
1. Gaussian sums In the second paragraph I shall discuss the representations of the group of 2×2 non-

singular matrices over a non-archimedean field. In the discussion a number of identities for Gaussian

sums will be required. In this paragraph the necessary identities, trivial or not, are stated and proved.

Let k be a non-archimedean local field, let o be the ring of integers in k, let p be the maximal ideal

of o, and let π be a generator of p. Let k× be the multiplicative group of k and let o× be the group of

units. If n ≥ 0 then o×n = {α ∈ o×|α − 1 ∈ pn}. Fix a character ξ0 of k with the property that o is the

largest ideal of k on which ξ0 is trivial.

If µ is a character of o× and x belongs to k set

∆(µ, x) =
∫
o×

ξ0(αx)µ(α)dα.

It is clear that if β belongs to o×

∆(µ, βx) = µ−1(β)∆(µ, x).

Lemma 1.1 Let pn be the conductor of µ.

(i) If n = 0 then ∆(µ, πm) = 1 if m ≥ 0, ∆(µ, π−1) = |π|
|π|−1 , and ∆(µ, πm) = 0 if m < −1.

(ii) If n > 0 then ∆(µ, πm) = 0 if m �= −n but

|∆(µ, π−n| = |π|n
2

1− |π| .

If n = 0 then µ is trivial and it is clear that ∆(µ, πm) = 1 for m ≥ 0. It is also clear that if m < 0

1 +
−1∑
k=m

1− |π|
|π|k ∆(µ, πk) = 0.

The first part of the lemma follows immediately.

Certainly ∫
o×

ξ0(απm)µ(α)dα =
∫
o×/o×n

µ(α)
{∫

o×n
ξ0(αβπm)dβ

}
dα.

If n > 0 the inner integral is equal to

ξ0(απm)
1− |π|

∫
pn

ξ0(απmy)dy.

This is zero if the character y → ξ0(απmy) is not trivial on pn, that is, if m < −n. On the other hand if

m > −n so that for some �, with 0 ≤ � < −n, m+ � ≥ 0 then∫
o×

ξ0(απm)µ(α)dα =
∫
o×/o×

�

ξ0(απm)µ(α)
{∫

o×
�

µ(β)dβ
}
dα
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The inner integral on the right is zero.

Finally

|∆(µ, π−n)|2 =
∫
o×

dα

∫
o×

dβ ξ0((α− β)π−n)µ
(
α

β

)
=
∫
o×

dα

∫
o×

dβ ξ0(β(α− 1)π−n)µ(α).

By part (i) of the lemma the integral with respect to β is 1 if α ∈ o×n , |π|
|π|−1 if α ∈ o×n−1 − o×n , and zero

otherwise. Since
|π|

|π| − 1

∫
o×

n−1−o×n
µ(α)dα =

|π|
1− |π|

∫
o×n

µ(α)dα,

we have

|∆(µ, π−n)|2 =
1

1− |π| (measure o×n ) =
|π|n

(1− |π|)2 .

If the conductor of µ is pn we shall refer to n as the order of µ.

Lemma 1.2 Suppose µ and ν are characters of o×. Let the order of µν be r. If r ≥ 1 then

∆(µ, πm)∆(ν, πn)
∆(µν, π−r)

=
∫
{α∈o× |πr+mα+πr+m∈o×}

µ(α)(µν)−1(πr+mα + πr+m)dα.

If r = 0 then ∆(µ, πm)∆(ν, πn) is equal to∫
{α∈o×|πmα+πn∈o}

µ(α)dα +
|π|

|π| − 1

∫
{α∈o×|πm+1α+πn+1∈o×}

µ(α)dα.

The product ∆(µ, πm)∆(ν, πn) is equal to∫
o×

∫
o×

ξ0(πmα + πnβ)µ(α)ν(β)dαdβ =
∫
o×

∫
o×

ξ0(β(πmα + 1))dβ dα.

If r ≥ 1 the right side is equal to

∆(µν, π−r)
∫
{α∈o×|πr+mα+πr+m∈o×}

µ(α)(µν)−1(πr+mα + πr+m)dα.

If r = 0 the right side equals∫
{α|πmα+πn∈o}

µ(α)dα +
|π|

|π| − 1

∫
{α|πm+1α+πn+1∈o×}

µ(α)dα.

Now let K be a two dimensional commutative algebra over k with a non-degenerate trace. There

are two possibilities for K . Either it is the direct sum of k with itself or it is a separable quadratic
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extension of k. In both cases k has exactly one non-trivial automorphism over k. We will denote

this automorphism by s. If x ∈ K then Sx = x + xs and Nx = xxs. Let O be the elements of k

integral over o and let O∗ be the group of units of O. If K = k ⊕ k set Π = π ⊗ π and if n1 and n2

are any two integers set πn1,n2 = πn1 ⊕ πn2 . If K is an unramified extension of k set Π = π and if

n1 = n2 set πn1,n2 = πn1 . If K is a ramified extension choose π and Π so that NΠ = π, if n2 = 0

set πn1,n2 = Πn1 . Thus the symbol πn1,n2 has a meaning only for certain values of n1 and n2. We

shall adhere to the convention that any expression in which the symbol πn1,n2 occurs with values of

n1 and n2 for which it has no meaning is equal to zero. If n1 ≥ 0, n2 ≥ 0 and πn1,n2 is defined set

O×
n1,n2

= {α ∈ O×|α − 1 ∈ πn1,n2O}. If M is a character of O× then amongst all groups of this type

on which M is trivial there is a maximal one O×
m1,m2

. (m1,m2) will be called the order of M .

If K = k ⊗ k or K is an unramified extension we set f = 0. Otherwise (Π−f ) is the inverse

different. The index of NK× in k× is either 1 or 2. If it is 1 let χ be the trivial character of k×; if it

is 2 let χ be the unique non-trivial character of k× whose restriction to NK× is trivial. Let χ0 be the

restriction of χ to o×. The order of χ0 is f .

Before going on I recall some facts whose proofs are either completely trivial or are to be found in

the book “Corps Locaux” of Serre.

Lemma 1.3 (i) Let n1 and n2 be non-negative integers. If K = k⊕k the map x → Sx takes πn1,n2O

onto pr with r = min{n1, n2}. The map x → Nx maps O×
n1,n2

onto o×r .

(ii) If K is an unramified extension of k the map x → Sx maps πn,nO onto pn. The map x → Nx

takes O×
n,n onto o×n .

(iii) If K is a ramified extension of k the map x → Sx maps πn,0O onto pr with r =
[
n+f

2

]
. If

n ≥ f the smallest number m such that N(O×
m,0) = o×n is 2n − f ; the largest such number

is 2n − f + 1. If n < f then N(O×
n,0) is contained in o×n and if 0 ≤ m < n the map

N : O×
m,0/O

×
n,0 → o×m/o×n is an isomorphism. If m < f the kernel and the cokernel of the map

N : O×
n,0/O

×
f,0 → o×n /o

×
f both have order two.

If µ is a character of o× let µ1+s be the character of O× defined by µ1+s(α) = µ(ααs). Let n be

the order of µ. If K = k⊗ k or K is unramified the order of µ1+s is (n, n). If K is ramified the order of

µ1+s is (2n− f, 0)if n > f ; it is (n, 0) if n < f , but if n = f all one can say is that it is (r, 0) with r ≤ f .

If M0 is a character of O× set

∆(M0, π
n1,n2) =

∫
O×

ξ0(S(απn1,n2))M0(α)dα.

The following lemma is an immediate consequence of Lemma 1.2 but it is convenient to state it explicitly.
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Lemma 1.4 Suppose M0 and H0 are two characters of O∗. Let the order of M0H0 be (r1, r2). If

r1 > 0 and r2 + f > 0 then

∆(M0, π
m1,m2)∆(H0, π

n1,n2)
∆(M0H0, π−r1−f,−r2)

=
∫
{α∈O×|πr1+m1+f,r2+m2α+πr1+n1+f,r2+n2∈O∗}

M0(α)(M0H0)−1(πr1+m1+f,r2+m2α+ πr1+m1+f,r2+n2)dα.

If K = k ⊕ k and r1 = 0 and r2 = 0 the left hand side is equal to the sum of∫
{α∈O×|πm1,m2α+πn1,n2∈O}

M0(α)dα

and |π|
|π|−1 times∫

{α∈O×|πm1+1,m2α+πn1+1,n2∈o×⊕o}
M0(α)dα +

∫
{α∈O×|πm1,m2+1α+πn1,n2+1∈o⊕o}

M0(α)dα

and
(

|π|
|π|−1

)2

times ∫
{α∈O×|πm1+1,m2+1α+πn1+1,n2+1∈O×}

M0(α)dα.

If K is an unramified extension and r1 = r2 = 0 it is the sum of∫
{α∈O∗|πm1,m2α+πn1,n2∈O}

M0(α)dα

and
|π|2

|π|2 − 1

∫
{α∈O×|πm1+1,m2+1α+πn1+1,n2+1∈O×}

M0(α)dα.

If K is a ramified extension and r1 = 0 it is the sum of∫
{α∈O×|πm1+f,m2α+πn1+f,n2∈O}

M0(α)dα

and
|π|

|π| − 1

∫
{α∈O×|πm1+1+f,m2α+πn2+1+f,n2∈O×}

M0(α)dα.

Lemma 1.5 Let M0 be a character of O× of order (m1,m2) and let µ and ν be characters of o× of

orders n1 and n2 respectively. Suppose that M0 = χ0µν on o× and that the order of M−1
0 ν1+s is

(�1, �2) with n1 ≥ �1 + �2 + f . If �1 ≥ �2, n1 ≥ n2, and n1 + n2 = m1 + m2 + f then

∆(M0, π
−m1−f,−m2)∆(χ0, π

−f )
|∆(M0, π−n1−f,−m2)∆(χ0, π−f )| =

M0(Π(f+m1−n2)+s(m2−n2))
χ(πn1)

∆(µ, π−n1)∆(ν, π−n2)
|∆(µ, π−n1)∆(ν, π−n2)| .

Since both sides of this identity have the same absolute value all we need do is show that

∆(M0, π
−m1−f,−m2)∆(µ, π−n1) ∆(ν, π−n2)
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is equal to the product of

∆(χ0, π−f )M0(Π(f+m1−n1)+s(m2−n2))χ−1(πn1)

and a positive constant. As a start observe that it is equal to∫
O×

dα

∫
o×

dβ

∫
o×

dγξ0(S(π−m1−f,−m2α) − π−n2β − π−n1γ)M0(α)ν−1(β)µ−1(γ)

which equals∫
O×

dα

∫
o×

dβ

{∫
o×

ξ0

[ γ

πn1
(πn1S(π−m1−f,−m2α) − πn1−n2β − 1)

]
χ0(γ)dγ

}
M(α)ν−1(β). (A)

If f > 0 the integral with respect to γ is zero unless

πn1S(π−m1−f,−m2α) − πn1−n2β − 1 ∈ pn1−f − pn1−f+1.

However if this last condition is satisfied it is equal to

∆(χ0, π
−f )χ0

(
S(Π(n1−m1−f)+(n1−m2)sα) − πn1−n2β − 1

πn1−f

)
Changing variables we see that the integral is equal to the product of

∆(χ0, π
−f )M−1

0 (Π(n1−m,−f)+(n2−m2)s)

and∫
{(α,β)|S(Πs(n1−n2)α)−πn1−n2β−1∈pn1−f−pn1−f+1}

M0(α)ν−1(β)χ0

(
S(Πs(n1−n2)α) − πn1−n2β − 1

πn1−f

)
dαdβ

If n1 > f and n1 > n − 2 then the restriction of M to o× has order n1. Thus m1 ≥ 2n1 and

m1 + m2 + f > 2n1 > n1 + n2 contrary to assumption. Consequently we need only consider the

case that n1 = f or n1 = n2. If n1 > f or n1 > n2 then S(Πσ(n1−n2)α) − πn1−n2β − 1 can belong to

pn1−f − pn1−f+1 only if S(Πσ(n1−n2)α) − 1 belongs to o×.

Suppose that n1 = n2 = f and S(α) − 1 ∈ p. Replacing β by 1
β in∫

{β|Sα−β−1∈o×}
M0(α)ν−1(β)χ0(S(α) − β − 1)dβ

we obtain

M0(α)χ0(−1)
∫
o×

ν(β)χ0(β)χ0(1− β(S(α)− 1))dβ.
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Since n1 = n2 = f , �1 = 0 and M0 = ν1+σ . Since M = χ0µν on o×, νχ0 = µ and the order of νχ0 is

f . If β ∈ o× and ν ∈ o×f−1 then

1− βγ(Sα− 1) ≡ 1− β(Sα− 1) (mod pf )

Thus the above expression is equal to

M0(α)χ0(−1)
∫
o×/o×

f−1

ν(β)χ0(β)χ0(1 + β(Sα− 1))
{∫

o×
f−1

ν(γ)χ0(γ)dγ
}
dβ = 0.

In all cases we can take the integral over

{
(α, β)|S(Πσ(n1−n2)α) − 1 /∈ p, S(Πσ(n1−n2)α) − πn1−n2β − 1 ∈ pn1−f − pn1−f+1

}
.

Replacing β by [S(Πσ(n1−n2)α) − 1]β we obtain{∫
{α|S(Πσ(n1−n2)α)−1/∈p}

M0(α)ν−1χ0(S(Πσ(n1−n2)α) − 1)dα
}{∫

{β|πn1−n2β−1∈pn1−f−pn1−f+1}
ν−1(β)χ0

(
1− πn1−n2β

πn1−f

)
d

}
,

an expression we label (B).

Suppose n1 > f and consider the first integral. Replacing α by α(1 + v) with v ∈ Πn1O does not

change the value of the integral. The integrand becomes

M0(α)ν−1(Sα− 1)χ0(Sα− 1)M0(1 + v)ν−1

(
1 +

S(αv)
Sα − 1

)
χ0

(
1 +

S(αv)
Sα− 1

)
.

Since n1 ≥ �1, M0(1 + v) = v(1 + Sv + Nv) = ν(1 + Sv). Moreover
[
n1+f

2

]
≥
[

2f
2

]
= f so that

χ0

(
1 + S(αν)

Sα−1

)
= 1. Also

[
n1+f

2

]
≥ [

n1+1
2

] ≥ n1
2 so that

v−1

(
1 +

S(αv)
Sα− 1

)
= ν

(
1− S(αv)

Sα− 1

)
and

v(1 + Sv)ν−1

(
1 +

S(αv)
Sα− 1

)
= ν(1 + S(δv))

if δ = 1 − α
Sα−1 . Integrating over Πn1O we obtain 0 unless |δ| = |π|s and

[
s+n1+f

2

]
≥ n1, that is,

s+ n1 + f ≥ 2n1 or s ≥ n1 − f when we obtain |π|n1 . Since |δ| = |α− 1| we can in all cases write the

first integral of (B) as∫
{α∈O×

n1−f,0|S(Πσ(n1−n2)α)−1/∈p}
M0(α)ν−1χ0(S(Πσ(n1−n2)α) − 1)dα.
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Since n1 − f ≥ �1 and χ0(Nα) = 1 this may be written as∫
{α∈O×

n1−f,0|S(Πσ(n1−n2)α)−1/∈p}
ν−1χ0

(
πn1−n2 −N

(
Πσ(n1−n2)α− 1

α

))
dα.

Set Πn1−fγ = Πσ(n1−n2)α−1
α so that α = 1

Πσ(n1−n2)−Πn1−fγ
. The integral is the product of a positive

constant and ∑
{γ∈O/ΠfO|πn1−n2−πn1−fNγ/∈p} ν

−1χ0(πn1−n2 − πn−1−fNγ). (C)

If n1 > n2 every γ appearing in this sum is a unit and the sum is equal to

∑
{β∈O∗/O∗

n1
|πn1−n2−β∈pn1−f−pn1−f+1} ν

−1χ0(β)
[
1 + χ0

(
πn1−n2 − β

πn1−f

)]
.

Since this sum is taken over all of o× it is equal to

∑
{β∈o×/o×n1 |πn1−n2−β∈pn1−f−pn1−f+1} ν

−1χ0(β)χ0

(
πn1−n2 − β

πn1−f

)
.

If n1 = n2 then (C) is the sum of

∑
{γ∈O×/O×

f,0|1−πn1−fNγ/∈p} ν
−1χ0(1− πn1−fNγ)

and ∑f

r=1

∑
γ∈O×/O×

f−r,0

ν−1χ0(1− πn1+r−fNγ).

Since the map γ → Nγ defines an isomorphism of O×/O×
f−r,0 and o×/o×f−r the latter sum is equal to

∑
p/pf

ν−1χ0(1− w).

Since ∑
o×/o×

f

ν−1χ0(β) = 0

we can subtract it from (C) without changing (C). The result is

∑
{β∈o×/o×n1 |πn1−n2−β∈pn1−f−pn1−f+1} ν

−1χ0(β)
(
πn1−n2 − β

πn1−f

)
. (D)

Thus (C) and (D) are equal in all cases.

Replace β by 1
β

in the second integral of (B) to see that it is equal to the product of a positive

constant and

χ0(−1)
{∑

{β∈o×/o×n1 |πn1−n2−β∈pn1−f−pn1−f+1} νχ
−1
0 (β)χ0

(
πn1−n2 − β

πn1−f

)}
.
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This is the product of χ0(−1) and the complex conjugates of (D). Since ∆(χ0, π−f ) =

χ0(−1)∆(χ0, π
−f ) the lemma is proved for f > 0.

If f = 0 then in the integral (A) we may replace χ0(γ) by 1. If n1 = 0 then n2 = 0 and

m1 = m2 = 0 so that µ, ν and M0 are all trivial. The lemma is also; so we suppose n1 > 0. If n1 > n2

then K = k ⊕ k. Let M0(α⊕ β) = µ1(α)ν1(β). Then m1 is the order of µ1 and m2 is the order of ν1.

Since µ1ν1 = µν either m1 ≥ n1 or m2 ≥ n1. if m1 ≥ n1 then �1 = m1 so that �2 = 0. Then ν1 = ν

and µ1 = µ. If m2 ≥ n1 then �2 = m2 so that �1 = 0 which is contrary to the assumption that �1 ≥ �2.

Thus the lemma is trivial if n1 > n2; so we suppose that n1 = n2. Then m1 = m2 = n1.

The integral (A) is equal to∫
O×

dα

∫
o×

dβ

{∫
o×

ξ0

[ γ

πn1
(Sα− β − 1)

]
dγ

}
M0(α)ν−1(β).

The inner integral is different from zero if and only if Sα − β − 1 ∈ pn−1. If n1 > 1 this mplies that

Sα− 1 /∈ p. Set

M0(α)ν−1(β)
∫
o×

ξ0

[ γ

πn1
(Sα− β − 1)

]
dγ = ψ(α, β).

If Sα− 1 ∈ p and n1 = 1 then ψ(α, β) = |π|
|π|−1M0(α)ν−1(β). Since n1 = n2∫
o×

ψ(α, β)dβ = 0

if Sα− 1 ∈ p. Thus if

ϕ(x) =
∫
o×

ξ0

( γx

πn1

)
dγ

the integral (A) is equal to∫
{α|Sα−1/∈p}

∫
o×

M0(α)ν−1(Sα− 1)ν−1(β)ϕ((1− β)(Sα− 1))dβ dα

If Sα− 1 /∈ p then ϕ((1− β)(Sα− 1)) = ϕ(1− β). Moreover∫
o×

M0(α)ν−1(Sα− 1)ν−1(β)ϕ(1− β)dβ

is equal to the product of M0(α)ν−1(Sα− 1) and∫
o×n1

ν−1(β)dβ +
|π|

|π| − 1

∫
ot

n1−1imeso
×
n1

ν−1(β)dβ.

The first integral is equal to the measure of o×n1
. The second is equal to

− |π|
|π| − 1

∫
o×n1

ν−1(β)dβ =
|π|

1− |π| measure o×n1
.
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Thus the integral (A) is the product of a positive constant and∫
{α|Sα−1/∈p}

M0(α)ν−1(Sα− 1)dα =
∫
{α|Sα−1/∈p}

M0(α)ν−1(Nα)ν−1

(
1−N

(
α− 1
α

))
dα.

If K = k⊕ k and �2 = 0 the lemma is trivial. Suppose K = k⊕ k and �2 > 0. Let α = α1 ⊕α2. If

y is in p�2 then replacing α by α1 ⊕α2(1+ y) in the integrand does not change the value of the integral.

The integrand becomes

M0(α)ν−1(Nα)ν−1

(
1−N

(
α− 1
α

)
− α1 − 1

α1

y

α2(1 + y)

)
.

The integral of this over p�2 is the measure of p�2 or zero according as α1 −1 ∈ pn1−�2 or not. The same

observation applies to the first variable. Thus the integral is equal to∫
O×

n1−�2,n2−�1

M0(α)ν−1(α)ν−1

(
1−N

(
α− 1
α

))
dα.

Since n1 − �2 ≥ �1, n2 − �1 ≥ �2 and n1 − �2 + n2 − �1 ≥ n2 the integrand is identically one. Thus the

lemma is proved if K = k ⊕ k.

If K is an unramified extension let k1 = k2 be the smallest integer greater than or equal to n1
2

. Let

y ∈ πk1,k2O. Replacing α by α(1 + y) in the integrand does not change the value of the integral. Since

k1 ≥ �1 and 2k1 ≥ n1 the integrand becomes

M0(α)ν−1(Nα)ν−1

(
1−N

(
α− 1
α

))
ν−1

(
1 + γS

(
(αs − 1
1 + y

))
if γ = − 1

Nα(1−N(α−1
α )) . The integral of this expression over πk1,k2O is the measure of πk1,k2O or zero

according as α ∈ O×
n1−k1,n2−k2

or not. Thus our integral is equal to∫
{α∈O×

n1−k1,n2−k2
|Sα−1/∈p}

M0(α)ν−1(Nα)ν−1

(
1−N

(
α− 1
α

))
dα.

Since n1 − k1 ≥ �1 this is equal to∫
{α∈O×

n1−k1,n2−k2
|Sα−1∈p}

ν−1

(
1−N

(
α− 1
α

))
dα

If n1 is even, k1 = n2
2

and the integrand is identically one. Thus the lemma is proved in this case.

If n1is odd set α−1
α = πn1−k2β so that α = 1

1−πn1−k1
β. Since 2(n1 − k1) = n1 − 1 when n1 is odd this

integral is the product of a positive constant and

∑
{β∈O/ΠO |πn1−1Nβ 	=1} ν

−1(1− πn1−1Nβ)

9



If x �≡ (modp) the equation Nβ = x(mod p) has |π|+1
|π| solutions modulo ΠO, otherwise it has just one.

Thus if n1 > 1 the sum equals

|π| + 1
|π|

∑
x∈o/p ν

−1(1− πn1−1x) − 1
|π|ν

−1(1) = − 1
|π|

and if n1 = 1 it equals
|π| + 1
|π|

∑
o×/o×1

ν−1(x)− 1
|π|ν

−1(1) = − 1
|π|

The lemma is completely proved.

If K = k ⊕ k we set ε = 1; if K is an unramified extension of k we set ε = −1, and if K is a

ramified extension of k we set ε = 0. If M is generalized a character of K×, if M0 is its restriction to

O×, and ν is a character of o× set

T (M,ν, n) = (1− |π|)(1− ε|π|) ∆(χ0, π
−f )

|∆(χ0, π−f | |π|
n+f

2

∑
n1+n2=n

M((πn1,n2)s)∆(M−1
0 ν1+s, πn1,n2)

where the sum is taken over all n1, n2 for which πn1,n2 is defined.

Lemma 1.6 Let ω and M be homomorphisms of k× and K× respectively into C×. Suppose that the

restriction of M to k× is ωχ. Let ν and η be characters of o× and let ω0 be the restriction of ω to

o×. Suppose that the order n of νηω−1
0 is positive. Then, for all integers k and �,

ω(πn)T (M,η; k − n)T (M,ν, �− n) =
∆(νηω−1

0 , π−n)
|∆(νηω−1

0 , π−n)|2
∑
ρ

∆(ηρ−1, πk)∆(νρ−1, π�)T (M,ρ, k + �)

where the sum is over all characters of o∗.

The formula of the lemma will be referred to as formula (E). Notice that all but a finite number

of terms in the sum on the right are zero. The sum on the right is the product of (1 − |π|)(1 −
ε|π|)|π| k+�+f

2
∆(χ0,π

−f )
|∆(χ0,π−f )| and

∑
n1+n2=k+�

M((πn1,n2 )s)
∑

ρ

∫
O× dα

∫
o× dβ

∫
o∗ dαξ0(S(πn1,n2α)+π�β+πkγ)M−1

0 (α)ρ(Nα
βγ )ν(β)η(γ).

Given ν, η, M , k, and � there is a number m such that this integral is zero if the order of ρ is greater

than m. Thus we may restrict the sum to a sum over the characters of o×/o×m. Replace α by βα, γ by

βγ, and take one of the summations under the integral sign to obtain, if µ is the restriction of M0 to o×,

∑
n1+n2=k+�

M((πn1,n2 )s)
∫

O×dα
∫

o×
dβ
∫

o×
dγξ0[(S(πn1,n2α)+π�+πkγ)]M−1(α)η(Nα)νηµ−1(β)

{∑
ρ
ρη−1(Nα

γ )
}
.
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The summation over ρ is different from zero if and only if γ ≡ Nα(mod pm). If K = k ⊕ k set

λ(α) = N(πn1−�,n2α + π0,�); if K is an unramified extension of k set λ(α) = πkN
(
α + π

�−k
2 , �−k

2

)
; if

K is a ramified extension set λ(α) = πkN(α + Π−k+s�). The above expression is equal to

∑
n1+n2=k+�

M((πn1,n2)s)
∫
O×

dα

∫
o×

dβξ0(βλ(α))M−1
0 (α)η(Nα)νηµ−1(β).

If the order r of νηµ−1 is not zero this is equal to

∆(νηµ−1, π−r)
∑

n1+n2=k+�

M((πn1,n2)s)
∫
{α∈O×|πrλ(α)∈o×}

M−1
0 (α)η(Nα)µν−1η−1(πrλ(α))dα. (F )

If the order of νηµ−1 is zero it is equal to

∑
n1+n2=k+�

M((πn1,n2)s)

{∫
{α∈O×|λ(α)∈o}

M−1
0 (α)η(Nα)dα +

|π|
|π| − 1

∫
{α∈O×|πλ(α)∈o×}

M−1
0 (α)η(Nα)dα ,

an expression that will be labelled (G).

If K is an unramified extension of k, r = n > 0 and the expression (F ) is zero unless k − � and

k − n are even. There is only one term in (F ) and the corresponding integral is∫
{α∈O×|πr+ k−r

2 ,r+ k−r
2 α+πr+ �−r

2 ,
�−r
2 ∈O×}

M−1
0 (α)η(Nα)µν−1η−1

(
N
(
πr+

k−r
2 ,r+k−r

2 α + πr+
�−r
2 ,r+ �−r

2

))
dα

Set M s
0 (α) = M0(αs). Since M−1

0 η1+s ·M−s
0 ν1+s = (µ−1νη)1+s this integral is equal to

∆
(
M−1

0 η1+s, π
k−n

2 ,k−n
2

)
∆
(
M−1

0 ν1+s, π
�−n

2 , �−n
2

)
∆((µ−1νη)1+s, π−r,−r).

Putting everything together and appealing to Lemmas 1.1 and 1.5, we see that the right side of (E) is

equal to

χ(πn)M
((

π
k+�
2 ,k+�

2

)s)
(1− |π|2)2|π| k+�

2 −n∆
(
M−1

0 η1+s, π
k−n

2 , k−n
2

)
∆
(
M−1

0 ν1+s, π
�−n

2 , �−n
2

)
Since ∆(M−σ, πm,m) = ∆(M−1, πm,m) it is equal to the left side.

If K is a ramified extension of k and r > 0 there is only one term in the sum (F ) and the integral

appearing in that term is∫
{α∈O×|Πr+kα+Πr+s�∈O×}

M−1
0 (α)η(Nα)µν−1η−1

(
N
(
Πr+kα + Πr+s�

))
dα.
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Replace α by Π−�+s�α to obtain

M
(
Π�−s�) ∫

{α∈O×|Πr+kα+Πr+�∈O×}
M−1

0 (α)η(Nα)µν−1η−1
(
N
(
Πr+kα + Πr+�

))
dα.

If r > f then r = n, the order of (µν−1η−1)1+s is 2n − f, 0, r + k = 2n − f + (k − n + f),

r + � = 2n − f + (k − n + f). If r < f then n = f , the order of (µν−1η−1)1+s is (r, 0), and

r + k = r + (k − n + f), r + � = r + (�− n + f). If r = f then n ≤ f , the order of (µν−1η−1)1+s is

(n, 0), r+ k = n+(k−n+ f), r+ � = n+(k− �+ f). According to Lemma 1.4 the above expression

is equal to

M
(
Π�−s�) ∆(M−1

0 η1+s, πk−n,0)∆(M−s
0 ν1+s, π�−n,0)

∆((µ−1νη)1+s, π−r1,−r2)

if (r1, r2) is the order of (µ−1νη)1+s. Observe that

∆(M−1
0 ν1+s, π�−n,0) = M

(
Π(n−�)(1−s)

)
∆(M−1

0 ν1+s, π(�−n,0)).

Appealing to Lemmas 1.1 and 1.5, we see that, if r > 0, the right side of (E) is equal to

M(Πn(1+s))M(Π(k+�−2n)s)(1−|π|)2|π|a
{

∆(χ0, π
−f )

|∆(χ0π−f )|
}2

∆(M−1
0 η1+s, πk−n,0)∆(M−1

0 ν1+s, π�−n,0)

with a = k+�+f
2 − n

2 + r
2 − r1

2 = k−n+f
2 + �−n+f

2 . This is obviously equal to the left side.

If r = 0 the expression (G) is equal to the product of M(Π(k+�)s) and∫
{α∈O×|Πkα+Πs�∈O}

M−1
0 (α)η(Nα)dα +

|π|
|π| − 1

∫
{α∈O×|Πk+1α+Π1+s�∈O×}

M−1
0 (α)η(Nα)dα

After a change of variables this becomes

M(Π�−s�)

{∫
{α∈O×|Πkα+Π�α∈O}

M−1
0 (α)(η(Nα)dα+

∫
{α∈O×|Πk+1α+Π�+1∈O×}

M−1
0 (α)η(Nα)dα

|π|
|π| − 1

}
.

Since (µ−1νη)1+s will also be trivial this is equal to

M(Π�−2s)∆(M−1
0 η1+s, πk−n,0)∆(M−s

0 η1+s, π�−n,0)

because n = f in this case. Thus the right side of (E) is equal to

M(Πn(1+s))M(Π(k+�−2n)s)(1−|π|)2|π| k+�
2

{
∆(χ0, π

−f )
|∆(χ0, π−f )|

}2

∆(M−1
0 η1+s, πk−n,0)∆(M−1

0 ν1+s, π�−n,0).

Since χ(Πn(1+s)) = 1 and Πn(1+s) = πn, it is equal to the left side.
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It remains to consider the case that K = k ⊕ k. Then r − n is not zero and (F ) is equal to the

product of ∆(νηµ−1, πn) and

∑
n1+n2=k+�

∑
m1+m2=r
M(πn1,n2)

∫
{α∈O×|πn1+m1−�,n2+m2α+πm1,m2+�∈O×}

M−1
0 (α)η(Nα)µν−1η−1(N(πn1+m1−�,n2+m2α+πm1,m2+�))dα.

This is equal to

∑
n1+n2=k+�

∑
m1+m2=r

M(πn2,n1)∆(M−1
0 η1+s, πn1+m1−n−�,n2+m2−n)∆(M−1

0 ν1+s, πm2+�−n,m1−n)

divided by ∆((µ−1νη)1+s, π−n,−n). Replace m1 by m1 + n, m2 by m2 − �+ n, interchange the order

of summation and replace n1 by n1 −m1 + �, n2 by n2 −m2 + � to see that the sum is equal to

∑
m1+m2=�−n

∑
n2+n1=k−n

M(πn1,n2)M(πm1,m2)M(πn,n)∆(M−1
0 η1+s, πn1,n2)∆(M−1

0 η1+s, πm2,m1)

Appealing to Lemmas 1.1 and 1.5, we see that the right side of (E) is equal to

ω(πn)(1−|π|)4|π|
k+�
2 +n

∑
n1+n2=k−n

∑
m1+m2=�−n

M(πn2,n1 )M(πm2,m1 )∆(M−1
0 η1+s,πn1,n2 )∆(M−1

0 ν1+s,πm1,m2 ).

This is of course just the left side.

Lemma 1.7 Let ω and M be homomorphisms of k× and K× respectively into C×. Suppose that the

restriction of M to k× is ωχ. Let ν and η be characters of o× and let ω0 be the restriction of ω to

o×. If νηω−1
0 is trivial then for all integers k and �

−2∑
−∞
−ω(π−m)T (M,η, k+m)T (M,ν, �+m)+ 1

|π|−1
ω(π)T (M,η, k−1)T (M,ν, �−1)+ω0(−1)δ�,kω(π�)

=
∑

ρ∆(η, ρ−1, πk)∆(νρ−1, π�)T (M,ρ, k + �)

δ�,k is of course Kroneckev’s delta. For brevity denote the left side by Lk,� and the right side by

Rk,�. Suppose at first that k � 0 and � � 0. Then Lk,� = ω0(−1)ω(π�)δ�,k. The only terms which

contribute anything to the right hand side are those for which order(ρ) = −k and order(ρ) = −�. Thus

the right side is zero if k �= �. Suppose order(ρ) = −� and k = �. The order, (r1, r2), of M−1
0 ρ1+s

is (−�,−�) if K = k ⊕ k or K is an unramified extension of k. It is (−2� − f, 0) if K is a ramified

extension of k. Moreover if n1 + n2 = k + �

∆(M−1
0 ρ1+s, πn1,n2) = 0
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if −n1 �= r1 + f . The orders of η−1ρ and ν−1ρ are both −�. The orders of (M−1
0 ρ1+s)−1(η−1ρ)1+s =

M0η
−1−s and (M−1

0 ρ1+s)−1(ν−1ρ)1+s = M0ν
−1−s are independent of �. Moreover the restriction of

M−1
0 ρ1+s to o× is equal to χ0(η−1ρ)(ν−1ρ). According to Lemma 1.5

∆(M−1
0 ρ1+s, π−r1−f1−r2) =

M(Π�−s�)
χ(π�)

∆(η−1ρ, π�)∆(ν−1ρ, π�)
∆(χ0, π−f )
|∆(χ0, π−f )|

1− |π|
1− ε|π| |π|

r1+r2+2�
2 .

Since ∆(η−1ρ, π�) = ηρ−1(−1)∆(ηρ−1, π�) the term corresponding to a ρ with order ρ = −� is

M(Π�−s�)M((π−r1−f,−r2)s)
χ(π�)

νη(−1)
1

|π|�(1− |π|)2 .

This is clearly equal to
M(π�)
χ(π�)

ω0(−1)
1

|π|�(1− |π|)2 =
ω(π�)ω0(−1)
|π|�(1− |π|)2

Since the number of such characters is |π|�(1− |π|)2 the lemma is valid if k � 0 and � � 0.

Thus to prove the lemma it is enough to show that

Lk+1,�+1 − ω(π)Lk,� = Rk+1,�+1 = ω(π)Rk,�

for all k and �. The left-hand side is equal to

ω(π)
|π| − 1

T (M,η, k)T (M,ν, �) − |π|
|π| − 1

ω2(π)T (M,η, k − 1)T (M,ν, k − 1).

SupposeK is an unramified extension. If k−� is odd both of these terms are zero and so is the right

side. We suppose then that k − � is even. If k is even only the first of these two terms can be different

from zero. If k is odd only the second can be. Remembering that χ(π) = −1 so that ω(π) = −M(π1,1)

we apply formula (G) to see that the right side is the product of (1− |π|2)|π| k+�
2 M(π

k+�
2 ,k+�

2 +1) and

|π|
∫
{α∈O×|πk+1N

(
α+π

�−k
2 ,

�−k
2
)
∈o}

M−1
0 (α)η(Nα)dα + |π|2

|π|−1

∫
{α∈O×|π k+2

2 ,
k+2
2 α+π

�+2
2 ,

�+2
2 ∈O×}
M−1

0 (α)η(Nα)dα

+
∫
{α∈O×|πkN

(
α+π

�−k
2 ,

�−k
2
)
∈o}

M−1
0 (α)η(Nα)dα + |π|

|π|−1

∫
{α∈O×|π

k+1
2 ,

k+1
2 α+π

�+1
2 ,

�+1
2 ∈O×}
M−1

0 (α)η(Nα)dα.

If k is even πk+1N
(
α + π

�−k
2 , �−k

2

)
∈ o if and only if πkN

(
α + π

�−k
2 , �−k

2

)
∈ o so that, if k is even,

this expression equals

(|π|+1)


∫
{α∈O×|π k

2 , k
2 α+π

�
2 , �

2 ∈O×}
M−1

0 (α)η(Nα)dα +
|π|2

|π|2 − 1

∫
{α∈O×|π

k+2
2 ,

k+2
2 α+π

�+2
2 ,

�+2
2 ∈O×}
M−1

0 (α)η(Nα)dα
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which equals

(|π| + 1)∆
(
M−1

0 η1+s, π
k
2 ,

k
2

)
∆
(
M−1

0 ν1+s, π
�
2 ,

�
2

)
.

The identity, for even k, follows immediately. If k is odd the expression above simplifies to

(|π|+1)


∫
{α∈O×|π

k−1
2 ,

k−1
2 α+π

�−1
2 ,

�−1
2 ∈O}

M−1
0 (α)η(Nα)dα +

|π|2
|π|2 − 1

∫
{α∈O×|π

k+1
2 ,

k+1
2 α+π

�+1
2 ,

�+1
2 ∈O×}

M−1
0 (α)η(Nα)dα


which equals

(|π| + 1)∆
(
M−1

0 η1+s, π
k−1
2 ,k−1

2

)
∆
(
M−1

0 ν1+s, π
�−2
2 , �−2

2

)
.

The identity, for odd k, follows immediately.

Suppose f > 0. If µ is the restriction of M0 to o× then νηµ−1 = χ0. According to (F ), Rk,� is

equal to the product of

(1− |π|)|π| k+�+f
2

∆(χ0, π
−f )

|∆(χ0, π−f )|∆(χ0, π
−f )M(Πs(k+�)) = χ0(−1)|π| k+�

2 +fM(Πs(k+�))

and

M(Π�−s�)
∫
{α∈O×|Πf+kα+Πf+�∈O×}

M−1
0 (α)η(Nα)dα.

On the other hand

ω(π)
|π| − 1

T (M,η, k)T (M,ν, �)− |π|
|π| − 1

ω2(π)T (M,η, k − 1)T (M,ν, �− 1)

is equal to the product of (1− |π|)2|π| k+�
2 +fχ0(−1)M(Π�+1+s(k+1)) and

1
|π| − 1


∫
{α∈O×|Πf+kα+πf+�∈O}

M−1
0 (α)η(Nα)dα +

|π|
|π| − 1

∫
{α∈O×|Πf+k+1α+πf+�+1∈O×}

M−1
0 (α)η(Nα)dα


− 1

|π| − 1


∫
{α∈O×|Πf+k−1α+Πf+�−1∈O}

M−1
0 (α)η(Nα)dα +

|π|
|π| − 1

∫
{α∈O×|Πf+kα+Πf+�∈O×}

M−1
0 (α)η(Nα)dα


Some simple rearrangements show that this is equal to

−1
(|π| − 1)2

∫
{α∈O×|Πf+kα+Πf+�∈O×}

M−1
0 (α)η(Nα)dα +

|π|
(|π| − 1)2

∫
{α∈O×|Πf+k+1α+Πf+�+1∈O×}

M−1
0 (α)η(Nα)dα.

The identity follows immediately.
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Finally we have to treat the case that K = k ⊕ k. It is enough to verify that

∞∑
p=0

|π|pω(πp) {Lk+1−p,�+1−p − ω(π)Lk−p,�−p} =
∞∑
p=0

|π|pω(πp) {Rk+1−p,�+1−p − ω(π)Rk−p,�−p} .

The left side is equal to
ω(π)
|π| − 1

T (M,η, k)T (M,ν, �).

For brevity set

ψ(n1, n2;m1,m2) =
∫
{α∈O×|πn1,n2α+πm1,m2∈O×}

M−1
0 (α)η(Nα)dα.

Apply formula (G) to see that Rk,� is the product of (1− |π|)2|π| k+�
2 and∑

n1+n2=k+�
M(πn2,n1)

∑
m1+m2=0

∑
q≤0

ψ(n1 +m1 + q − �, n2 +m2;m1 + q,m2 + �)

+
|π|

|π| − 1

∑
n1+n2=k+�

M(πn2,n1)
∑

m1+m2=0
ψ(n1 +m1 + 1− �, n2 +m2;m1 + 1,m2 + �)

Thus,
∑∞

p=0 |π|pω(πp)Rk−p,�−p is the product of (1− |π|)2|π| k+�
2 and∑

n1+n2=k+�

M(πn2,n1
∑

m1+m2=0

∑
p≤0

∑
q≤0

ψ(n1 +m1 + q − �, n2 + m2 + p;m1 + q,m2 + � + p)

+
|π|

|π| − 1

∑
n1+n2=k+�

M(πn2,n1)
∑

m1+m2=0

∑
p≤0

ψ(n1 +m1 + 1− �, n2 + m2 + p;m1 + 1,m2 + �+ p)

Now
ω(π)
|π| − 1

T (M,η, k)T (M,ν, �)

is equal to the product of (|π| − 1)3ω(π)|π| k+�
2 and

∑
m1+m2=�

∑
n1+n2=k

M(πn2,n1)M(πm2,m1)∆(M−1
0 η1+s, πn1,n2)∆(M−1

0 ν1+s, πm1,m2).

Replace n1 by n1 −m2 = n1 +m1 − �, n2 by n2 −m1 = n1 +m2 − �, and then m2 by m2 + � to obtain

∑
n1+n2=k+�

M(πn2,n1)
∑

m1+m2=0
∆(M−1

0 η1+s, πn1+m1−�,n2+m2)∆(M−1
0 ν1+s, πm1,m2+�).

According to Lemma 1.4 this is the sum of

∑
n1+n2=k+�

∑
m1+m2=0 M(πn2,n1)

∑
p≤0

∑
q≤0 ψ(n1 +m1 + q − �, n2 + m2 + p;m1 + q,m2 + � + p)

and
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|π|
|π|−1

∑
n1+n2=k+�

∑
m1+m2=0 M(πn1,n2)

∑
p≤0 ψ(n1 +m1 + 1− �, n2 +m2 + p,m1 + 1,m2 + �+ p)

and

|π|
|π|−1

∑
n1+n2=k+�

∑
m1+m2=0 M(πn2,n1)

∑
q≤0 ψ(n1 + m1 + q − �, n2 +m2 + 1,m1 + q,m2 + � + 1)

and(
|π|

|π|−1

)2∑
n1+n2=k+�

∑
m1+m2=0 M(πn2,n1)ψ(n1 +m1 + 1− �, n2 +m2 + 1;m1 + 1,m2 + �+ 1).

On the other hand∑∞
p=0

|π|pω(πp)Rk+1−p,�+1−p − ω(π)
∑∞

p=0
|π|pω(πp)Rk−p,�−p

is equal to (1− |π|)2|π| k+�
2 ω(π) times the sum of

|π|2
|π|−1

∑
n1+n2=k+�

M(πn2,n1)
∑

m1+m2=0 ψ(n1 +m1 + 1− �, n2 +m2 + 1,m1 + 1,m2 + �+ 1)

and

|π|2
|π|−1

∑
n1+n2=k+�

M(πn2,n1)
∑

m1+n2=0

∑
p≤0 ψ(n1 +m1 + 1− �, n2 +m2 + p;m1 + 1,m2 + � + p)

and

|π|∑n1+n2=k+�
M(πn2,n1)

∑
m1+m2=0

∑
q≤0 ψ(n2 + m1 + q − �, n2 +m2 + 1,m1 + q,m2 + � + 1)

and

|π|∑n1+n2=k+�
M(πn2,n1)

∑
m1+m2=0

∑
p≤0

∑
q≤0 ψ(n1 + m1 + q − �, n2 +m2 + p;m1 + q,m2 + � + p),

the contributions of the first infinite series, and

− |π|
|π|−1

∑
n1+n2=k+�

M(πn2,n1)
∑

m1+m2=0

∑
p≤0 ψ(n1 +m1 + 1− �, n2 +m2 + p;m1 + 1,m2 + � + p)

and

− ∑
n1+n2=k+�

M(πn2,n1)
∑

m1+m2=0

∑
p≤0

∑
q≤0

ψ(n1 +m1 + q − �, n2 + m2 + p;m1 + q,m2 + � + p),

the contributions of the second. The identity can now be verified by inspection.

2. Representations of the general linear group in two variables over a non-archimedean field. This

paragraph is, in its essentials, a recapitulation of work of Gelfand, Graev, and Kirillov. We adhere to

the notation of the previous paragraph. Let Gk = GL(2, k) and let GO = GL(2, O). A is the group of

diagonal matrices and N is the group of matrices of the term
(
1 x
0 1

)
.

A representation σ of Gk on a vector space V , over C, will be called quasi-simple if

(i) The stabilizer of every vector in V is an open subgroup of Gk

(ii) If α ∈ k× then σ
((
α 0
0 α

))
is a scalar multiple of the identity.
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Lemma 2.1 Suppose σ is a quasi-simple irreducible representation of Gk on the vector space V . V

contains a non-zero vector invariant under Nk if and only if V is finite dimensional.

First of all suppose that V contains a non-zero vector v whose stabilizer contains Nk. Let H =

{g ∈ Gk|σ(g)v = λv with λ ∈ C}. Since V is spanned by the set {σ(g)v|g ∈ Gk} it is sufficient to show

that H is of finite index in Gk. Since H contains the diagonal matrices together with an open subgroup

of Gk the image of H under the determinant function is of finite index in k×. Thus it is sufficient to

show that H0 = {g ∈ Gk|σ(g)v = v} contains all matrices of determinant 1.

Let W be the space of column vectors of length 2 with entries from k. Let us show first that if

w ∈ W and w �= 0 there is an h in H and an x in k× such that

w = h

(
x

0

)
If the second coordinate of w is zero this is clear. Since the stabilizer of v is open in Gk there is g in H0

such that

g

(
1
0

)
=
(
α

β

)
with β �= 0. Then (

1 x

0 1

)(
α

β

)
=
(
α + βx

β

)
.

If the second coordinate of w is not 0 we can choose x so that w is a scalar multiple of the vector on the

right.

In particular H0 contains a matrix of the form
(
0 b
c d

)
. Since(

0 b

c d

)(
1 −d/c
0 1

)
=
(
0 b

c 0

)
and (

0 b

c 0

)(
1 x

0 1

)(
0 1/c

1/b 0

)
=
(
0 b

c 0

)(
x/b 1/c
1/b 0

)
=
(

1 0
cx/b 1

)
,

H0 contains all matrices of the form
(
1 0
y 1

)
. Since

(
1 z

0 1

)(
1 0
x 1

)
=
(

1 + xz

x

z

1

)
=
(

1
x/(1 + xz)

0
1

)(
1 + xz

0
0

1/(1 + xz)

)(
1
0

z/(1 + xz)
1

)
,

if 1 + xz �= 0, H0 contains all diagonal matrices of determinant 1. Since(
1 0
x 1

)(
α 0
0 β

)(
1 y

0 1

)
=
(

α

αx

0
β

)(
1 y

0 1

)
=
(

α

αx

αy

β + αxy

)
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H0 contains all matrices
(
a b
c d

)
, a �= 0, which have determinant 1. Since(

1 x

0 1

)(
0 b

c d

)
=
(
cx

c

b+ dx

d

)
,

H0 contains all matrices of determinant 1.

Conversely if V is finite dimensional the kernel of σ is an open subgroup of Gk and there is an

ε > 0 such that
(
1 x
0 1

)
belongs to this kernel if |x| < ε. Since(

α 0
0 1

)(
1 x

0 1

)( 1
α 0
0 1

)
=
(

1
0

αx

1

)
and for any x there is an α in k× such that |αx| < ε, the kernel of σ contains Nk .

Corollary. If σ is a finite-dimensional quasi-simple irreducible representation of Gk then σ is one-

dimensional and there is a continuous homomorphism ρ of k× into C× such that σ(g) = ρ(det g)

Since the kernel of σ contains Nk together with an open subgroup of Gk the above discussion

shows that it contains every matrix of determinant 1. Also the inverse image of the group of non-zero

matrices is of finite index in Gk. Thus if g ∈ Gk there is a λ in C∗ and a positive integer n such that

σ(g)n − λ = 0. Thus σ(g) is semi-simple. The corollary follows immediately.

Again we fix a character ξ0 of the additive group of k such that the largest ideal on which ξ0 is

trivial is 0.

Lemma 2.2 Suppose σ is an infinite dimensional quasi-simple irreducible representation of Gk on

V . Let W be the set of all vectors v in V such that for some ideal a of k∫
a

ξ0(x)σ
((

1 x

0 1

))
v dx = 0.

Then W is a subspace of V . Let U = V/W . If v ∈ V let ϕv be the function k× with values in U

defined by

ϕv(α) = ψ

(
π

((
α 0
0 1

))
v

)
where ϕ is the natural mapping from V to U . The map v → ϕv is an injection of V into the space

of functions on k× with values in U .

Since the stabilizer of v in Nk is an open subgroup of Nk the function σ
((

1 x
0 1

))
v takes only a finite

number of values on a. Thus the integral involves no limiting processes and is well defined. If a ⊂ b

then ∫
b

ξ0(x)σ
((1 x

0 z

))
v dx =

∑
y
ξ0(y)σ

((1 y

0 1

))[∫
a

ξ0(x)σ
((1 x

0 1

))
v dx

]
19



where the sum is taken over a system of representatives of b/a. It follows immediately that if the

integral vanishes for a given ideal then it vanishes for all larger ideals. A simple argument now shows

that W is a subspace of V .

If ϕv vanishes identically then for every α in K× there is an ideal a(α) such that∫
a(α)

ξ0(αx)σ(
(

1 x
0 1

)
)v dx = 0.

If β ∈ o× and σ
((
β 0
0 1

))
v = v then∫

a

ξ0(αβx)σ(
(

1 x
0 1

)
)v dx = σ(

(
β−1 0
0 1

)
)
∫

a

ξ0(αx)σ(
(

1 x
0 1

)
)v dx

Since the set of all β in k× such that σ
((
β 0
0 1

))
v = v is an open subgroup of k×, there is for each integer

n an ideal an such that if an ⊆ a and α ∈ o×∫
a

ξ0(απnx)σ(
(

1 x
0 1

)
)v dx = 0.

There certainly is an integer n0 such that the function σ
((

1 x
0 1

))
v is constant on cosets of p−n0 .

Let us show that if ϕv vanishes identically and this function is constant on left cosets of p−n then it is

constant on left cosets of p−n−1. This will show that σ
((

1 x
0 1

))
v = v for all x. It will then follow from

Lemma 2.1 that v = 0.

Take any � such that � ≥ n + 1 and p−� ⊇ an. if x ∈ p−� then

σ(
(

1 x
0 1

)
)v = |π|�

∑�

m=n

∑
α∈o×/o�−m

ξ0(απmx)
∫

p−�

ξ0(απny)σ(
(

1 y
0 1

)
)v dy

By assumption the terms of this sum corresponding to m = n are zero. Since ξ0(απmx) is constant on

left cosets of p−n−1 if m > n the assertion follows.

Lemma 2.3 (i) If w = σ
((
α 0
0 1

))
v then ϕw(β) = ϕv(βα)

(ii) If w = σ
((

1 x
0 1

))
v then ϕw(β) = ξ0(βα)ϕv(β)

(iii) If v is in V there is an integer k and a non-negative integer n such that ϕv(α) = 0 if |α| > |π|k
and ϕv(βα) = ϕv(α) if β ∈ o×n .

The first assertion is a matter of definition. To prove the second we have to show that

σ(
(
α 0
0 1

)
)σ(

(
1 x
0 1

)
)v − ξ0(αx)σ(

(
α 0
0 1

)
)v = z
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is in W . Let u = σ
((
α 0
0 1

))
v. Then ∫

a

ξ0(y)σ(
(

1 y
0 1

)
)z dy

is equal to ∫
a

ξ0(y)σ(
(

1 y + αx
0 1

)
)udy − ξ0(αx)

∫
a

ξ0(y)σ(
(

1 y
0 1

)
)udy

If αx ∈ a we can change variables in the first integral to see that it equals the second term. Finally it is

clear that if σ
((

1 x
0 1

))
v = v for |x| ≤ |π|−k and σ

((
β 0
0 1

))
v = v for β ∈ o×n then ϕv(α) = 0 if |α| > |π|k

and ϕv(βα) = ϕv(α) if β ∈ o×n .

Let ν be a character of o× and let Vν =
{
v ∈ V |σ((α 0

0 1

))
v = ν(α)v for all α ∈ o×

}
. It is clear that

V is the direct sum of the spaces Vν . Let V̂ be the set of all v in V such that, for some k ≥ 0, ϕv(α) = 0

if |α| > |π|−k or |α| < |π|k . Let V̂ν = Vν ∩ V̂ . It is also clear that V̂ is the direct sum of the spaces V̂ν .

Finally let V 0 be the set of all v in V such that ϕv(α) �= 0 if |α| �= 1 and let V 0
ν = Vν ∩ V 0. V 0 is the

direct sum of the spaces V 0
ν .

Lemma 2.4 (i) For each ν the restriction of ψ to V 0
ν defines an isomorphism of V 0

ν and U

(ii) V̂ν is the direct sum of the spaces σ
((
πk 0
0 1

))
V 0
ν , k ∈ Z.

(iii) If v is in Vν there is a unique vk in V 0
ν such that if u = v − σ

((
π−k 0
0 1

))
vk then ϕu(α) = 0 if

|α| = |π|k.
(iv) V is spanned by V̂ and the vectors of the form

σ(
(

0 1
−1 0

)
)v

with v in V̂ .

We start with (iii) of which (ii) is an obvious consequence. The uniqueness of vk is clear. If k is

negative and |k| is sufficiently large we can take vk = 0. Thus the proof can proceed by induction on

k. Set

w = v −
∑
�<k

σ(
(
π−� 0
0 1

)
)v�.

ϕw(α) = 0 if |α| > |πk| and ϕw(α) = ϕv(α) if |α| ≤ |π|k . Set

vk = |π|−k−1σ(
(
πk 0
0 1

)
)
∫

p−k−1

{
w − σ(

(
1 x

0 1

)
)w
}
dx

Then,

ϕvk
(π−kα) = |π|−k−1

∫
p−k−1

{1− ξ0(αx} dxϕw(α).
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The right side is zero if |α| ≤ |π|k+1 or |α| > |πk|. It is ϕw(α) if |α| = |πk|. Part (iii) of the lemma

follows.

It is clear that the restriction of ψ to V 0
ν is an injection. It follows from (iii) that the restriction of ψ

to V 0 is a surjection. Thus U =
∑

µ ψ(V 0
µ ). To prove part (i) it is sufficient to show that if u ∈ U and

u = ψ(v) for a v in some V 0
µ then there is a w in V 0

ν such that u = ψ(w). Given v set

z =
∫
o×

ν̄(β)σ(
(
β 0
0 1

)
)σ(

(
1 x
0 1

)
)v dβ

where x is yet to be determined. Then z is in Vν and since

ϕz(α) = ϕv(α)
∫
o×

µν̄(β)ξ0(αβx)dβ

it is in V 0
ν . In particular

ψ(z) = ϕz(1) =
{∫

o×
µν̄(β)ξ0(βx)dβ

}
u.

Choose x so that this integral is not zero and set

w =
{∫

o×
µν̄(β)ξ0(βx)dβ

}−1

z

It follows from (i) that V̂ �= {0}. Choose w different from zero in V̂ . Since σ is irreducible V is

spanned by the vectors σ(g)w, g ∈ Gk. Either g =
(
a b
0 d

)
or g =

(
1 x
0 1

)(
0 1

−1 0

)(
a b
0 d

)
. In the first case σ(g)w

is in V̂ . In the second case σ(g)w is of the form σ
((

1 x
0 1

))
σ
((

0 1
−1 0

))
u with u in V̂ . It is easily seen that

if v belongs to V and x belongs to k then σ
((

1 x
0 1

))
v − v belongs to V̂ . The last assertion of the lemma

follows.

If v is in V let v =
∑

ν vν with vν in Vν . Choose vk,ν so that if u = vν − σ
((
π−k 0
0 1

))
vk,ν then

ϕu(α) = 0 if |α| = |πk|. Set uk,ν = ψ(vk,ν) and write, purely formally,

v ∼
∑

ν

∑
�
u�,νz

�.

Let σ
((
α 0
0 α

))
= ω(α)I for α ∈ k× and let ω0 be the restriction of ω to o×. Let ṽ(α) = ω0(α)ν−1(α)

if α ∈ o×. If v is in V 0
ν , then σ

((
0 1

−1 0

))
v is in Vν̂ . Let

σ(
(

0 1
−1 0

)
)v ∼

∑
k
ukz

k.

If ψ(v) = u the map u → uk is a linear transformation from U to U . Denote it by Tk,ν . If v is in V̂ and

v ∼
∑

ν

∑
�
u�,νz

�
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then

σ(
(

0 1
−1 0

)
)
∑

ν

∑
�

{∑
m−k=� ω(π−k)Tm,ν̂uk,ν̃

}
z�.

It follows from the third part of Lemma 2.4 that if v ∈ V there is a unique vk in V 0 such that

if u = v − σ
((
π−k 0
0 1

))
vk then ϕu(α) = 0 if |α| = |π|k . If w = σ

((
1 x
0 1

))
v then vk is replaced by

wk = σ
((

1 πkx
0 1

))
vk. If vk =

∑
ν vk,ν with vk,ν in V 0

ν and wk =
∑

ν wk,ν with wk,ν in V 0
ν then

wk,µ =
∑

ν

∫
o×

νµ̄(β)σ(
(

1 βπkx
0 1

)
)vk,νdβ.

Consequently

ψ(wk,µ) =
∑

ν
∆(νµ−1, πkx)ψ(vk,ν).

Thus if
v ∼

∑
ν

∑
�
u�,νz

�,

w ∼
∑

ν

∑
�

{∑
µ

∆(µν−1, π�x)u�,µ
}
.

It is also easily seen that

σ(
(
πn 0
0 1

)
)v ∼

∑
ν

∑
�
u�+n,νz

�.

The identity(
0 1
−1 0

)(
1 x
0 1

)(
0 1
−1 0

)
=
(−1/x 0

0 −x

)(
1 −x
0 1

)(
0 1
−1 0

)(
1 −1/x
0 1

)

for x �= 0 is easily verified. If v is in V̂ and

v ∼
∑

ν

∑
�
u�,vz

�

then

π(
(

0 1
−1 0

)
)v ∼

∑
ν

∑
k

{∑
�
ω(π−�)Tk+�,ν̃u�,ν̃

}
zk,

σ(
(

1 x
0 1

)
) σ(

(
0 1
−1 0

)
)v ∼

∑
µ

∑
k

{∑
�

∑
ν
ω(π−�)∆(νµ−1, πkx)Tk+�,ν̃u�,ν̃

}
z�.

If δν = 1 if ν is trivial and δν = 0 otherwise, then σ(
(
1 x
0 1

)
)(
(

0 1
−1 0

)
)v − σ(

(
0 1

−1 0

)
)v which belongs to V̂

corresponds to

∑
µ

∑
k

{∑
�

∑
ν
[∆(νµ−1, πkx) − δνµ−1 ]ω(π−�)Tk+�,ν̃u�,ν̃

}
z�.
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Finally σ(
(

0 1
−1 0

)
)(
(
1 x
0 1

)
)(
(

0 1
−1 0

)
)v corresponds to

∑
µ

∑
k

{∑
�,m,ν

[
∆(νµ̃−1, πmx) − δνµ̃−1

]
ω(π−�−m)Tk+m,µ̃Tm+�,ν̃u�,ν̃

}
zk

+
∑

µ

∑
k
ω(−1)uk,µzk.

On the other hand σ(
(
1 −1/x
0 1

)
)v corresponds to

∑
µ

∑
�

{∑
ν
∆(νµ−1,−π�/x)u�,ν

}
z�

and σ(
(

0 1
−1 0

)(
1 −1/x
0 1

)
)v corresponds to

∑
µ

∑
k

{∑
�

∑
k
ω(π−�)∆(νµ̃−1,−π�/x)Tk+�,µ̃u�,ν

}
zk.

Letting σ
((

1 −x
0 1

))
operate we obtain a vector corresponding to

∑
µ

∑
k

{∑
�,ν,η

ω(π−�)∆(ηµ−1,−πkx)∆(νη̃−1,−π�/x)Tk+�,η̃u�,ν
}
zk.

Finally if 1
x

= πrβ with β ∈ o× we apply σ
((−1/x 0

0 −x
))

to obtain

∑
µ

∑
k

{∑
�,ν,η

µ(β2)ω(−x)ω(π−�)∆(ηµ−1,−πk+2rx)∆(νη̃−1,−π�x)Tk+2r+�,η̃u�,ν

}
zk.

Thus we obtain the identities∑
m

{
∆(ν̃µ̃−1, πmx)ω(π−�−m)Tk+m,µ̃Tm+�,ν − δν̃µ̃−1ω(π−�−m)Tk+m,µ̃Tm+�,ν

}
+ ω(−1)δνµ−1δ�,k

=
∑

η
µ(β2)ω(−x)ω(π−�)∆(ηµ−1,−πk+2rx)∆(νη̃−1,−π�/x)Tk+2r+�,η̃.

For all we know at present both these sums are infinite. However all but a finite number of the operators

on each side send a given vector in U to zero. Thus as an operational equation the identity has a sense.

We can rewrite the identities as∑
m

{
[∆(ν−1µ−1ω0, π

mβ−1) − δνµω−1
0

]ω(π−�−m)Tk+m,µTm+�,ν

}
+ ω0(−1)δνµω−1

0
∆�,k

=
∑

η
µ̃(β2)ω−1

0 (−β)ω(π−�)∆(µη−1,−πkβ−1)∆(νη−1,−π�β)Tk+�,η.

Recalling that ∆(ν, βy) = ν−1(β)∆(ν, y) we simplify the identities to

∑
m

{
[∆(ν−1µ−1ω0, π

m) − δνµω−1
0

]ω(π−m)Tk+m,µTm+�,ν

}
+ ω0(−1)δνµω−1

0
ω(π�)

= µνω−1
0 (−1)

∑
η
∆(µη−1, πk)∆(vη−1, π�)Tk+�,η.
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Making use of Lemma 1.1 we can simplify these identities further. If the order n of νµω−1
0 is

positive the identity becomes

∆(ν−1µ−1ω0, π
−n)ω(πn)Tk−n,µT�−n,ν = µνω−1

0 (−1)
∑

η
∆(µη−1, πk)∆(νη−1, π�)Tk+�,η. (A)

If νµω−1
0 = 1 the identity becomes∑−2

m=−∞−ω(π−n)Tk+m,µTm+�,ν +
1

|π| − 1
ω(π)Tk−1,µT�−1,ν + ω0(−1)δ�,kω(π�)

=
∑

η
∆(µη−1, πk)∆(νη−1, π�)Tk+�,η

(B)

Lemma 2.5 (i) For all k, �, µ, and ν, Tk,µT�,ν = T�,νTk,µ.

(ii) There is no non-trivial subspace of u left invariant by all the operators Tk,µ.

If νµω−1
0 is not trivial the identity

Tk,µT�,ν = T�,νTk,µ

follows immediately from (A). If νµω−1
0 is trivial let u be in U . For a given k and � and for m � 0 both

Tk+m,µu and T�+m,νu are zero. For such m

Tk+m,µT�+m,νu = T�+m,νTk+m,µu.

Using the identity (B) and induction on m one shows readily that this relation iw valid for all m.

Suppose that U ′ is a nontrivial subspace of U left invariant by all the operators Tk,µ. Let V ′ be the

set of all v in V such that ϕv(α) ∈ U ′ for all α. If v ∈ V 0
ν then v ∈ V ′ if and only if ψ(v) ∈ U ′. Thus V ′

is neither {0} nor V and V ′ ∩ V 0
ν �= {0}. It is clear that V ′ and V ′ ∩ V̂ are left fixed by the operators

σ
((
a b
0 d

))
. Since V is irreducible it is spanned by V ′ ∩ V̂ together with the set σ(

(
1 x
0 1

)
)σ(

(
0 1

−1 0

)
)v,

v ∈ V ′ ∩ V̂ . Thus to obtain a contradiction we need only show that if v is in V ′ ∩ V̂ then σ(
(

0 1
−1 0

)
)v is

in V ′. This is however an obvious consequence of the assumption.

It follows from this lemma that each Tk,µ is either zero or an invertible linear transformation. Thus

for each µ there is an integer k(µ) such that Tk,µ = 0 if k < k(µ). Moreover one of these operators can

have a non-trivial eigenvector if and only if it is a scalar.

Now I would like to make some remarks which are not relevant to the main purpose of the letter.

First of all let me observe that if k, �, µ, ν are arbitrary there is a scalar a and scalars am,ρ all but a finite

number of which are zero such that

Tk,µT�,ν = a+
∑

ρ

∑
m
am,ρTm,ρ
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If µνω−1
0 is not trivial this follows immediately from identity (A). If µνω−1

0 is trivial consider the set

of integers p for which Tk+p,µT�+p,ν is a linear combination of the identity and the operators Tm,≤. If

p � 0, Tk+p,µT�+p,ν = 0 and p belongs to this set. Using identity (B) and a simple induction argument

one shows that the set contains all integers. It follows from this observation and the previous lemma

that if u �= 0 belongs to U then U is spanned by u and the set {Tm,ρu}.

Choose a fixed ν and let the order n of µ be positive and so large that the orders of ν−1µ−1ω0 and

νµ−1 are also n and Tr0,ν �= 0 for some r0 ≥ −n. Take � = r0 + n ≥ 0 in identity (A) and cancel Tr0,ν

to obtain

∆(ν−1µ−1ω0, π
−n)ω(πn)Tk−n,µ = µνω−1

0 (−1)∆(µν−1, πk)

As a consequence for all but a finite number of characters of o× the operator Tk,µ is a scalar for all k.

If, for all ρ, Tm,ρ = 0 if m ≥ −1 the there are only a finite number of operators in the set {Tm,ρ} which

are not scalars. Consequently U is finite dimensional and each of the operators Tm,ρ has a non-trivial

eigenvector and is thus a scalar. It follows that U has dimension 1.

It is very unlikely that our assumptions (i) and (ii) together with irreducibility imply that U is

one-dimensional. Consequently we make the further assumption which can certainly be useful in the

case of interest to us at present.

(iii) No representation of Go occurs more than a finite number of times in the restriction of σ to Go.

If ρ is a representation ofGo let Vρ be the set of all vectors in V which transform according to ρ. Any

operator on V which commutes with all the operators σ(g) must leave each of the finite dimensional

spaces Vρ invariant. Thus it must have a non-trivial eigenvector and, because of the irreducibility, must

be a scalar. It follows immediately from the first part of Lemma 2.4 that the map v → ϕv maps V̂ onto

the set of all locally constant functions on k× with values in U which vanish outside of some compact

set. Suppose T is an operator on U which commutes with all the operators Tm,ρ. If ϕ is a function on

k× with values in U define Tϕ by (Tϕ)(α) = T (ϕ(α)). If v ∈ V̂ and

v ∼
∑

µ

∑
k
uk,µz

k

then Tϕv = ϕw where

w ∼
∑

µ

∑
k
Tuk,µz

k.

Then

σ

((
0 1
−1 0

))
v ∼

∑
µ

∑
k

{∑
m−�=k ω(π−�)Tm,µ̃u�,µ̃

}
zk,

σ

((
0 1
−1 0

))
w ∼

∑
µ

∑
k
T
{∑

m−�=k ω(π−�)Tm,µ̃u�,µ̃
}
zk.
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It follows immediately that T takes the image of V to itself. Thus it determines a linear transformation

of V which is easily shown to commute with all the operators. As a consequence of assumption (iii)

this linear transformation is a scalar. Thus T is a scalar. In particular all the operators Tm,ρ are scalars

and U is one-dimensional.

In the next two lemmas it is assumed that U is one dimensional. Thus the operators Tm,ρ are taken

to be complex numbers.

Lemma 2.7 Suppose that there is a character µ1 of o× and a k1 ≥ −1 such that Tk1,µ1 �= 0. Let

K = k ⊕ k. There is a continuous homomorphism M of K× into C× such that for all � and ν

T�,ν = T (M,ν; �)

Let me observe immediately that it was shown in the previous paragraph that if the restriction of

M to k× is ω the identities (A) and (B) are satisfied if T�,ν is replaced by T (M,ν; �). Set µ2 = µ−1
1 ω0.

It will perhaps require less mental effort if the cases µ1 = µ2 and µ1 �= µ2 are treated separately.

Suppose first that µ1 = µ2. In identity (A) take ν = µ1, µ �= µ1, and take � = k1 + n ≥ 0 to obtain

∆(µ1µ
−1, π−n)ω(πn)Tk−n,µTk1,µ1 = µµ−1

1 (−1)∆(µµ−1
1 , πk)Tk+�,µ1 .

The right side is zero unless k = −n but if k = −n we can cancel Tk1,µ1 from both sides to obtain

T−2n,µ =
µµ−1

1 (−1)
ω(πn)

∆(µµ−1
1 , π−n)

∆(µ1µ−1, π−n)
= (1− |π|)2|π|−nω(π−n)

{
∆(µ−1

1 µ, π−n}2
.

Thus if ω1 and ω2 are two complex numbers such that ω1ω2 = ω(π) and M is defined by M(πpα ⊕
πqβ) = ωp1ω

q
2µ1(αβ) for α ∈ o×, β ∈ o× then Tk,µ = T (M,k, µ) for µ �= µ1.

Take µ = ν = µ1 and k = � in identity (B). If k < −1 the right side is a sum over those η such that

the conductor of µ1η
−1 is p−�. For such η

∆(µ1η
−1, πk)∆(µ1η

−1, πk)T2k,η = ω(πk)µµ−1
1 (−1)∆(ηµ−1

1 , πk)∆(µ1η
−1, πk) =

ω(πk)|π|k
(1− |π|)2

Since the number of such characters is |π|−k(1 − |π|)2 the right side of (B) is equal to ω(πk). Since

ω0(−1) = µ2
1(−1) = 1 we have, for k < −1,

∑−2

m=−∞ −ω(π−m)Tk+m,µ1Tk+m,µ1 +
ω(π)
|π| − 1

Tk−1,µ1Tk−1,µ1 = 0

It follows by induction that Tm,µ1 = 0 if m < −2.
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Now take µ = ν = µ1, � = −1, and k ≥ 0 in (B) to obtain

ω(π)
|π| − 1

Tk−1,µ1T−2,µ2 =
|π|

|π| − 1
Tk−1,µ1

Since Tk−1,µ1 �= 0 for some k ≥ 0 we conclude that ω(π)T−2,µ1 = |π|.
Choose ω1 and ω2 to be the two solutions of the equation

(|π| − 1)
{ x

ω(π)
|π|1/2 +

|π|1/2
x

}
= T−1,µ1 .

It is easy to see that

∑∞
m=−∞ T (M,µ1,m)xm =

(1− ω−1
1 x−1|π|1/2)(1− ω−1

2 x−1|π|1/2)
(1− ω1x|π|1/2)(1− ω2x|π|1/2)

if |x| > 0 and |x| is sufficiently small. Thus Tm,µ1 = T (M,µ1,m) if m < 0. Taking µ = ν = µ1, k = 0,

and � ≥ 0 in (B) we obtain

∑−2

m=−∞−ω(π−m)Tm,µ1T�+m,µ1 +
ω(π)
|π| − 1

T−1,µ1T�−1,µ1 + ω0(−1)δ�,kω(π�) = T�,µ1

Since the same formula is valid if Tp,µ1 is replaced by T (M,µ1, p) we can show inductively that

Tm,µ1 = T (M,µ1,m) for all m.

Now suppose µ1 �= µ2. Let n be the order of µ1µ
−1
2 . Take µ = ν = µ1, � = k1 + 1, and k = −1 in

identity (A) to obtain

∆(µ2µ
−1
1 , π−n)ω(πn)T−1−n,µ1T�−n,µ1 = µ1µ

−1
2 (−1)

|π|
|π| − 1

Tk1,µ1 .

Thus T−1−n,µ1 �= 0. Now take � = k1 + n, k < −1 to obtain

∆(µ2µ
−1
1 , π−n)ω(πn)Tk−n,µ1Tk,µ1 = 0.

Thus Tk−n,µ1 = 0 if k < −1.

Now let us look at the identity (B) with µ = µ1, ν = µ2. If k > −n and � > −n the right side is

zero because the order of either µ1η
−1 or µ2η

−1 is at least n. Thus in this case

∑−2

m=−∞ −ω(π−m)Tk+m,µ1T�+m,µ2 +
ω(π)
|π| − 1

Tk−1,µ1T�−1,µ2 + ω0(−1)δ�,kω(π�) = 0. (C)

In particular take � = n + 1 to see that if k > −n + 1 and Tk−1,µ2 = 0 so does Tk−2,µ2 .
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If k < −n and � �= k the right side of (B) is zero for µ = µ1, ν = µ2 because k ≤ −2 and if the

order of µ1η
−1 is −k so is the order of µ2η

−1. Thus in this case

∑−2

m=−∞ −ω(π−m)Tk+m,µ1T�+m,µ2 +
ω(π)
|π| − 1

Tk−1,µ1T�−1,µ2 = 0.

The same result is valid if � < −n and k �= �. Take k = −n to see that Tm,µ2 = 0 if m < −n− 1.

Thus if Tm,µ2 = 0 for all m ≥ −1 then the only m for which Tm,µ2 �= 0 is m = −n − 1. Taking

� = −n− 1 in (C) we would find that Tm,µ1 = 0 for m ≥ −n which is contrary to assumption. At this

point µ1 and µ2 play identical roles.

Taking k = −n + 1 in (C) we see that if � ≥ −n

T�+1,µ2T−n,µ1 = (|π| − 1)ω(π)T�,µ2T−1−n,µ1 .

Thus T−n,µ1 �= 0 and T�,µ2 �= 0 if � ≥ −n. Set, if � ≥ −n,

ω1|π|1/2 = T �+1,µ2
T�,µ2

= (|π| − 1)ω(π)T−1−n,µ1
T−n,µ1

.

Similarly T−n,µ2 �= 0 and T�,µ1 �= 0 if � ≥ −n. If � ≥ −n, set

ω2|π|1/2 = T �+1,µ1
T�,µ1

= (|π| − 1)ω(π)T−1−n,µ2
T−n,µ2

.

Now take ν = µ = µ1, � ≥ 0, k = −1 in (A) to obtain

∆(µ−1
1 µ2, π

−n)ω(πn)T−1−n,µ1T�−n,µ1 = µ1µ
−1
2 (−1)

|π|
|π| − 1

T�−1,µ1 .

Thus

T−1−n,µ1 =
|π| − 1

|π|n−1
2

ωn−1
2

ω(πn)
∆(µ1µ

−1
2 , π−n).

In the same way

T1−n,µ2 =
|π| − 1

|π|n−1
2

ωn−1
1

ω(πn)
∆(µ2µ

−1
1 , π−n)

Thus if γ = ω1ω2
ω(π) ,

T−1−n,µ1 = γn
(|π| − 1)

|π|n−1
2

1
ω2ωn1

∆(µ−1
2 µ1, π

−n),

T�,µ1 = γn−1(1− |π|)2|π| �
2ω�+n1 ω−n

1 ∆(µ−1
2 µ1, π

−n), � ≥ −n,

T−1−n,µ2 = γn
(|π| − 1)

|π|n−1
2

1
ωn2ω1

∆(µ−1
1 µ2, π

−n),

T�,µ2 = γn−1(1− |π|)2|π| �
2ω−n

2 ω�+n1 ∆(µ−1
1 µ2, π

−n), � ≥ −n.
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If we take µ different from µ1 and µ2, ν = µ1 and � ≥ 0 in identity (A) we obtain

∆(µ2µ
−1
1 , π−n2)ω(πn2)Tk−n2,µT�−n2,µ1 = µµ−1

2 (−1)∆(µµ−1
1 , πk)Tk+�,µ1

if n1 is the order of µ1µ
−1 and n2 is the order of µ2µ

−1. Thus Tm,µ = 0 if m �= −n1 − n2 but

T−n1−n2,µ = (1− |π|)2|π|−n1−n2
2 γn2ω−n1

2 ω−n2
1 ∆(µ−1

1 µ, π−n1)∆(µ−1
2 µ, π−n2 ).

If we can show that γ = 1 we will have proved that if M(πpα ⊕ πqβ) = ωp1ω
p
2µ1(α)µ2(β) then

T (M,µ,m) = Tm,µ for all µ and all m.

Take µ = µ1, ν = µ2 and k = � = −n in (B). If the order of both ηµ−1
1 and ηµ−1

2 is n, the value of

the corresponding term on the right side is

µ1µ2(−1)
|π|n

(1− |π|)2
1

ω(πn)
.

If n > 1 there are 1−|π|
|π|n (1 − 2|π|) such characters η. The terms corresponding to the other characters

are all zero so the right-hand side is µ1µ2(−1)
ω(πn)

1−2|π|
1−|π| . If n = 1 there are 1−3|π|

|π| such characters. However

the terms corresponding to η = µ1 and η = µ2 give a total contribution of

µ1µ2(−1)
ω(π)

|π|2
(1− |π|)2 +

µ1µ2(−1)
ω(π)

|π|2
(1− |π|)2 .

Thus the right side is again µ1µ2(−1)
ω(πn)

1−2|π|
1−|π| . The left side is

γn−1

ω(πn)
µ1µ2(−1)

|π|
|π| − 1

+
µ1µ2(−1)
ω(πn)

.

Consequently γn−1 = 1. Now take k = � = −n + 1 in (C) to obtain

−µ1µ2(−1)
ω(πn−1)

|π| + µ1µ2(−1)
ω(πn−1)

γn−2(|π| − 1) +
µ1µ2(−1)
ω(πn−1)

= 0

Thus γn−2 = 1 and γ = 1.

It will be convenient to record here the closed expressions for

∑∞
n=−∞ T (M,µ, n)zn = T (M,µ, z)

The series of course converges for |z| > 0 and sufficiently small.
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Lemma 2.8 (i) Let K = k ⊕ k and let M(πpα⊕ πqβ) = ωp1ω
p
2µ1(α)µ2(β) if α ∈ o× and β ∈ o×.

(a) If µ1 = µ2 then

T (M,µ1, z) =
(1− ω−1

1 z−1|π|1/2)
(1− ω1z|π|1/2)

(1− ω−1
2 z−1|π|1/2)

(1− ω2z|π|1/2)

and if µ �= µ1 and the order of µ−1µ1 is n

T (M,µ, z) = (1− |π|)2|π|−nω−n
1 ω−n

2 ∆(µ−1
1 µ, π−n)∆(µ−1

1 , µ, π−n)z−2n.

(b) If µ1 �= µ2 then

T (M,µ1, z) = (1− |π|)|π|− n
2 ω−n

1 ∆(µ−1
2 µ1, π

−n)
(1− ω−1

2 z−1|π|1/2)
(1− ω2z|π|1/2) z−n;

T (M,µ2, z) = (1− |π|)|π|− n
2 ω−n

2 ∆(µ−1
1 µ2, π

−n)
(1− ω−1

1 z−1|π|1/2)
(1− ω1z|π|1/2) z−n

if n is the order of µ−1
1 µ2. If µ is different from µ1 and µ2 and the order of µ−1µ1 is n1 and the

order of µ−1µ2 is n2 then

T (M,µ, z) = (1− |π|)2|π|−n1−n2
2 ω−n1

2 ω−n2
1 ∆(µ−1

1 µ, π−n1 )∆(µ−1
2 µ, π−n2)z−n1−n2 .

(ii) Let K be an unramified extenson of k.

(a) Suppose there is a generalized character M1 of k× such that M(α) = M1(α1+s). Let M1(πpβ) =

ωp1µ1(β) for β ∈ o×. Then

T (M,µ1; z) =
1− ω−2

1 z−2|π|
1− ω2

1z
2|π| =

1− ω−1
1 z−1|π|1/2

1− ω1z|π|1/2
1 + ω−1

1 z−1|π|1/2
1 + ω1z|π|1/2 .

If µ �= µ1 and the order of µµ−1
1 is n so that the order of µ1+sM−1

0 is also n then

T (M,µ; z) = (1− |π|2)|π|−nω−2n
1 ∆(M−1

0 µ1+s,Π−n)z−2n

= (1− |π|)2|π|−nω−n
1 (−ω1)−n

{
∆(µ−1

1 µ, π−n)
}2

z−2n.

(b) If there is no such character then for all µ

T (M,µ, z) = (1− |π|2)|π|−nM(Π−n)∆(M−1
0 µ1+s,Π−n)z−2n

if n is the order of M−1
0 µ1+s.

(iii) Let K be a ramified extension of k.
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(a) Suppose there is a character M1 of k× such that M(α) = M1(α1+s). Let M1(πpβ) = ωp1µ1(β)

if β ∈ o×. Then

T (M,µ1; z) = (1− |π|)|π|− f
2 ω−f

1 ∆(χ0, π
−f )

1− ω−1
1 z−1|π|1/2)

(1− ω1z|π|1/2) z−f

T (M,χ0µ1, z) = (1− |π|)|π|− f
2 ω−f

1 ∆(χ0, π
−f )

(1− ω−1
1 z−1|π|1/2)

(1− ω1z|π|1/2) z−f

and if µ is different from µ1 and χ0µ1 then

T (M,µ, z) = (1− |π|)2∆(χ0, π
−f )|π|− n−f

2 ω−n−f
1 ∆(M−1

0 µ1+s,Π−n−f )z−n−f

= (1− |π|)2|π|−n1−n2
2 ω−n1−n2

1 ∆(µ−1
1 µ, π−n1)∆(µ−1

2 µ, π−n2 )z−n1−n2

if µ2 = χ0µ1, n is the order of M−1
0 µ1+s, n1 is the order of µ−1

1 µ, and n2 is the order of µ−1
2 µ.

(b) If there is no such character M1 then, for all µ,

T (M,µ, z) = (1− |π|)2|π|−n−f
2 ∆(χ0, π

−f )M(Π−s(n+f))∆(M−1
0 µ1+s,Π−n−f )z−n−f

if n is the order of M−1
0 µ1+s.

The formulas of this lemma follow from the definitions together with Lemmas 1.1 and 1.5. I

would like to observe in cases (ii, a) and (iii, a) that if M′ is the character of (k ⊕ k)∗ defined by

M ′(α⊕ β) = M(α)M1(β)χ(β), the, for all µ

T (M,µ, z) = T (M ′, µ, z).

It follows from Lemmas 2.7 and 2.8 that if the collection {Tm,µ} satisfies identities (A) and (B) the

series ∑
m
Tm,µz

m

converges for |z| > 0 and sufficient small and its sum Tµ(z) is a rational function. If we return to

the discussion of the representation σ we can choose some isomorphism of U with C and regard the

functions ϕv as scalars. Let L′ be the set of all locally constant complex-valued functions, i.e. invariant

under some open subgroup, on k×. If ν is a character of o× let L′
ν be the set of all functions ϕ in L′

such that ϕ(βα) = ν(β)ϕ(α) if β ∈ o×. It is clear that L′ is the direct sum of the spaces L′
ν . If ϕ ∈ L′

we write ϕ =
∑

ν ϕν with ϕν ∈ L′
ν and set uk,ν = ϕν(πk). Let L be the set of all functions ϕ in L′ such

that, for each ν, uk,ν = 0 for k � 0 and

ϕν(z) =
∑

k
uk,νz

k
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converges for |z| > 0 and sufficiently small and represents a rational function. If Ĥ is the set of all

functions in L′ with compact support then Ĥ ⊆ L. Ĥ is clearly the image of V̂ . By the way, it will not

conflict with our previous notation if when ϕ =
∑

ϕν lies in L′ and uk,ν = ϕν(πk) we set

ϕ ∼
∑

ν

∑
k
uk,νz

k.

Now suppose {Tm,µ} is the collection corresponding to the representation σ. If v ∈ V̂ and

ϕ = ϕν
∑

ν

∑
k
uk,νz

k

then

w = σ(
( 0 1
−1 0

)
)v ∼

∑
ν

∑
�

{∑
m+k=�

ω(πk)Tm,ν̂u−k,ν̂
}
z�.

Thus ψ = ϕw is also in L and

ψν(z) = Tν̂(z)ϕν̂(ω−1(π)z−1)

If Tm,µ = 0 whenever m ≥ −1 then V = V̂ so that

ϕν(z) = ω0(−1)Tν̂(z)ψν̂(ω−1(π)z−1).

Thus, in this case,

ω0(−1)Tν(z)Tν̂(ω−1(π)z−1) = 1 (D)

On the other hand if one notices that MMs = ω1+s so that M−1ω1+sµ−1−s = (M−1µ1+s)−s one can

verify by inspection that

ω0(−1)T (M,ν, z)T (M, ν̂, ω−1(π)z−1) = 1.

Thus the identity (D) is valid whenever σ is an irreducible representation satisfying (i), (ii), and (iii).

Now let us suppose thatω is a continuous homomorphism ofk× into C× and that the family{Tm,µ}
satisfies the relations (A), (B), and (D). If ϕ belongs to L′ and

(
a b
0 d

)
belongs to Gk let τ

((
a b
0 d

))
ϕ be the

function whose value at α is ω(d)ξ0
(
αb
d

)
ϕ
(
αa
d

)
. τ is a representation of the group of upper triangular

matrices in Gk on L′. Ĥ is an invariant subspace of L′ for τ . It is clear that the operators τ
((
a 0
0 b

))
leave

L invariant. If ϕ ∈ L then, for all x ∈ k, the function ψ defined by ψ(α) = ξ0(αx)ϕ(α) − ϕ(α) lies in

Ĥ . Thus the operators τ
((

1 x
0 1

))
leave any subspace of L containing Ĥ invariant. Define τ

((
0 1

−1 0

))
by

the condition that if ϕ ∈ L and ψ = τ
((

0 1
−1 0

))
ϕ then

ψν(z) = Tν̂(z)ϕν̂(ω−1(π)z−1).
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It is easy to verify that

τ(
(
a 0
0 d

)
)τ(

(
0 1

−1 0

)
) = τ(

(
0 1
−1 0

)
)τ(

(
d 0
0 a

)
).

Thus the operators τ
((
a b
0 d

))
and τ

((
0 1

−1 0

))
leave the space spanned by Ĥ and the functions τ

((
0 1

−1 0

))
ϕ,

ϕ ∈ Ĥ invariant. Call this space H . Every matrix in Gk which is not supertriangular can be written in

exactly one way as

g =
(
β 0
0 β

)(
1 x
0 1

)(
0 1

−1 0

)(
α 0
0 1

)(
1 y
0 1

)
Set τ(g) = τ

((
β 0
0 β

))
τ
((

1 x
0 1

))
τ
((

0 1
−1 0

))
τ
((
α 0
0 1

))
τ
((

1 y
0 1

))
. Thus τ(g) is defined for all g in Gk.

Let us verify that τ(g1g2) = τ(g1)τ(g2). This is clear if g1 ∼ g2 is a supertriangular matrix. Thus

it is enough to verify this when

g1 =
(

0 1
−1 0

)(
1 y
0 1

)
g2 =

(
1 x
0 1

)(
0 1

−1 0

)
The case x+ y = 0 is taken care of by identity (D) so suppose x + y = u �= 0. Then

g1g2 =
(− 1

u 0
0 −u

)(
1 −u
0 1

)(
0 1

−1 0

)(
1 −1/u
0 1

)
,

τ(g1)τ(g2) = τ(
(

0 1
−1 0

)
)τ(

(
1 u
0 1

)
)τ(

(
0 1

−1 0

)
),

τ(g1g2) = τ(
(− 1

u
0

0 −u

)
)τ(

(
1 −u
0 1

)
)τ(

(
0 1

−1 0

)
)τ(

(
1 −1/u
0 1

)
).

However if one examines the derivation of the identities (A) and (B) one sees that they are equivalent

to the assertion that these two operators have the same effect on an element of Ĥ . To verify that the

two operators are equal we need to show that if ϕ ∈ Ĥ then

τ(g1g2)τ(
(

0 1
−1 0

)
)ϕ = τ(g1)τ(g2)τ(

(
0 1

−1 0

)
)ϕ

The left side is equal to

τ(g1g2

(
0 1

−1 0

)
)ϕ = τ(g1)τ(g2

(
0 1

−1 0

)
)ϕ = τ(g1)τ(g2)τ(

(
0 1

−1 0

)
)ϕ

The representation τ on H certainly satisfies condition (ii). If
(
a b
c d

) ∈ G0 and c ∈ p(
a b
c d

)
=
(

1 0
− c
a 1

)(
a b
c d− bc

a

)
.
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It is clear that for any ϕ in H the sets

{g|τ(g)ϕ = ϕ},{
g|τ(g)τ(

(
0 1

−1 0

)
)ϕ = τ(

(
0 1

−1 0

)
)ϕ
}
.

both contain an open subgroup of th group of upper triangular matrices. Thus the first set contains

an open subgroup of the group of lower triangular matrices. It follows from the simple identity above

that it contains an open subgroup of Gk.

To prove that the third condition is satisfied we need only show that if U is an open subgroup of

the group of upper triangular matrices then the set X0 of all ϕ in H such that U is contained in the

isotropy group of both ϕ and τ(
(

0 1
−1 0

)
)ϕ is finite dimensional. If ϕ belongs to H then ϕν has poles

only at 0 and ∞. In general the poles of ϕν at any point besides 0 and ∞ are of no higher order than

those of Tν̂(z). It is clear that, if ϕ ∈ X , ϕν = 0 for all but a finite number of ν. Thus to prove the

assertion all we need to do is obtain, for each ν, a bound on the order of the pole of ϕν at 0 and ∞
which is valid for all ϕ in X . A glance at the form of the operator τ

((
1 x
0 1

))
convinces one that there is

a number N such that if U is in the isotropy group of ϕ then ϕ(α) = 0 if |α| > |π|N . Thus the order of

the pole of ϕν(z) at 0 is at most −N . If ϕ is in X the order of the pole of

Tν(z)ϕν(ω−1(π)z−1)

at 0 is also at most −N . The assertion follows.

Arguments similar to those used to prove Lemma 2.4 show that any invariant subspace of H

different from {0} contains a non-zero vector in Ĥ and that Ĥ is irreducible under the action of the

upper-triangular matrices. It follows immediately that τ is an irreducible representation of Gk on H .

Thus to completely classify all irreducible representations of Gk satisfying (i), (ii), and (iii) all we

need to is study the families {Tm,µ} of complex numbers which satisfy (A), (B), and (D) and have the

property that, for all µ, Tm,µ = 0 if m ≥ −1. In this case, which is the case we shall discuss in the rest

of this chapter, H = Ĥ .

Before going on let me observe that if ζ is another homomorphism of k× into C× and ω is replaced

by ωζ2 and Tm,µ is replaced by ζ(πm)Tm,ζ−1
0 µ the relations (A), (B), and (D) continue to be satisfied.

Thus, for our purposes, there is no harm in assuming that ω is a character.

Define an inner product on Ĥ by

(ϕ,ψ) =
∫
k×

ϕ(α)ψ(α)dα.
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It is clear that, if g is an upper triangular matrix, (τ(g)ϕ, τ(g)ψ) = (ϕ,ψ). It is also clear that if 〈ϕ,ψ〉
is another inner product with this property it is of the form

〈ϕ,ψ〉 =
∑

ν
aν(ϕν, ψν).

Thus if T is the operator on Ĥ defined by

T
(∑

ϕν

)
=
∑

aνϕν

(τ(g)Tψ, τ(g)ψ) = (Tτ(g)ϕ, τ(g)ψ),

so that τ(g)T = Tτ(g) for all upper triangular matrices g. Thus each eigenspace of T is invariant under

τ(g); so T is a scalar.

Let ϕ�,ν be the function in Ĥν = Ĥ ∩ L′
ν satisfying ϕ�,ν(π�) = 1 and ϕ�,ν(α) = 0 if |α| �= |π|�.

The collection {ϕ�,ν} is an orthonormal basis of Ĥ . If ϕ is in Ĥ and

ϕ ∼
∑

ν

∑
�
u�,νz

�

then

ϕ =
∑

ν

∑
�
u�,νϕ�,ν.

If

g =
(
β 0
0 β

)(
1 x
0 1

)(
0 1

−1 0

)(
πn 0
0 1

)(
α 0
0 1

)(
1 y
0 1

)
with α ∈ o× let us find the effect of τ(g) on ϕ. We iterate the effect of the various factors entering into

the expression of τ(g) as a product.

τ(
(

1 y
0 1

)
)ϕ =

∑
�,ν

{∑
µ
∆
(
µν−1, π�y

)
u�,µ

}
ϕ�,ν.

Applying τ(
(
α 0
0 1

)
) to this one obtains

∑
�,ν

{
ν(α)

∑
µ
∆(µν−1, π�y)u�,µ

}
ϕ�,ν .

τ(
(
πn 0
0 1

)
) sends this to

∑
�,ν

{
ν(α)

∑
µ
∆(µν−1, π�+ny)u�+n,µ

}
ϕ�,ν.

Now apply τ(
(
1 x
0 1

)
) to obtain

∑
�,ν

{∑
m−k=� Tm,ν̂ω(π−k)ν̂(α)

∑
µ
∆(µν̂−1, πk+ny)uk+n,µ

}
ϕ�,ν
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Finally τ(
(
β 0
0 β

)
)τ(

(
1 x
0 1

)
) transforms this to

∑
�,ν

{
ω(β)

∑
m−k=�

∑
ρ,µ

ρ̃(α)ω(π−k)Tm,ρ̃∆(ρν−1, π�x)∆(µρ̃−1, πk+ny)uk+n,µ
}
ϕ�,ν .

Thus if g has the above form the matrix element (τ(g)ϕk,µϕ�,ν) is equal to

ω(β)ω(πn−k)
∑

ρ
ρ̃(α)Tk+�−n,ρ̃∆(ρν−1, π�x)∆(µρ̃−1, πky)

If g =
(
β 0
0 β

)(
πn 0
0 1

)(
α 0
0 1

)(
1 y
0 1

)
then (τ(g)ϕk,µ, ϕ�,ν) is equal to 0 if k �= � + n but if k = �+ n it equals

ω(β)ν(α)∆(µν−1, πky).

A subset X of Gk will be called pseudo-compact if there is a compact subset Y of Gk such that

X ⊆ ∪α∈k×
(
α 0
0 α

)
Y .

Lemma 2.9 If Tm,µ = 0 for m ≥ 1 the functions (τ(g)ϕk,µ, ϕ�,ν) have their support in a pseudo-

compact set.

It is clear that the intersection of the support of (τ(g)ϕk,µ, ϕ�,ν) with the group of upper-triangular

matrices is a pseudo-compact set. If

g =
(
β 0
0 β

)(
1 x
0 1

)(
0 1

−1 0

)(
πn 0
0 1

)(
α 0
0 1

)(
1 y
0 1

)
then

g =
(
β 0
0 β

)(−πnxα 1− πnαxy
−πnα −πnαy

)
.

Thus, if N > 0 and n varies over {n|n ≥ −N} while x and y vary over
{
z ∈ k

 |π|n
2 |z| < N

}
and β

varies over k× the matrix g varies over a pseudo-compact set.

For a g of this form set

fρ(g) = ω(β)ω(πn−k)ρ̃(α)Tk+�−n,ρ̃∆(ρν−1, π�x)∆(µρ̃−1, πky).

The support of fρ is certainly contained in a pseudo-compact set. As we saw some time ago, if the

order of ρ is sufficiently large,

Tk−m,ρ = ω(π−m)
∆(ρν−1

0 , πk)∆(ω−1
0 ν0ρ, π

−m)
|∆(ω−1

0 ν0ρ, π−m)|2

where ν0 is a fixed character and m is the order of ρ. Thus, if the order of ρ is sufficiently large, fρ(g) = 0

unless n = k + � + 2m, |πm+�x| = 1, and |πk+�y| = 1. The lemma follows.
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If � and ν are fixed and Ck =
{
(
(
α 0
0 α

)
)
 α ∈ k×

}
〈ϕ,ψ〉 =

∫
Gk/Ck

(τ(g)ϕ,ϕ�,ν)(τ(g)ψ,ϕ�,ν)dg

is a non-degenerate inner product onĤ . Clearly 〈τ(g)ϕ, τ(g)ψ〉 = 〈ϕ,ψ〉 for all g inGk and in particular

for the upper-triangular matrices. Thus there is a positive constant C�,ν such that 〈ϕ,ψ〉 ≡ C�,ν(ϕ,ψ).

Consequently the representation τ is unitary.

Lemma 2.10 If the family {Tm,µ} of complex numbers satisfies the relations (A), (B), and (D) there

is a two-dimensional semi-simple algebra K over k and a homomorphism M of K× into C× such

that

Tm,µ = T (M,µ,m)

for all m and µ.

Because of Lemma 2.7 we need only prove this when the associated representation τ acts on Ĥ ,

is unitary and the matrix element (τ(g)ϕk,µ, ϕ�,ν) have compact support. To do this we need the

Plancherel formula of Gelfand and Graev which will require a paragraph by itself. For now let us

assume Lemma 2.10 and go on to its applications to the theory of automorphic forms.

3. The local functional equation for non-archimedean fields. For the sake of brevity we shall call an

irreducible representation σ of Gk which satisfies (i), (ii), and (iii) of the previous chapter a simple

representation.

If η is a continuous homomorphism of Ak, the group of diagonal matrices in Gk, into C×, let L(η)

be the space of all locally constant functions on Gk satisfying ϕ(ag) ≡ η(a)ϕ(g) for all a in A. Since

L(η) is invariant under right translations we obtain a representation g → ρ(g) of Gk on L(η).

Lemma 3.1 No infinite-dimensional simple representation of Gk is contained more than once in the

restriction of ρ to L(η).

We may take the simple representation to be the representation τ on H considered in the previous

paragraph. Suppose V is a subspace of L(η) and T is an isomorphism of H with V such that

T (τ(g)ϕ) = ρ(g)Tϕ

for allϕ. Setλ(ϕ) = Tϕ(1). ThenTϕ(g) = (ρ(g)Tϕ)(1) = λ(τ(g)ϕ). ThusT is completely determined

by λ. If a ∈ Ak then

λ(τ(a)ϕ) = η(a)λ(ϕ).
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Let us verify that up to a scalar factor there is at most one linear function on H with this property. Let

η(
(
a 0
0 b

)
) = η1(a)η2(b) and, assumed, let τ(

(
α 0
0 α

)
) = ω(α)I . There is no such function unless η1η2 = ω.

If ϕ ∈ Hν = H ∩ L′
ν and α ∈ o× then η1(α)λ(ϕ) = ν(α)λ(ϕ). Thus λ vanishes on Hν unless ν = ν0,

the restriction of η1 to o×. If ϕ ∈ Hν0 and ψ = τ(
(
π−1 0
0 1

)
)ϕ− η1(π)−1ϕ or, what is the same, if

ψ(z) = (z − η−1
1 (π))ϕ(z) (A)

then λ(ψ) = 0.

If Hν0 = Ĥν0 then {ψ(z)
 ψ ∈ Hν0} consists of all rational functions with poles nowhere but at

0 and ∞. Then ψ(z) can be put in the above form if and only if η−1
1 (π) is a zero of ψ(z). The assertion

follows in this case. If Hν0 �= Ĥν0 either

Tν̃0(z) = cz−k
(z − γ1)
(z − δ1)

(z − γ2)
(z − δ2)

or

Tν̃0(z) = cz−k
z − γ1

z − δ1

Here c is a complex constant, k is an integer, and γ1, γ2, δ1, δ2 are complex constants. In the first case

we may suppose that γi �= δj for i, j = 1 or 2 and in the second case we may suppose that γ1 �= δ1.

In the first case {ψ(z)
 ψ ∈ Hν0} consists of all rational functions with poles of arbitrary order at 0

and ∞, poles of order at most 1 at δ1 and δ2 and no other poles. In the second case it consists of all

rational functions with poles of arbitrary order at 0 and ∞, a pole of order at most 1 at δ1, and no other

poles. In any case ψ(z) is of the form (A) if and only if the order of its pole at η−1
1 (π) is 1 less than the

maximum allowable. This completes the proof of the lemma.

If ξ(x) is a non-trivial character of k let L(ξ) be the set of all locally constant functions on Gk satis-

fying ϕ(
(
1 x
0 1

)
g) ≡ ξ(x)ϕ(g) for all x ∈ k. Let ρ(ξ) be the restriction of the right regular representation

to L(ξ).

Lemma 3.2 Every infinite-dimensional simple representation of Gk occurs exactly once in ρ(ξ).

Choose γ in k× so that ξ(x) = ξ0(γx). Let the simple representation τ act onH , as before. Suppose

there is a homomorphism T of H into L(ξ) such that T (τ(g)ϕ) = ρ(g)(Tϕ). Set λ(ϕ) = Tϕ(1). Then

λ(τ(
(
1 x
0 1

)
)ϕ) = ξ0(γx)λ(ϕ). Since Tϕ(g) = λ(τ(g)ϕ), T is detrmined by λ. Conversely if λ is such a

linear function and Tϕ is defined by Tϕ(g) = λ(τ(g)ϕ) then T commutes with the action of Gk.
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Such a linear function must annihilate all functions inH of the formψ(α) =
{
ξ0(γx)−ξ0(αx)

}
ϕ(α)

with ϕ in H . Since any function in H which vanishes at γ is a linear combination of such functions the

assertion follows.

Suppose τ is a simple representation of Gk. Let K be a two-dimensional semi-simple algebra over

k and let M be a homomorphism of K× into C×. Suppose τ is associated to the family {T (M,µ, n)}.

Let the restriction of M to k× be χω. Suppose ζ is a continuous homomorphism of Ak into C
× such

that ζ
((
α 0
0 α

))
ω(α) ≡ 1. Let ζ(

(
α 0
0 β

)
) = ζ1(α)ζ2(β). Let ζ0 be the restriction of ζ1 to o× and let

ζ1(απn) = ζ0(α)|π|s for α ∈ o×. ζ is uniquely determined by ζ0 and s and we shall occasionally

write ζ = ζ(s, ζ0). let L(ξ, τ) be the unique subspace of L(ξ) which transforms according to the

representation τ .

If η is any continuous homomorphism of Ak into C× let η̃ be the homomorphism defined by

η̃(
(
a 0
0 b

)
) = η(

(
b 0
0 a

)
).

Lemma 3.3 If τ is given there is a number N such that if ϕ belongs to L(ξ, τ) and ζ = ζ(s, ζ0) the

integral

Φ(g, ζ, ϕ) =
∫
k×

ϕ(
(
α 0
0 1

)
)ζ(
(
α 0
0 1

)
)dα

is defined for Re(s) > N .

(i) Suppose K = k ⊕ k and M(πpα ⊕ πqβ) = ωp1ω
q
2µ1(αβ) if α, β ∈ o×. Suppose also that neither

ω1
ω2

nor ω2
ω1

is equal to |π|. If µ1 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω1|π|s+1/2)(1− ω2|π|s+1/2)Φ(g, ζ, ϕ).

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover if p−d is the largest ideal on which ξ is trivial

ζ1(πd)Φ′(
(

0 1
−1 0

)
g, η, ϕ) = ζ̃1(πd)Φ′(g, ζ̃, ϕ)

If µ1 �= ζ−1
0 set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|−s and

|π|s and, for a suitable choice of g and ϕ it is a constant. Moreover, if ξ(x) = ξ0(γx),

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = (1− |π|)2|π|−n−2nsω−n

1 ω−n
2 ζ̃1(γ)

{
∆(µ1ζ0, π

−n)
}2 Φ′(g, ζ̃, ϕ)

if n is the order of µ1ζ0.
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(ii) Suppose K = k⊕k and M(πpα⊕πqβ) = ωp1ω
q
2µ1(αβ) if α, β ∈ o×. Suppose also that ω1

ω2
= |π|.

If µ1 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω1|π|s+1/2)Φ(g, ζ, ϕ)

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover,

ζ1(πd)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = −|π|− 1

2−s

ω2
ζ̃1(πd)Φ′(g, ζ̃, ϕ)

If µ1 �= ζ−1
0 set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and

|π|−s and for a suitable choice of g and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 1

)
g, ζ, ϕ) = (1− |π|)2|π|−n−2nsω−n

1 ω−n
2 ζ̃1(γ)

{
∆(µ1ζ0, π

−n)
}2

Φ′(g, ζ̃, ϕ)

(iii) Suppose K = k⊕k and M(πpα⊕πqβ) = ωp1ω
q
2µ1(αβ) if α, β ∈ o×. Suppose also that ω2

ω1
= |π|.

If µ1 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω2|π|s+1/2)Φ(g, ζ, ϕ).

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover,

ζ1(πd)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = −|π|−1/2−s

ω1
ζ̃1(πd)Φ′(g, ζ̃, ϕ).

If µ1 �= η−1
0 set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and

|π|−s and for a suitable choice of g and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = (1− |π|)2|π|−n−2nsω−n

1 ω−n
2 ζ̃1(γ){∆(µ1ζ0, π

−n)}2Φ′(g, ζ̃, ρ).

(iv) Suppose K = k ⊕ k and M(πpα ⊕ πqβ) = ωp1ω
q
2µ1(α)µ2(β) if α, β ∈ o× where µ1 �= µ1. If

µ1 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω1|π|s+1/2)Φ(g, ζ, ϕ)

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = (1− |π|)|π|− n

2 −nsω−n
2 ∆(ζ0µ2, π

−n)ζ̃1(γ)Φ′(g, ζ̃, ϕ)

41



if n is the order of µ−1
1 µ2. If µ2 = ζ−1

0 set

Φ′(g, ζ, ϕ) = (1− ω2|π|s+1/2)Φ(g, ζ, ϕ).

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = (1− |π|)|π|− n

2 −nsζ̃1(γ)ω−n
1 ∆(ζ0µ1, π

−n)Φ′(g, ζ̃, ϕ)

If ζ−1
0 is different from both µ1 and µ2 set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for each g, Φ′(g, ζ, ϕ) is

a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ)

is equal to

(1− |π|)2|π|(−n1−n2)(
1
2+s)ζ̃1(γ)ω−n2

1 ω−n1
2 ∆(µ2ζ0, π

−n1)∆(µ1ζ0, π
−n2 )Φ′(g, ζ̃, ϕ)

if n1 is the order of µ2ζ0 and n2 is the order of µ1ζ0.

(v) Suppose K is an unramified extension of k and there is a homomorphism M1 of k× into C×

such that M(α) = M1(Nα). Let M1(πpβ) = ωp1µ1(β) for p in o×. If µ1 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω2
1 |π|2s+1)Φ(g, ζ, ϕ).

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover,

ζ1(πd)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = ζ̃1(πd)Φ′(g, ζ̃, ϕ)

If µ1 �= ζ−1
0 set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and

|π|−s and for a suitable choice of g and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = ζ̃1(γ)(1− |π|2)|π|−n−2nsω−2n

1 ∆((µ1ζ0)1s ,Π−n)Φ′(g, ζ̃, ϕ)

if n is the order of µ1ζ0.
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(vi) Suppose K is an unramified extension of k and there is no homomorphism M1 of k× into C×

such that M(α) ≡ M1(Nα). Set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for all g, Φ′(g, ζ, ϕ) is a polynomial

in |π|s and |π|−s and for a suitable choice of g and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = ζ̃1(γ)(1− |π|2)|π|−n−2nsM(Π−n)∆(M−1

0 (ω0ζ0)1+s,Π−n)Φ′(g, ζ̃, ϕ).

(vii) Suppose K is a ramified extension of k and there is a generalized character M1 of k× such

that M(α) ≡ M1(Nα). Let M1(πpβ) = ωp1µ1(β) if β ∈ o×. If µ1 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω1|π|s+1/2)Φ(g, ζ, ϕ)

Then, for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ

it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = (1− |π|)|π|− f

2−fsω−f
1 ζ̃1(γ)∆(χ0, π

−f )Φ′(g, ζ̃, ϕ)

If µ1χ0 = ζ−1
0 set

Φ′(g, ζ, ϕ) = (1− ω1|π|s+1/2)Φ(g, ζ, ϕ)

Then, for for each g, Φ′(g, ζ, ϕ) is a polynomial in |π|s and |π|−s and for a suitable choice of g

and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ) = (1− |π|)|π|− f

2−fsω−f
1 ζ̃1(γ)∆(χ0, π

−f )Φ′(g, ζ̃, ϕ)

If ζ−1
0 is equal to neither µ1 nor µ1χ0 set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ) Then, for each g, Φ′(g, ζ, ϕ) is a

polynomial in |π|s and |π|−s and for a suitable choice of g and ϕ it is a constant. Moreover,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ)

is equal to

(1− |π|)2|π|− n−f
2 −(n+f)sω−n−f

1 ζ̃2(γ)∆(M−1
0 (ω0ζ0)1+s,Π−n−f )∆(χ0, π

−f )Φ′(g, ζ̃, ϕ).

(viii) Suppose K is a ramified extension of k and there is no homomorphism M1 of k× into C
× such

that M(α) ≡ M1(Nα). Set Φ′(g, ζ, ϕ) = Φ(g, ζ, ϕ). Then, for each g, Φ′(g, ζ, ϕ) is a polynomial

in |π|s and |π|−s. Moreoever,

ζ1(γ)Φ′(
(

0 1
−1 0

)
g, ζ, ϕ)
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is equal to

(1− |π|)2|π|− n−f
2 −(n−f)sζ̃1(γ)M(Π−s(n+f))∆(χ0, π

−f )∆(M−1
0 (ω0ζ0)1+s,Π−n−f )Φ′(g, ζ, ϕ).

Of course, ζ̃(
(
a 0
0 b

)
) = ζ̃1(a)ζ̃2(b). Thus ζ̃1 = ζ2. Since ζ1ζ2 = ω−1, ζ̃1 = ω−1ζ−1

1 . In particular,

ζ̃0 = ω−1
0 ζ−1

0 so that ζ̃0 = ζ0 if ζ−2
0 = ω0. If ξ(x) = ξ0(γx) then the map ϕ → ψ with ψ(g) = ϕ(

(
γ 0
0 1

)
g)

is an isomorphism of L(ξ0, τ) with L(ξ, τ).∫
k×

ψ(
(
α 0
0 1

)
g)ζ(

(
α 0
0 1

)
)dα = ζ−1

1 (γ)
∫
k×

ϕ(
(
α 0
0 1

)
g)ζ(

(
α 0
0 1

)
)dα.

This, together with the previous observation that ζ̃0 = ζ0 if ζ−1
0 = ω0, makes it clear that it is enough

to prove the lemma for ξ = ξ0.

SinceL(ξ0, τ) is invariant under right translations it is enough to prove the assertions of the lemma

for g = 1. The map ψ → Tψ where

Tψ(g) = (τ(g)ψ)(1)

is an isomorphism of H and L(ξ0, τ). If ϕ = Tψ then∫
k×

ϕ(
(
α 0
0 1

)
)ζ(
(
α 0
0 1

)
)dα =

∫
k×

ψ(α)ζ1(α)dα.

Since H ⊆ L the integral on the right converges if Re(s) is sufficiently large and

Φ(1, ζ, ϕ) = ψζ−1
0

(|π|s)

The proof of Lemma 3.1, together with Lemma 2.8, shows that there are at most two points, which are

independent of ν and ψ, besides 0 and ∞ where ψν(z) can have a pole. This shows that for Re(s)

sufficiently large the integral on the right converges for all ψ. Let ψ′ = τ
((

0 1
−1 0

))
ψ. Then

Φ(
(

0 1
−1 0

)
g, ζ, ϕ) = ψ′

ζ−1
0

(|π|s)

= Tω0ζ0(|π|s)ψω0ζ0(ω
−1(π)|π|−s)

and

Φ(1, ζ̃, ϕ) = ψω0ζ0(ω
−1(π)|π|−s).

The lemma follows from these two relations, the formulae of Lemma 2.8, and the observations about

{ψ(z)
 ψ ∈ Hν} made while proving Lemma 3.1. It is a matter of inspection which must be left to

the reader.

44



Lemma 3.4 There is a vector in H whose isotropy group contains Go only if ω0 is the trivial char-

acter. If ω0 is trivial the only cases of the previous lemma for which H contains such a vector are

(i) and (v). In cases (i) and (v) H contains such a vector if and only if µ1 is trivial.

It is clear that such a function (or vector) can exist only if ω0 is trivial and that if ν0 is the trivial

character of o× it must lie in Hν0. Suppose there is a function ϕ in Hν0 invariant under Go. Then ϕ(z)

has no pole at zero and

ϕ(z) = Tν0(z)ϕ(ω−1(π)z−1)

In all cases, Tν0(Z) has a pole of order at least two at 0. Thus ϕ(ω−1(π)z−1) has a zero of order at least

two at 0 and ϕ(z) has a zero of order at least two at ∞. Consequently it has at least two poles in the

finite plane. The discussion during the proof of Lemma 3.1 shows that this is possible only in the cases

mentioned. Besides these two poles there can be no others. Thus the only zeros are at infinity and ϕ(z)

is a constant multiple of
1

(1− ω1z|π|1/2)
1

(1− ω2z|π|1/2)
in the first case and of

1
1− ω2

1z
2|π|

in the fifth.

Conversely if ω0 is trivial, ϕ lies in Hν0 and ϕ(z) has this form, the isotropy group of ϕ contains(
0 1

−1 0

)
and the upper triangular matrices in Go. However Go is generated by

(
0 1

−1 0

)
ad the upper

triangular matrices in it.

Lemma 3.5 No one-dimensional simple representation of Gk is continual in ρ(ξ).

According to the corollary to Lemam 2.1 any function on Gk which transformed according to a

one-dimensional simple representation of Gk would be invariant on the right, and therefore on the left,

under the group of matrices in Gk of determinant 1. In particular it would satisfy ϕ
((

1 x
0 1

)
g
) ≡ ϕ(g)

for all x in k. Such a function could not possibly lie in L(ξ).

Let L0 be the space of all functions on Nk � Gk which are Go finite on the right.
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Lemma 3.6 (i) Let K = k ⊕ k, let M(α1 ⊕ α2) = χ1(α1)χ2(α2) be a continuous homomorphism of

K× into C×, and let τ be the representation associated with the family {T (M,µ,m)}.

(a) Suppose χ1χ
−1
2 is not one of the characters α → 1, α → |α|, α → |α|−1. Then there are

two subspaces H1 and H2 of L0 which transform according to the representation τ and have the

property that ϕ
((
α 0
0 β

)
g
) ≡ ∣∣α

β

∣∣1/2χ1(α)χ2(β)ϕ(g) if ϕ ∈ H1 and ϕ
((
α 0
0 β

)
g
) ≡ ∣∣α

β

∣∣1/2χ1(β)χ2(α)ϕ(g)

if ϕ ∈ H2. Moreover, any subspace H of L0 which transforms according to τ is contained in H1+H2.

(b) Suppose χ1 = χ2. Then there are two subspaces H1 and H2 of L0 which transform ac-

cording to the representation τ and an isomorphism T of H2 into H1 which commutes with the

action of Gk and is such that ϕ(
(
α 0
0 β

)
g) ≡ ∣∣α

β

∣∣1/2χ1(α)χ2(β)ϕ(g) if ϕ ∈ H1 and ϕ
((
α 0
0 β

)
g
) ≡∣∣α

β

∣∣1/2χ1(α)χ2(β)
{
ϕ(g)

+Tϕ(g) log
∣∣α
β

∣∣} if ϕ ∈ H2. Moreover, any subspace of L0 which transforms according to τ is

contained in H1 +H2.

(c) Suppose χ1χ
−1
2 (α) ≡ |α|. Then there is a subspace H1 of L0 which transforms according

to the representation τ and has the property that ϕ
((
α 0
0 β

)
g
) ≡ ∣∣α

β

∣∣1/2χ1(α)χ2(β)ϕ(g) if ϕ ∈ H.

Moreover H1 is the only subspace of L0 which transforms according to τ .

(ii) Let K be a separable extension of k and let M be a continuous homomorphism of K× into

C×. Let τ be the representation associated to the family {T (M,m,µ)}. If there is no continuous

homomorphism M1 of k× into C× such that M(α) ≡ M1(Nα) then there is no subspace of L0

which transforms according to τ .

As in the proofs of Lemmas 3.1 and 3.2, there is a one:one correspondence between G-invariant

homomorphisms T of H , the space on which τ acts as in paragraph 2, into L0 and linear functions

λ on H satisfying λ
(
τ
((

1 x
0 1

))
ϕ
)

= λ(ϕ) for all ϕ in H and all x ∈ k. Given such a linear function

(Tϕ)(g) = λ(τ(g)ϕ). A linear function λ is of the required type if and only if it annihilates all functions

of the form

ψ(α) = (ξ(αx) − 1)ϕ(α) ϕ ∈ H, x ∈ k.

The space spanned by such functions is just Ĥ . Now Ĥν = Hν for all but one or two characters ν.

Moreover if Hν �= Ĥν then λ(ϕν), ϕν ∈ Hν can depend only on the coefficients of the principal parts

of ϕν(z) at the finite poles different from 0.
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Part (ii) of the lemma follows immediately. For part (i) let χi(πpa) = ωpi µi(α) if α ∈ o×. If we are

in case (i,a) set

λ1(ϕ) = λ1

(∑
ϕν

)
= Re(s)ϕµ1(z) 1

ω1|π|1/2

,

λ2(ϕ) = λ2

(∑
ϕν

)
= Re(s)ϕµ2(z) ω2|π|1/2

.

Then λ is a linear combiantion of λ1 and λ2. If we are in case (i,b) let

a1

(z − 1
ω2|π|1/2 )2

+
a2

(z − 1
ω1|π|1/2 )

be the principal part of ϕµ1(z) at 1
ω1|π|1/2 and set λ1(ϕ) = λ1

(∑
ϕν
)
= a1 and λ2(ϕ) = λ2

(∑
ϕν
)
=

a2. Then λ is a linear combination of λ1 and λ2. If we are in case (i,c) let

λ1(ϕ) = λ1

(∑
ϕν

)
= Re(s)ϕµ1(z) 1

ω1|π|1/2

.

In all cases Hi is the image of H under the map Ti associated to λi. In case (i,b) take T0 =

− 1
log |π|T1T

−1
2 . The other assertions of the lemma follow from the form of the mapping associated to

a given linear function, the fact that τ(
(
α 0
0 α

)
)ϕ = χ1(α)χ2(α)ϕ, and the fact that if ψ = τ(

(
πpα 0
0 1

)
)ϕ

with α ∈ o× then ψν(z) = ν(α)z−pϕν(z).

4. The local functional equations reconsidered. In mathematics also “our beginnings never know our

ends.” In order to give the main theorem a more striking form than was previously possible I want

to reformulate the local functional equations. First of all let me recall the functional equations of the

Hecke L-series.

Suppose K is a local field. We shall associate to each generalized character χ of K× a function

ξ(s, χ) of the complex variable s. We shall introduce a local factor ε(s, χ). ε(s, χ) will depend upon

the choice of a character ξ of K . (Notice that the symbol ξ, like the symbol s, is used to denote two

different objects.)

If K is a global field, χ a generalized character of K×\I , and ξ a character of K\A let χp and ξp

be the restrictions of χ and ξ to K×
p and Kp, respectively. Define ξ(s, χp) and ε(s, χp) to be the local

factors corresponding to ξp. The (modified) zeta function associated to χ will be

Πpξ(s, χp) = ξ(s, χ)

It will satisfy the functional equation

ξ(s, χ) = ε(s, χ)ξ(1− s, χ−1),

ε(s, χ) = Πpε(s, χp),
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both products are taken over all primes, both finite and infinite.

Let us describe the functions ξ(s, χ) and ε(s, χ) for local fields.

(i) K = R. Let χ(α) = (sgnα)M |α|r , with m = 0 or 1, and let ξ(x) = e2πiux. Then

ξ(s, χ) = π− 1
2 (s+r+m)Γ

(s + r + m

2

)
,

ε(s, χ) =
(i sgnn)m

|u|1/2−s−r .

(ii) K = C. Let |α| be the square of the ordinary absolute value. Let χ(α) = |α|r
(

αmᾱn

|α|
m+n

2

)
with

mn = 0 and m+ n ≥ 0. Let ξ(z) = e4πiRewz . Then

ξ(s, χ) = 2(2π)−(s+r+m+n
2 )Γ

(
s + r +

m+ n

2

)
ε(s, χ) = im+nχ(w)|w|s− 1

2

(iii) K is non-archimedean. Let P−d be the largest ideal on which ξ is trivial. If Π is a generator of P

and the conductor of χ is 0

ξ(s, χ) =
1

1− χ(Π)|Π|s
ε(s, χ) = χ(Πd)|Πd|s− 1

2

If the conductor of χ is Pn with n > 0

ξ(s, χ) = 1,

ε(s, χ) = χ(Πd+n)|Πd|s− 1
2
1− |Π|
|Π|n/2

∫
O×

ξ
( α

Πd+n

)
χ−1(α)dα.

Before restating the local functional equations let me introduce some conventions. Let k be a local

field. Let us introduce some language which, though rather bizarre, will be useful. If k = R a simple

representation of Gk is an irreducible quasi-simple representation of {σ,A} (the notation is that of

paragraph 2 of my letter to Weil). If k = C a simple representation of Gk is an irreducible quasi-simple

representation of A (the notation is that of paragraph 4 of my letter). If k is non-archimedean the simple

representations of Gk have been introduced in the previous paragraph. If τ is an infinite-dimensional

simple representation of Gk and ξ is a character of k the space L(ξ, τ) has been defined.

If χ is a homomorphism of k× into C× and s a complex number and ϕ belongs to L(ξ, τ) set

Φ(g, s, ϕ, χ) =
∫
k×

ϕ

((
α 0
0 1

)
g

)
χ(α)|α|sdα.
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The integral converges for Re(s) sufficiently large. We shall introduce factors† ξ(s, τ, χ) and ε(s, τ, χ)

and set

Φ′(g, s, ϕ, χ) =
Φ(g, s, ϕ, χ)
ξ(s, τ, χ)

Then the local functional equation will be

Φ′(
(

0 1
−1 0

)
g,−s, ϕ, (ηχ)−1) = ε(s, τ, χ)Φ′(g, s, ϕ, χ).

if‡ τ(
(
α 0
0 α

)
) ≡ η(α)I . I shall write down the factors ξ(s, τ, χ) and ε(s, τ, χ) but I will leave to the reader

the task of verifying that the local functional equation takes the above form. He will probably require

paper and pencil. Since the analytical properties of the functions Φ′(g, s, τ, χ) follow immediately from

previous results I shall not formulate them explicitly either.

(i) k = R

(a) Let M be a continuous homomorphism of R× × R× into C×. Let

M((t1, t2)) = |t1|s1 |t2|s2
( t1
|t1|

)m1
( t2
|t2|

)m2

with m1 and m2 equal to 0 or 1. Suppose (s1 − s2) − (m1 − m2) is not an odd integer. Set χ1(t) =

M((t, 1)), χ2(t) = M((1, t)). Let τ = τM be the simple representation πM introduced in paragraph 2

of my letter to Weil. Set

ξ(s, τ, χ) = ξ
(1
2

+ s, χ1χ
)
ξ
(1
2
, s, χ2χ

)
,

ε(s, τ, χ) = ε
(1
2

+ s, χ1χ
)
ε
(1
2

+ s, χ2χ
)
.

(Notice when verifying this that there is an error in part (i) on page 3.34 of the letter to Weil. ∗ The

second factor in the denominator on the right should be Γ
(
z + |m2 − �| + 1

2
− s

2

)
.)

(b) Let M be a continuous homomorphism of C× into C×. Suppose

M(α) = (Nα)r
αmα−n

|α|m+n
2

with mn = 0, m + n ≥ 0. Let ω be the homomorphism (t1, t2) → |t1t2|r
∣∣ t1
t2

∣∣m+n
2 sgn t1 of R

× × R
×

into C× and let τ = τM be the unique infinite-dimensional irreducible representation deducible from

† They, too, will depend on the choice of a character of k .
‡ I leave it to the reader to give a meaning to τ

((
α 0
0 α

))
in the case of the real or complex field.

∗ in Lemma 3.6 (1998)
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πω . If ξ is a character of R then ξ′(z) = ξ(z + z̄) is a character of C. If χ is a homomorphism of R× into

C× then χ′(α) = χ(Nα) = χ(αᾱ) is a homomorphism of C into C×. Set

ξ (s, τ, χ) = ξ

(
s +

1
2
,Mχ′

)
,

ε(s, τ, χ) = (i sgnu)ε
(
s +

1
2
,Mχ′

)
.

Of course the expressions on the left are for the character ξ and those on the right are for the character

ξ′.

(c) Suppose M is a continuous homomorphism of R××R× into C× of the form (t1, t2) → |t1t2|rsgn t1

or (t1, t2) → |t1t2|rsgn t2. In the first case let χ1(t) = |t|rsgn t, χ2(t) = |t|r ; in the second case set

χ1(t) = |t|r , χ2(t) = |t|rsgn t. the representation πM introduced in paragraph 2 of my letter to Weil is

irreducible. Let τ = τM be πM . Set

ξ(s, τ, χ) = ξ
(1
2

+ s, χ1χ
)
ξ
(1
2

+ s, χ2χ
)
,

ε(s, τ, χ) = ε
(1
2

+ s, χ1χ
)
ε
(1
2

+ s, χ2χ
)
.

(ii) k = C. LetM be continuous homomorphism of C××C× into C×. LetM((t1, t2)) = |t1|s1 |t2|s2
(

t1
|t1|1/2

)m1
(

t2
|t2|1/2

)m
and suppose that neither s1−s2

2
− (

1 + |m1−m2|
2

)
nor s2−s1

2
− (

1 + |m1−m2|
2

)
is a non-negative integer.

The representation πM introduced in paragraph 4 of my letter to Weil is irreducible. Let τ = τM be

πM . Set

ξ(s, τ, χ) = ξ
(
s +

1
2
, χ1χ

)
ξ
(
s +

1
2
, χ2χ

)
,

ε(s, τχ) = ε
(
s +

1
2
, χ1, χ

)
ε
(
s +

1
2
, χ2χ

)
,

if χ1(t) = M((t, 1)) and χ2(t) = M((1, t)).

(iii) k is a non-archimedean field.

(a) LetM be a continuous homomorphism of k××k× into C×. LetM((α, β)) = χ1(α)χ2(β). Suppose

that neither χ1χ
−1
2 nor χ1χ

−1
1 is the character α → |α|. Let τ = τM be the simple representation

associated to the family {T (M,µ,m)}. Set

ξ(s, τ, χ) = ξ
(
s +

1
2
, χ1χ

)
ξ
(
s 1

2
, χ2χ

)
ε(s, τ, χ) = ε

(
s +

1
2
, χ1χ

)
ε
(
s +

1
2
, χ2χ

)
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(b) Suppose K is an unramified extension of k and M is a continuous homomorphism of K× into C×.

Let τ = τM be the representation associated to the family {T (M,µ,m)}. If ξ is a character of k then

ξ′(x) = ξ(Sx) is a character of K . If χ is a continuous homomorphism of k× into C× let χ′ be the

homomorphism α → χ(Nα) of K× into C×. Set†

ξ(s, τ, χ) = ξ
(
s +

1
2
,Mχ′

)
ε(s, τ, χ) = ρ(K/k)ε

(
s +

1
2
,Mχ′

)
The factors on the left are taken with respect to ξ and those on the right with respect to ξ′.

(c) Suppose K is a ramified extension of k and M is a continuous homomorphism of K× into C×.

Let τ = τM be the representation associated to the family {T (M,µ,m)}. If ξ is a character of k then

ξ′(x) = ξ(Sx) is a character of K . If χ is a continuous homomorphism of k× into C× let χ′ be the

homomorphism α → χ(Nα) of K× into C×. Set

ξ(s, τ, χ) = ξ
(
s +

1
2
,Mχ′

)
,

ε(s, τ, χ) = ρ(K/k)ε
(
s +

1
2
,Mχ′

)
,

ρ(K/k) = (1− |π|)|π|− f
2 χ0

(
πf+d

) ∫
O×

ξ
( α

πf+d

)
χ−1

0 (α)dα,

if p−d is the largest ideal on which ξ is trivial. Notice that this expression is independent of the choice

of π but not of ξ. χ0 is of course the unique non-trivial character of k×/NK×.

(d) Suppose M((t1, t2)) = χ1(t1)χ2(t2) is a continuous homomorphism of k× × k× into C× and

suppose χ1χ
−1
2 (α) ≡ |α|. Let τ be the representation associated to the family {T (M,µ,m)}

ξ(s, τ, χ) = ξ
(
s +

1
2
, χ1χ

)
ε(s, τ, χ) = −χχ1(π2d+1)|π|(2d+1)(s−1/2)

if the conductor of χχ1 is o and

ε(s, τ, χ) = (1− |π|)2|π|−d−2nχχ1(π2d+2n)|π|(2d+2n)s

{∫
o×

ξ
( α

πd+n

)
χ−1χ−1

1 (α)dα
}2

if the order of χχ1 is n.

† If p−d is the largest ideal of k on which ξ is trivial and if χ0 is the unique non-trivial character of
k×/NK× then ρ(K/k) = χ0(πd). It is independent of the choice of π.
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(e) Suppose M((t1, t2)) = χ1(t1)χ2(t2) is a continuous homomorphism of k× × k× into C× and

suppose χ−1
1 χ2(α) ≡ |α|. Let τ be the representation associated to the family {T (M,µ,m)}. Set

ξ(s, τ, χ) = ξ
(
s +

1
2
, χ2χ

)
,

ε(s, τ, χ) = −χχ2(π2d+1)|π|(2d+1)(s−1/2),

if the conductor of χχ1 is o and

ε(s, τ, χ) = (1− |π|)2|π|−d−2nχχ2(π2d+2n)|π|(2d+2n)s

{∫
o×

ξ
( α

πd+n

)
χ−1χ−1

2 (α)dα
}2

if the order of χχ2 is n.

The representations of (d) and (e) are anomalous. I do not know if they have any role to play in the

theory of automorphic forms. Before coming to the main theorem there is an observation we should

make. Suppose k is a local field, K a two-dimensional semi-simple algebra over k, and ξ a character

of k. If k is non-archimedean and K is a field we have introduced the symbol ρ(K/k) = ρ(K/k, ξ).

If k = R and K = C and ξ(x) = e2πiux set ρ(K/k, ξ) = i sgnu. If K is not a field set ρ(K/k, ξ) = 1.

Now let k be a global field, K a two-dimensional semi-simple algebra over k, and ξ a character of A/k.

If p is a prime of k let Kp = K ⊗k kp and let ξp be the restriction of ξ to kp. I claim that

Πpρ(Kp/kp, ξp) = 1

This is clear if Kis not a field. If K is a field the (modified) zeta function of K is

ΠPξ(s, 1P) = ξK(s, 1)

On the other hand if χ is the unique non-trivial character of Ik/k×NIK it is

Πpξ(s, 1p)ξ(s, χp)

Taking as our character of AK/K the character x → ξ(Sx) we find that

ξK(s, 1)
ξK(1− s, 1)

= ΠPε(s, 1P) = Πpε(s, 1p)ε(s, χp)

Checking things case by case we find that, for all p,{
ΠP|pε(s, 1P)

}
ρ(Kp/kp, ξp) = ε(s, 1p)ε(s, χp)

The result follows. it is of course well known. I remark it because it shows immediately that the main

theorem is applicable to the Hecke L-series over a quadratic extension of the ground field.
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Appendix. There are a few facts which it will be useful to have at our disposal when proving the main

theorem. For lack of a better place I record them here. Suppose τ
((
α 0
0 α

))
= η(α)I . Let ζ = ζ(χ, s) be

defined by

ζ

((
α 0
0 β

))
= η(β)χ(βα−1)|βα−1|s.

Then the map

ϕ → Φ′( · , s, ϕ, χ)

is a homomorphism of L(ξ, τ) into the unique subspace of L(ζ) transforming according to the repre-

sentation τ (cf. Lemma 3.1 and Lemmas 3.1 and 5.1 of the previous letter). Since we know that, for a

suitable choice of g and ϕ, Φ′(g, s, ϕ, χ) is a non-zero exponential in s, this homomorphism can never

be zero.

On the other hand we know (cf. Lemma 3.5 and the appendix to paragraph 7 of the previous letter)

that for some τ and some continuous homomorphisms ω of Ak =
{(

α 0
0 β

) ∣∣ α ∈ k×, β ∈ k×
}

into C×

there is a “Gk-invariant” map of L(ξ, τ) into the space of function on Gk satisfying ϕ
((

1 x
0 1

)(
α 0
0 β

)
g
)
=

ω
((
α 0
0 β

))
ϕ(g). The image of L(ξ, τ) will, in particular lie in L(ω′) if ω′((α 0

0 β

))
=
∣∣α
β

∣∣1/2ω((α 0
0 β

))
. Thus

if ω′ = ζ(s, χ) it must be a constant multiple of the map ϕ → Φ′( · , s, ϕ, χ).

SupposeL(ζ τ) is an invariant subspace ofL(ω′) which transforms according to the representation

τ . SupposeN1 andN2 are two spaces of functions onGk invariant under the right regular representation

(of {σ,A}, A, or Gk according as k is real, complex, or non-archimedean). Suppose N1 and N2 are

irreducible and transform according to τ . Suppose also that there are isomorphisms T1 and T2 of N1

and N2, respectively, with L(ζ, τ) such that if ϕ ∈ Ni

ϕ

((
α 0
0 β

)
g

)
= ζ

((
α 0
0 β

)){
ϕ(g) + c1 log

∣∣∣α
β

∣∣∣T1ϕ(g)
}

where ci, i = 1, 2 is a non-zero constant. Set T = T−1
2 T1. Then, if ϕ ∈ H1, c2ϕ− c1Tϕ ∈ L(ζ, τ). Thus

N1 + L(ζ, τ) = N2 + L(ζ, τ). if ζ
((
α 0
0 β

))
= η(β)χ(βα−1)|βα−1|2 then the set of functions

d

ds
Φ′( · s, ϕ, χ), ϕ ∈ L(ζ, τ),

would be a possible choice for N1. On the other hand if τ = τM where M is a homomorphism of

k××k× into C× of the form M((α, β)) = χ(αβ) and ω′((α 0
0 β

))
=
∣∣α
β

∣∣1/2χ(αβ) then both L(ω′, τ) and

N2 can be taken† to lie in the space of functions on Gk satisfying ϕ
((

1 x
0 1

)
g
) ≡ ϕ(g).

5. The Main Theorem. Now let k be a global field and let A be the adèle ring of k. The corrected form

of Lemma 7.1 of the previous letter is

† Notice that in part (ii) of Lemma A in the appendix to paragraph 7 of the previous letter one should
have s = 0 and m = 0.
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Lemma 5.1 There is a constant c0 such that if g belongs to GA there is a γ in Gk such that

Πp max(|c|p, |dp|) ≤ c2|det g|1/2 if γg =
(
a b
c d

)
.

There seems little point in including a proof of this.

Let us take the space L as in the previous letter except for making the modification in condition

(iii) required by the change in Lemma 7.1.

Suppose that V is a complex vector space and for each real prime p we have a representation

of {σp,Ap} in V , for each complex prime a representation of Ap on V . If any two operators asso-

ciated to distinct primes commute we shall, for the purposes of this paragraph, say that we have a

“representation” of GA on V .

Suppose in particular that for each prime p we are given a simple representation τp of Gkp
(in

the sense of the previous paragraph) on a vector space Vp. Suppose moreover that for almost all non-

archimedean primes Vp contains a non-zero vector invariant under Gop
. since this vector is determined

up to a scalar factor we have in all but finitely many of the Vp a distinguished one-dimensional

subspace and we can form the tensor product ⊗pVp. The natural “representation” of GA on V will be

denoted ⊗pτp. A “representation” of GA equivalent to such a representation will be called a simple

representation of GA.

Certainly we have a “representation” of GA on L. An invariant subspace of L which transforms

according to a simple representation of GA will be called a characteristic space of automorphic forms.

Suppose L is a characteristic space of automorphic forms and let ξ be a character of k/A. If ϕ ∈ L set

ϕ0(g) =
1

measure(k\A)

∫
k\A

ϕ

((
1 x
0 1

)
g

)
dx,

ϕ1(g) =
1

measure(k\A)

∫
k\A

ϕ

((
1 x
0 1

)
g

)
ξ(x)dx.

As before

ϕ(g) = ϕ0(g) +
∑

α∈k× ϕ1

((
α 0
0 1

)
g

)
.

Suppose the “representation” of GA on Lis equivalent to ⊗pτp. If one of the τp is finite dimensional

it follows rather easily from Lemma 3.5 of this letter and the corollaries to Lemma 3.2 and 5.4 of the

previous letter that, for all ϕ in L, ϕ1(g) ≡ 0. Then ϕ(hg) ≡ ϕ(g) if h ∈ Gk or h = (
(
1 x
0 1

)
) with x ∈ A.

The argument used in the proof of Lemma 2.1 shows rather easily that, if G0 is the group of matrices

of determinant 1 in G, ϕ is a function on GA\G0
A

. Consequently L is one dimensional. We exclude this

case from the following discussion.
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With this case excluded the function ϕ1 can never vanish identically. For a suitable choice of ϕ it

is of the form

ϕ1(g) = ϕ1(Πpgp) = Πpϕp(gp)

with ϕp in L(ξp, τp). Moreover we can suppose that for almost all non-archimedean primes

ϕp(1) = 1

Lemma 5.2 Suppose ϕ0 is different from zero for some ϕ in L. Then there is a continuous homo-

morphism M of k×\I×k×\I such that τp = τMp
for any prime for which τMp

is defined. If τMp
is

not defined and p is archimedean then τp is the unique infinite-dimensional simple representation

deducible from πMp
. if τMp

is not defined and p is non-archimedean τp is the simple representation

associated to the family {T (Mp, µ,m)}. Let M((α,α)) = η(α).

(i) Suppose M((α, β)) = η(β)χ(βα−1)|βα−1|s0 . If M((α, 1)) �≡ M((1, α)) there are constants c1

and c2 such that when ϕ1 is of the above form

ϕ0(g) = c1ΠpΦ′
(
gp, s0 − 1

2
, ϕp, χp

)
+ c2ΠpΦ′

(
gp,−1

2
− s0, ϕp, (η−1χ−1)p

)
If M((α, 1)) ≡ M((1, α)) there are constants c1 and c2 such that when ϕ1 is of the above form

ϕ0(g) = c1ΠpΦ′
(
gp, s0 +

1
2
, ϕp, χp

)
+ c2

d

ds
ΠpΦ′

(
gp, s0 − 1

2
, ϕp, χp

)
.

(ii) Suppose M((β, α)) = η(β)χ(βα−1)|βα−1|s0+1/2. If M((α, 1)) �≡ M((1, α)) there are con-

stants† c1 and c2 such that when ϕ1 is of the above form

ϕ0(g) = c2ΠpΦ′
(
gp, s0 − 1

2
, ϕp, χp

)
+ c1ΠpΦ′

(
gp,−1

2
− s0, ϕp, (η−1χ−1)p

)
If M((α, 1)) ≡ M((1, α) there are constants c1 and c2 such that when ϕ1 is of the above form

ϕ0(g) = c2ΠpΦ′
(
gp, s0 − 1

2
, ϕp, χp

)
+ c1

d

ds
ΠpΦ′

(
gp, s0 − 1

2
, ϕp, χp

)
The proof of this lemma will be based on the appendix to paragraph 4 and Lemma E of the

appendix to paragraph 7 of the previous letter. However the proof of that lemma was written up rather

hastily so I do not have complete confidence in it. I will examine it more carefully later. If it turns out

to be unsatisfactory I shall let you know. In order to get on to the main point I will take Lemma 5.2 for

granted.

† The constants of parts (i) and (iii) are the same.
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In proving the main theorem I shall not enter into questions of convergence. Anything which is not

discussed in the previous letter is taken care of by Lemma 5.2 Thus if χ is a continuous homomorphism

of k×\I into C× and ϕ1 is of the above form∫
I

ϕ1(
(
α 0
0 1

)
g)χ(α)|α|sdα

converges absolutely for Re(s) sufficiently large. It is equal to

{Πpξ(s, τp, χp)} {ΠpΦ′(gp, s, ϕp, χp)}

On the other hand it is equal to∫
k×\I

{
ϕ(
(
α 0
0 1

)
g)− ϕ0(

(
α 0
0 1

)
g)
}
χ(α)|α|sdα

This is equal to the sum of†∫
{α
|α|≥1}

{
ϕ(
(
α 0
0 1

)
g) − ϕ0(

(
α 0
0 1

)
g)
}
χ(α)|α|sdα

and ∫
{α
|α|≤1}

{
ϕ(
(
α 0
0 1

)
g) − ϕ0(

(
α 0
0 1

)
g)
}
χ(α)|α|sdα

The first of these integrals is an entire function of s

On the other hand if ϕ
((
α 0
0 α

)
g
) ≡ η(α)ϕ(g) for α ∈ I∫

{α
|α|≥1}

{
ϕ(
(
α 0
0 1

)(
0 1

−1 0

)
g)−ϕ0(

(
α 0
0 1

)(
0 1

−1 0

)
g)
}

(ηχ)−1(α)|α|sdα

=
∫
{α
|α|≤1}

{
ϕ(
(

0 1
−1 0

)(
α−1 0
0 1

)(
0 1

−1 0

)
g) − ϕ0(

(
α−1 0
0 1

)(
0 1

−1 0

)
g)
}
ηχ(α)|α|sdα

=
∫
{α
|α|≤1}

{
ϕ(
(
α 0
0 1

)
g)−ϕ0(

(
α 0
0 1

)
g)
}
χ(α)|α|sdα

+
∫
{α|α|≤1}

{
ϕ0(

(
α 0
0 1

)
g)−η(α)ϕ0(

(
α−1 0
0 1

)
g)
}
χ(α)|α|sdα

Let us suppose that ϕ0 is not zero for all ϕ and consider the last integral. Let M be the homomor-

phism of Lemma 5.2 and let M((α, β)) = χ1(α)χ2(β). If neither χ1χ nor χ2χ is trivial on the idèles of

† At first we shall discuss the case of a number field. Afterwards the necessary modifications for a
function field will be indicated. The argument of the previous letter was not correct for a function field.
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norm one this integral is zero. Suppose that χ1χ is trivial on the idèles of norm one but χ2χ is not. Let

χ1χ(α) = |α|−s0 . Then the integral is equal to

c1ΠpΦ′ (gp, s0− 1
2
, ϕp, χp

) ∫ 1

0

ts−s0+ 1
2 dt
t
−c2ΠpΦ′(

(
0 1

−1 0

)
gp,−s0− 1

2
, ϕp, (η−1χ−1)p)

∫ 1

0

ts−s0−
1
2 dt
t

= c1
1
2+s−s0 ΠpΦ′(gp, s0− 1

2 , ϕp, χp) + c2
1
2−s+s0

ΠpΦ′(
(

0 1
−1 0

)
gp,−s0 − 1

2ϕp, (η−1χ−1)p).

On the other hand if χ2χ is trivial on the idèles of norm one and χ1χ is not, let χ2χ(α) = |α|−s0 . Then

the integral is equal to

c2
1
2
+ s− s0

ΠpΦ′(gp, s0 − 1
2
, ϕp, χp) +

c1
1
2
− s + s0

ΠpΦ′(
(

0 1
1 0

)
gp,−s0 − 1

2
, ϕp, (η−1χ−1)p).

Since

ΠpΦ′(
(−1 0

0 −1

)
gp, s0 − 1

2
, ϕp, χp) = ΠpΦ′(gp, s0 − 1

2
, ϕp, χp)

it is clear, in this case at least, that these expressions do not change if g is replaced by
(

0 1
−1 0

)
g, χ by

η−1χ−1 and s by −s.

Now suppose that χ1 �= χ2 but both χ1χ and χ2χ are trivial on the idèles of norm 1. Let

χ1χ(α) = |α|−s1 , χ2χ(α) = |α|−s2 . Then the integral is equal to

c1
1
2+s−s1 ΠpΦ′ (gp, s1 − 1

2
, ϕp, χp

)
+ c2

1
2+s−s2 ΠpΦ′ (gp, s2 − 1

2
, ϕp, χp

)
+ c1

1
2−s+s2

ΠpΦ′(
(

0 1
−1 0

)
gp,−s2− 1

2 , ϕp, (η−1χ−1)p)+ c2
1
2−s+s1

ΠpΦ′(
(

0 1
−1 0

)
gp,−s1− 1

2 , ϕp, (η−1χ−1)p).

When χ is replaced by η−1χ−1, s1 is replaced by −s2 and s2 is replaced by −s1. Thus this expression

is not changed if s is replaced by −s, χ by η−1χ−1, and g by
(

0 1
−1 0

)
g.

Finally suppose that χ1 = χ2 and χ1χ(α) = |α|−s0 . Then the integral is equal to

c2
d

ds
ΠpΦ′(gp, s0 − 1

2
, ϕp, χp)

∫ 1

0

t
1
2+s−s0 dt

t

+ ΠpΦ′(gp, s0 − 1
2
, ϕp, χp)

∫ 1

0

(c1 − c2 log t)t
1
2+s−s0 dt

t

− c2
d

ds
ΠpΦ′(

(
0 1

−1 0

)
gp,−s0 − 1

2
, ϕp, (ηχ)−1

p )
∫ 1

0

ts−s0−
1
2
dt

t

−ΠpΦ′(
(

0 1
−1 0

)
gp,−s0 − 1

2
ϕp, (ηχ)−1

p )
∫ 1

0

(c1 + c2 log t)ts−s0−
1
2
dt

t
.

This is of course equal to

c2
1
2+s−s0

d
ds

ΠpΦ′(gp, s0 − 1
2
, ϕp, χp) + c2

1
2−s+s0

d
ds

ΠpΦ′(
(

0 1
−1 0

)
gp,−s0 − 1

2
, ϕp, (ηχ)−1

p )

+
{

c1
1
2+s−s0 + c2

( 1
2+s−s0)2

}
ΠpΦ′ (gp, s0 − 1

2 , ϕp, χp

)
+
{

c1
1
2−s+s0

+ c2

( 1
2−s+s0)

2

}
Πp,Φ′(

(
0 1

−1 0

)
gp,−s0 − 1

2 , ϕp, (ηχ)−1
p )
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It is clear that this does not change if s is replaced by −s, χ by η−1χ−1, and g by
(

0 1
−1 0

)
g.

Putting everything together we see that

{Πpξ(s, τp, χp)} {ΠpΦ′(gp,−s, ϕp, χp)}

is meromorphic in the whole complex plane and equals

{
Πpξ(−s, τp, (ηχ)−1

p )
}{

ΠpΦ′(
(

0 1
−1 0

)
gp,−s, ϕp, (ηχ)−1

p )
}

The second factor is equal to

{Πpε(s, τp, χp)} {ΠpΦ′(gp, s, ϕp, χp)}

Thus if
ξ(s, L, χ) = Πpξ(s, τp, χp),

ε(s, L, χ) = Πpε(s, τp, χp),

ξ(s, L, χ) is meromorphic in the entire complex plane and satisfies the functional equation

ξ(−s, L, (ηχ)−1)ε(s, L, χ) = ξ(s, L, χ).

To investigate its poles we use the fact that for a suitable choice of ϕ and g

ΠpΦ′(gp, s, ϕp, χp)

is an exponential in s. Thus if neither χ1χ nor χ2χ is trivial on the idèles of norm 1 it has no poles. If

ϕ0 = 0 for all ϕ in L then it has no poles for any choice of χ. To find the principal parts at the poles in

the other cases we observe that

1
1
2
+ s− s0

{
ΠpΦ′(gp, s, ϕp, χp) −ΠpΦ′

(
gp, s0 − 1

2
, ϕp, χp

)}
and

1(
1
2 + s− s0

)2{ΠpΦ′(gp, s, ϕp, χp) −Πp

(
gp, s0 − 1

2
, ϕp, χp

)

−
(

1
2

+ s− s0

)
d

ds
ΠpΦ′

(
gp, s0 − 1

2
, ϕp, χp

)}
are entire functions of s.

Thus if χ1χ is trivial on the idèles of norm 1 there are simple poles at s0 − 1
2 and s0 + 1

2 with

residues −c1 and c2ε
(
s0 + 1

2 , L, χ
)

respectively. If χ2χ is trivial on the idèles of norm 1 but χ1χ is
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not there are simple poles at s0 − 1
2

and s0 + 1
2

with residues −c2 and c1ε(s0 + 1
2
, L, χ) respectively.

If χ1 �= χ2 but both χ1χ and χ2χ are trivial on the idèles of norm 1 there are simple poles at s1 − 1
2 ,

s2 − 1
2

, s1 + 1
2

, and s2 + 1
2

with residues −c1, −c2, c2ε
(
s1 + 1

2
, L, χ

)
, c1ε

(
s2 + 1

2
, L, χ

)
respectively.

If χ1 = χ2 there are poles of order two at s0 − 1
2

and s0 + 1
2

. The principal part at s0 − 1
2

is

− c2
(s− s0 + 1/2)2

− c1
s− s0 + 1/2

The principal part at s0 + 1
2

is determined by the functional equation.

For a function field we write our integral as the sum of∫
{α
|α|>1}

{
ϕ(
(
α 0
0 1

)
g)− ϕ0(

(
α 0
0 1

)
g)
}
χ(α)|α|sdα

+
∫
{α
|α|>1}

{
ϕ(
(
α 0
0 1

)(
0 1

−1 0

)
g)− ϕ0(

(
α 0
0 1

)(
0 1

−1 0

)
g)
}
(ηχ)−1(α)|α|−sdα

and ∫
|α|≤1

ϕ(
(
α 0
0 1

)
g)χ(α)|α|sdα

and

−
∫
{α
|α|=1}

ϕ0(
(
α 0
0 1

)
g)χ(α)|α|sdα+

∫
{α
|α|<1}

ϕ0(
(
α−1 0
0 1

)
g)η(α)χ(α)|α|sdα.

The first two of these expressions are clearly entire functions of s which do not change when g is

replaced by
(

0 1
−1 0

)
g, s by −s, and χ by η−1χ−1.

Again let us consider the last expression when ϕ0 is not zero for all ϕ and at least one of χ1χ or

χ2χ is trivial on the idèles of norm 1. If χ1χ is but χ2χ is not, let χ1χ(α) = |α|−s0 . The expression

equals

− c1

1− q−
1
2−s+s0

ΠpΦ′(gp, s0− 1
2
, ϕp, χp)− c2

1− q−
1
2+s−s0 ΠpΦ′(

(
0 1
−1 0

)
gp,−s0− 1

2
, ϕp, (η−1χ−1)p)

If χ2χ is trivial but χ1χ is not, and χ2χ(α) = |α|−s0 it equals

c2

1− q−
1
2−s+s0

ΠpΦ′(gp, s0 − 1
2
, ϕp, χp)− c1

1− q−
1
2+s−s0 ΠpΦ′(

(
0 1
−1 0

)
gp,−s0 − 1

2
, ϕp, (η−1χ−1)p)
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If χ1 �= χ2 but both χ1χ and χ2χ are trivial on the idèles of norm 1 let χ1χ(α) = |α|−s1 and

χ2χ(α) = |α|−s2 . The expression equals

− c1

1− q−
1
2−s+s1

ΠpΦ′
(
gp, s1 − 1

2
, ϕp, χp

)
− c2

1− q−
1
2−s+s2

ΠpΦ′
(
gp, s2 − 1

2
, ϕp, χp

)
− c1

1− q−
1
2+s−s2 ΠpΦ′(

(
0 1

−1 0

)
gp,−s2 − 1

2
, ϕp(η−1χ−1)p)

− c2

1− q−
1
2+s−s1 ΠpΦ′(

(
0 1

−1 0

)
gp,−s1 − 1

2
, ϕp, (η−1χ−1)p)

Finally suppose that χ1 = χ2 and χ1χ(α) = |α|−s0 . The expression yields

− c2

1−q
− 1

2−s+s0

d
ds ΠpΦ′

(
gp,s0− 1

2 ,ϕp,χp

)
− c2

1−q
− 1

2 +s−s0

d
ds ΠpΦ′(

(
0 1

−1 0

)
gp,−s0 1

2 ,ϕp,(ηχ)−1
p )

−

 c1

1−q
− 1

2−s+s0
+c2

d
ds

(
1−q

− 1
2−s+s0

)
(

1−q
− 1

2−s+s0

)2

ΠpΦ′(gp,s0− 1
2 ,ϕp,χp)−

 c1

1−q
− 1

2 +s−s0
−c2

d
ds

(
1−q

− 1
2 +s−s0

)
(1−q−1/2+s−s0)2


The functional equation follows as before. The principal parts at the poles can also be detrmined.

Since I am principally interested in the case of a number field I shall not bother to discuss them explicitly.

Moreover for the converse theorem I shall limit myself to the case of a number field. The statement

and the proof for a function field will differ only in minor points.

For the converse theorem we suppose that, for each prime p, we are given an infinite-dimensional

simple representation τp of Gkp
on Vp. We suppose that for almost all non-archimedean primes there is

a non-zero vector in Vp whose isotropy group contains Gop
. For such a prime there will be a continuous

homomorphism Mp((α, β)) = χ′
p(α)χ′

p(β) of k×p × k×p into C× such that τp = τMp
. We suppose that

there is a constant N > 0 such that for all such p

|χ′
p(π)| ≤ |π|−N |χ′′

p(π)| = |π|−N

if π is a generator of the maximal ideal of op. Let τp

((
α 0
0 α

))
= ηp(α)I if α ∈ k×p . We suppose that

η(α) = η(Πpαp) = Πpηp(αp)

which is a continuous homomorphism of I into C× is trivial on k×.

If χ is a continuous homomorphism of k×\I into C× the product

Πpξ(s, τp, χp) = ξ0(s, χ)
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converges for Re(s) sufficiently large. We suppose that for each χ it is meromorphic in the whole plane,

that it has only a finite number of poles, that it is bounded in the regions obtained by removing circles

about its poles from any vertical strip of finite width, and that the functional equations

ξ0(−s, (ηχ)−1)ξ0(s, χ) = ξ0(s, χ),

with

ε0(s, χ) = Πpε(s, τp, χp),

are satisfied.

We suppose that there are two continuous homomorphisms χ1 and χ2 of k×\I into C× with

χ1χ2 = η and two complex numbers c1 and c2 such that ξ0(s, χ) has no poles unless either χ1χ or χ2χ

is trivial on the idéles of norm 1.

(i) If χ1χ is trivial on the idéles of norm 1 but χ2χ is not and if χ1χ(α) = |α|−s0 there are simple poles

at s0 − 1
2

and s0 + 1
2

with residues −c1 and c2ε0

(
s0 + 1

2
, χ
)

respectively.

(ii) If χ2χ is trivial on the idéles of norm 1 but χ1χ is not and χ2χ(α) = |α|−s0 there are simple poles

at s0 − 1
2 and s0 + 1

2 with residues −c2 and c1ε0

(
s0 + 1

2 , χ
)

respectively.

(iii) If χ1χ(α) = |α|−s1 and χ2χ(α) = |α|−s2 withs1 �= s2 there are simple poles at s1 − 1
2 , s2 − 1

2 ,

s1 + 1
2

, s2 + 1
2

with residues −c1, −c2, c2ε0

(
s1 + 1

2
, χ
)
, c1ε0

(
s2 + 1

2
, χ
)

respectively.

(iv) If χ1χ(α) = χ2χ(α) = |α|−s0 there are poles of order two at s0 − 1
2

and s0 + 1
2

. The principal part

at s0 − 1
2

is

− c2(
s− s0 + 1

2

)2 − c1
s− s0 + 1/2

.

The principal part at s0 + 1
2

is determined by the functional equation.

We allow the possibility that c1 or c2 or both are zero. In particular if

ψ1(g) = ψ1(Πpgp) = ΠpΦ′
(
gp,−1

2
, ϕp, χ

−1
1,p

)
is not, for any choice of the collection {ϕp} with ϕp in L(ξp, τp) such that Gop

lies in the isotropy group

of ϕp for almost all non-archimedean primes and ϕp(1) = 1 for almost all non-archimedean primes,

a function satisfying ψ1(
(
1 x
0 1

)
) = ψ1(g) for all x in A we demand thatc1 = 0. Also if χ1 �= χ2 we

demand that c2 = 0 if for the same choices of the collection {ϕp} the functions

ψ2(g) = ΠpΦ′
(
gp,−1

2
, ϕp, χ

−1
2,p

)
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do not all satisfy ψ2

((
1 x
0 1

)
g
)≡ ψ2(x) for all x ∈ A. If χ1 = χ2 we demand that c2 = 0 if

ψ2(g) =
d

ds
ΠpΦ′

(
gp,−1

2
, ϕp, χ

−1
1,p

)
does not satisfy this condition. Notice that given χ1 and χ2 and the collection {τp} we can, according

ot the appendix to the previous paragraph, decide whether or not ψ1 and ψ2 satisfy these conditions.

Notice also that our theorem will be most interesting when both c1 and c2 are zero.

In any case the converse theorem states that when all these conditions are satisfied there is a

characteristic space of automorphic forms which transforms according to the “representation” ⊗pτp.

To prove it we show that if the collection {ψp} is chosen as above and

ϕ1(g) = Πpϕp(gp)

while

ϕ0(g) = c1ΠpΦ′
(
gp,−1

2
, ϕp, χ

−1
1,p

)
+ c1ΠpΦ′

(
gp,−1

2
, ϕp, χ

−1
2,p

)
if χ1 �= χ2 and

ϕ0(g) = c1ΠpΦ′
(
gp,−1

2
, ϕp, χ

−1
1,p

)
+ c2

d

ds
ΠpΦ′

(
gp,−1

2
, ϕp, χ

−1
1,p

)
if χ1 = χ2 then

ϕ(g) = ϕ0(g) +
∑
α∈k×

ϕ1

((
α 0
0 1

)
g

)
is a function on Gk\GA.

By its very construction it is invariant under left translations by upper triangular matrices in Gk

so the only problem is to show that ϕ(
(

0 1
−1 0

)
g) ≡ ϕ(g). Let us show that for each g the functions

ϕ(
(

0 1
−1 0

)(
α 0
0 1

)
g) and ϕ(

(
α 0
0 1

)
g) on I are equal. Let ϕ1(α) be the function obtained from the second

of these functions by subtracting ϕ0(
(
α 0
0 1

)
g) if |α| ≥ 1 and ϕ0(

(
0 1

−1 0

)(
α 0
0 1

)
g) if |α| ≤ 1. Let ψ2(α)

be the function obtained from the other function by the same process. It is enough to show that

ψ1(α) ≡ ψ2(α). Now if χ is any character of k×\I∫
k×\I

ψ1(α)χ(α)|α|sdα = µ1(s, χ)

is defined for Re(s) sufficiently large and, as we shall see,∫
k×\I

ψ2(α)χ(α)|α|sdα = µ2(s, χ)
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is defined for Re(s) sufficiently small. It is enough to show that, for each χ, µ1(s, χ) and µ2(s, χ) are

entire functions of s which equal each other. We must also show that they are bounded in vertical

strips.

The first integral is equal to the sum of

ξ0(s, χ)ΠpΦ′(gp, s, ϕp, χp)

and ∫
|α|≤1

ϕ0(
(
α 0
0 1

)
g)χ(α)|α|sdα−

∫
|α|≤1

ϕ0

((
α−1 0
0 1

)(
0 1

−1 0

)
g

)
η(α)χ(α)|α|sdα.

The second integral is the sum of∫
k×\I

ϕ1(
(
α−1 0
0 1

)(
0 1

−1 0

)
g)ηχ(α)|α|sdα,

which equals

ξ0(−s, η−1χ−1)ΠpΦ′(
(

0 1
−1 0

)
gp,−s, ϕp, (ηχ)−1

p ),

and of ∫
|α|≥1

ϕ0(
(
α−1 0
0 1

)(
0 1

−1 0

)
g)ηχ(α)|α|s − ϕ0(

(
α 0
0 1

)
g)χ(α)|α|sdα,

which equals the sum of

−
∫
|α|≤1

ϕ0(
(
α−1 0
0 1

)
g)χ−1(α)|α|−sdα

and ∫
|α|≤1

ϕ0(
(
α 0
0 1

)(
0 1

−1 0

)
g)η−1χ−1(α)|α|−sdα.

The functional equation assumed for ξ0(s, χ) together with the local functional equations show

that the first term in the expression forµ2(s, χ) is the same as the first term in the expression forµ2(s, χ).

The second term in the expression for µ1(s, χ) is an integral we have already investigated. We know

that its poles cancel the assumed poles of the first term and that it is given by an analytical expression

which does not change when g is replaced by (
(

0 1
−1 0

)
)g, s is replaced by −s, and χ is replaced by

η−1χ−1. But the second term in the expression for µ2(s, χ) is given by the same analytical expression

except that s is replaced by −s, g by (
(

0 1
−1 0

)
)g, and χ by η−1χ−1. One shows as in the previous letter

that µ1(s, χ) and µ2(s, χ) are bounded in vertical strips. The converse theorem is thus proved.
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