these conditions are satisfied there is a
characteristic space of automorphic forms which transforms according to the “representation” ®,7;.

To prove it we show that if the collection {1}, } is chosen as above and

v1(9) = Hp‘Pp(Qp)

while
/ 1 —1 / 1 —1
500(9) = clHP(I) gpv_§730P7X1,p +01HP(I) gp=_§790}77x2,p
if x1 # x2 and
1 _ d 1 _
volg) = el @' <gp= —5760an1,;1:> + C2£Hp‘1’/ <9p= —§=<Pp7X1,;la>
if X1 = X2 then

pl9) =¢ol9) + D @ ((g (1)>9>

ackX
is a function on G \Ga.

By its very construction it is invariant under left translations by upper triangular matrices in Gj,
so the only problem is to show that cp((_f é)g) = p(g). Let us show that for each g the functions
(LY D)2 D)g) and o((¢ V)g) on I are equal. Let ¢;(a) be the function obtained from the second
of these functions by subtracting ¢o(($ V)g) if [a] > 1 and ¢o((_] 5) (8 V)g) if [a] < 1. Let ¢o(a)
be the function obtained from the other function by the same process. It is enough to show that
¥1(a) = ¥2(a). Now if x is any character of £\ 1

v1(a)x(a)|el*da = pi(s, x)
EX\I

is defined for Re(s) sufficiently large and, as we shall see,

Va(a)x(a)|al®da = pa(s, x)
EX\I
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is defined for Re(s) sufficiently small. It is enough to show that, for each x, 1 (s, x) and pa(s, x) are
entire functions of s which equal each other. We must also show that they are bounded in vertical

strips.

The first integral is equal to the sum of

50(87 X)Hpq)/(gpv S, @anp)

and

[ o(y onraraa [ (% 1) (5 5) o) sentaaraa

The second integral is the sum of

which equals
1 0 1 _
€o(=s,m""'x 1)pr1>’(<_1 O)va_sv@pa(nX)pl)a

Lo 1) (3 o) am@ler = () onteolda

which equals the sum of
-1 - .
[ a2 ) o t@alda
lee| <1
0
1> 9)

Joam (5 2) (o)

The functional equation assumed for (s, x) together with the local functional equations show

and of

and

n ' x o) o do

that the first term in the expression for iz (s, x) is the same as the first term in the expression for s (s, x).
The second term in the expression for y4 (s, x) is an integral we have already investigated. We know
that its poles cancel the assumed poles of the first term and that it is given by an analytical expression
which does not change when g is replaced by ((_? é))g, s is replaced by —s, and y is replaced by
n~1x~!. But the second term in the expression for ux (s, x) is given by the same analytical expression
except that s is replaced by —s, g by ((_? é))g, and y by n~1x~!. One shows as in the previous letter

that 11 (s, x) and pa (s, x) are bounded in vertical strips. The converse theorem is thus proved.
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