On unitary representations of the Virasoro algebra

The Virasoro algebra b is an infinite-dimensional Lie algebra with basis $L_m, m \in \mathbb{Z}$, and Z and defining relations:

(i) $[L_m, L_n] = (m - n)L_{m+n} + \frac{m(m^2-1)}{12}\delta_{m,-n}Z$

(ii) $[L_m, Z] = 0$

Some representations π of b of particular interest [2] are the Verma modules $(V, \pi) = (V^{h,c}, \pi^{h,c}), h, c \in \mathbb{R}$. They are characterized by the following conditions.

(i) There is a vector $v = v_\phi \neq 0$ in V such that $L_nv = 0, n > 0, L_0v = hv, Zv = cv$.

(ii) Let A be the set of sequences of integers $k_1, \geq k_2, \ldots \geq k_r > 0$ of arbitrary length, and if $\alpha \in A$ let $v_\alpha = \pi(L^{-k_1})\ldots\pi(L^{-k_r})v_\phi$. Then $\{v_\alpha | \alpha \in A\}$ is a basis of V.

Observe that V is just the free vector space with basis $\{v_\alpha\}$ and is thus independent of h and c. It is easy to see [1] that there is a unique sesquilinear form $\langle u, v \rangle = \langle u, v \rangle^{h,c}$ on V with the properties:

(i) $\langle v_\phi, v_\phi \rangle = 1$;

(ii) $\langle u, v \rangle = \overline{\langle v, u \rangle}$;

(iii) $\langle \pi(L_m)u, v \rangle = \langle u, \pi(L_{-m})v \rangle, m \in \mathbb{Z}$.

If this form is non-negative then the representation ρ of b on the quotient of V by the space of null vectors is unitary, in the sense that

$$\rho(L_m)^* = \rho(L_{-m}).$$

Theorem FQS. The form $\langle \cdot, \cdot \rangle_{h,c}$ is non-negative only if either $c \geq 1, h \geq 0$ or there exists an integer $m \geq 2$ and two integers $p, q, 1 \leq p < m, 1 \leq q \leq p$, such that

$$c = 1 - \frac{6}{m(m+1)}, \quad h = \frac{(m+1)p - mq)^2 - 1}{4m(m+1)}.$$

This theorem has been proven by Friedan-Qiu-Shenker [1]. The sketch of the proof that they provided was unconscionably brief, and has evoked some scepticism among mathematicians. In this

note, which grew out of a series of lectures at the Centre de recherches mathématiques that overlapped the workshop, details are worked out. In the meantime, Friedan, Qiu and Shenker have themselves provided them [3], but the present account, which turns out to diverge from theirs in some respects, may still be a useful supplement to it. Several other authors have proven that the conditions of the theorem are not only necessary but also sufficient for non-negativity, but that is not the concern here.

The proof proceeds by lemmas. I write Lv rather than $\pi(L)v, L \in \mathfrak{v}, v \in \mathfrak{v}$.

Lemma 1. If (\cdot, \cdot) is non-negative then $h \geq 0, c \geq 0$.

Proof. Since $L_n L_{-n} v_\phi = L_{-n} L_n v_\phi + 2n h v_\phi + \frac{n(n^2-1)}{12} c v_\phi$, we have $\langle L_{-n} v_\phi, L_{-n} v_\phi \rangle = 2n h + \frac{n(n^2-1)}{12} c$.

Taking n first equal to 1 and then very large we obtain the lemma.

For arbitrary m we set $c = c(m) = 1 - \frac{6}{m(m+1)}, h_{p,q} = h_{p,q}(m) = \frac{(m+1)p-mq)^2-1}{4m(m+1)}, p, q \in \mathbb{N}$.

Observe that $c(-1-m) = c(m)$ and that $h_{p,q}(-1-m) = h_{q,p}(m)$.

Lemma 2.

(a) For $1 < c < 25, m$ is not real and neither is $h_{p,q}(m)$ unless $p = q$.

(b) As m runs from 2 to ∞, c increases monotonically from 0 to 1.

(c) For $c > 1, -1 < m < 0$.

(d) If $-1 < m < 0$ then $h_{p,q}(m) < 0$ unless $p = q = 1$ when $h_{p,q}(m) = 0$.

(e) If $p = q$ then $h_{p,q}(m) = \frac{p^2-1}{24} (1-c)$.

(f) If $p \neq q$ then $h_{p,q} + h_{q,p} = \frac{p^2+q^2-2}{24} (1-c) + \frac{(p-q)^2}{2}$.

In addition $h_{p,q} h_{q,p}$ is equal to

$$\frac{(p^2q^2 - p^2 - q^2 + 1)}{16 \cdot 36} (1-c)^2 + \frac{2p^2q^2 - pq(p^2 + q^2) - (p - q)^2}{48} (1-c) + \frac{(p^4 + q^4 - 4pq^3 - 4p^3q + 6p^2q^2)}{16}.$$
hermitian linear transformation $H_n = H_n(h, c) : \langle u, v \rangle_n = \{H_n u, v \}_n$. Let $P(n)$ be the dimension of V_n. It is the number of partitions of n. The Kac determinant formula (cf. [1]) is the key to the proof of Theorem FQS.

Kac determinant formula. If $c = c(m)$ then

$$\det H_n(h, c) = A_n \prod_{k \leq n} (h - h_{p,q})^{P(n-k)},$$

where A_n is a positive constant.

Lemma 3. The form $\langle \cdot, \cdot \rangle_n$ is non-negative for $h \geq 0, c \geq 1$.

Proof. By continuity it suffices to treat pairs for which $h > 0, c > 1$. Since the previous lemma implies that $\det H_n(h, c)$ is nowhere zero in this region, it suffices to prove that the form is positive for one pair (h, c). If $\alpha = (k_1, \ldots, k_r), r = r(\alpha), n(\alpha) = k_1 + \ldots + k_r$, set $v'_\alpha = L_{-k_r} \ldots L_{-k_1} v_\phi$. It is generally different than v_α. It clearly suffices to show that for a given c and h large,

$$\langle v'_\alpha, v'_\alpha \rangle = c_\alpha h^{r(\alpha)} (1 + o(1)), \quad c_\alpha > 0 \quad (3.1)$$

$$\langle v'_\alpha, v'_\beta \rangle = o(h^{r(\alpha) + r(\beta)})/2), \quad \alpha \neq \beta. \quad (3.2)$$

This is proved by induction on $n(\alpha) + n(\beta)$. First of all $L_k^a L_{-k}^a$ is equal to

$$L_k^{a-1}(bL_0 + d)L_{-k}^{a-1} + L_k^{a-1} L_{-k} L_k L_{-k}^{a-1}, \quad b > 0.$$}

Moving the single L_k in the second term ever further to the right, we obtain finally $L_k^a L_{-k}^a = L_k^{a-1}(bL_0 + d)L_{-k}^{a-1} + L_k^{a-1} L_{-k} L_k L_{-k}^{a-1}, \quad b > 0$. Take $k_1 \geq k_2 \geq \ldots \geq k_r > k$. If $\alpha = (k_1, \ldots, k_r, k, \ldots, k)$, then

$$\langle v'_\alpha, v'_\alpha \rangle = \langle L_{k_1} \ldots L_{k_r} L_k^a L_{-k_r} \ldots L_{-k_1} v_\phi, v_\phi \rangle$$

$$= c_{k_1, \alpha} h(1 + o(h))\langle L_{k_1} \ldots L_{k_r} L_k^{a-1} L_{-k_r} \ldots L_{-k_1} v_\phi, v_\phi \rangle$$

$$+ \langle L_{k_1} \ldots L_{k_r} L_k^{a-1} L_{-k_r} L_k L_{-k_r} \ldots L_{-k_1} v_\phi, v_\phi \rangle$$

with $c_{k_1, \alpha} > 0$. In the second term we move the L_k further and further to the right obtaining the sum of
\((k + k_r) \langle L_{k_1} \ldots L_{k_r} L_k^{-a-1} L_{-k}^a L_{-k-1} \ldots L_{-k_{j+1}} L_{-(k_{j-1})} \ldots L_{-k_1} v_\phi, v_\phi \rangle. \)

The induction assumption together with the defining relations for \(\nu \) implies readily that each of these terms is \(o(h^{r(\alpha)}) \) and that

\[
\langle L_{k_1} \ldots L_{k_r} L_k^{-a-1} L_{-k}^a L_{-k-1} \ldots L_{-k_{j+1}} L_{-(k_{j-1})} \ldots L_{-k_1} v_\phi, v_\phi \rangle = \langle \nu_\gamma, \nu_\gamma' \rangle = c_\gamma h^{r(\gamma)} (1 + o(1)),
\]

if \(\gamma = (k_1, \ldots, k_r, k, \ldots, k) \), with \(k \) repeated \(a - 1 \) times, so that \(r(\alpha) = 1 + r(\gamma) \).

On the other hand, if \(\beta = (\ell l_1, \ldots, \ell l_s, k, \ldots, k) \), with \(k \) repeated \(a' \leq a \) times, \(a > 0, a' \geq 0, \ell l_s \geq k \) even if \(a' = 0 \), then

\[
\langle \nu_\beta, \nu_\alpha' \rangle = \langle L_{k_1} \ldots L_{k_r} L_k^{a'} L_{-\ell l_1} \ldots L_{-\ell l_1} v_\phi, v_\phi \rangle
\]

is equal to the sum of

\[
c_{k,a'} h(1 + o(1)) \langle L_{k_1} \ldots L_{k_r} L_k^{-a-1} L_{-k}^a L_{-\ell l_1} \ldots L_{-\ell l_1} v_\phi, v_\phi \rangle
\]

and

\[
\Sigma_j (k + \ell l) \langle L_{k_1} \ldots L_{k_r} L_k^{-a'-1} L_{-k}^a L_{-\ell l_1} \ldots L_{-\ell l_{j+1}} L_{-(\ell l_{j} - k)} \ldots L_{-\ell l_{j-1}} \ldots L_{-\ell l_1} v_\phi, v_\phi \rangle.
\]

We take \(c_{k,0} = 0 \) if \(a' = 0 \). So induction yields (3.2).

Observe that if \(m > 0 \) and \(p > q \) then \(h_{p,q} > h_{q,p} \). If \(h \geq 0 \) and \(m > 0 \) define \(M > 0 \) by

\[
M^2 = 1 + 4m(m+1)h.
\]

Then \(M \geq 1 \). Let \(D \) be the closed shaded region in the diagram I. It is bounded by the lines

\[
mx - (m + 1)y = \pm M \text{ and } (m + 1)x - my = M.
\]
Lemma 4.

(a) \(h_{p,q} \geq h \geq h_{q,p} \) if and only if \((p,q) \in D\).

(b) \(D \) contains an integral point \((p,q)\) with \(q > 0\).

Proof. Since \(h_{p,q} \geq h \) if and only if \(((m+1)p - mq)^2 \geq M^2 \) and \(h \geq h_{q,p}\) if and only if \(((m+1)q - mp)^2 \leq M^2\), the first statement of the lemma is clear. For the second choose a large integer \(p \) and let \(a = \frac{mp-M}{m+1} \). Then the points \((p,q)\) with \(a \leq q \leq a + \frac{2M}{m+1} \) lie in \(D \). So do the points \((p+1,q), a + \frac{m}{m+1} \leq q \leq a + \frac{m+2M}{m+1} \) and so on. So we need only show that one of the intervals \([a + \frac{km}{m+1}, a + \frac{km+2M}{m+1}], k \in \mathbb{Z}, k \geq 0\), contains an integer. This is clear if \(\frac{m}{m+1} \) is irrational. Otherwise, increasing \(q \) if necessary, we may suppose that \(a \) is as close to its integral part as any \(a + \frac{km}{m+1} \). Then \(a + \frac{m}{m+1} < [a] + 1 \), but \(a + \frac{m+2M}{m+1} \geq a + \frac{m+2}{m+1} > [a] + 1 \), and the interval \([a + \frac{m}{m+1}, a + \frac{m+2M}{m+1}]\) contains \([a] + 1\).

Let \(p(h,c) = \min_{(p,q) \in DP} p \) and let \(q(h,c) = \min_{(p,q) \in Dq} q \). It is clear that

\[
P(h,c) = (p(h,c), q(h,c)) \in D.
\]

In the following geometrical arguments, it is sometimes necessary to recall that \(h - h_{p_0,p_0} < 0 \) if and only if \(p_0 > M \).
Lemma 5. If $P(h,c)$ lies in the interior of D then (v,v) assumes negative values in V.

Proof. Let $(p,q) = P(h,c)$ and let $n = pq$. If $p_0 q_0 \leq n$, $p_0 \geq q_0$ and $(p_0, q_0) \neq (p, q)$ then either $p_0 < p$ or $q_0 < q$ so that $(p_0, q_0) \notin D$. In general set

$$
\phi_{p_0, q_0} = (h - h_{p_0, q_0}), \quad p_0 \neq q_0,
$$

$$
= h - h_{p_0, q_0}, \quad p_0 \neq q_0.
$$

If $(p_0, q_0) \notin D$ and $p_0 \neq q_0$ then $\phi_{p_0, q_0} > 0$.

Suppose that for some p_0 with $p_0^2 \leq pq$ we had $h - h_{p_0, p_0} < 0$. Then there would be a minimum such p_0 and if $n_0 = p_0^2$ then

$$
\det H_{\alpha_0} = A_{\alpha_0} \prod_{\substack{p_1 \geq q_1, \\
n_1 = p_1 q_1 \leq n_0}} \phi_{p_1, q_1}^{P(n_0-n_1)}
$$

Since $P(h,c)$ lies in the interior of D, $p \neq q$ and none of the pairs (p_1, q_1) that intervene here lie in D. Moreover, all terms of the products are positive save $\phi_{p_0, p_0}^{P(0)} = \phi_{p_0, p_0}$. Since this is negative, $\langle \cdot, \cdot \rangle$ assumes negative values on V_{n_0}.

If, however, $\phi_{p_0, p_0} > 0$ for all $p_0 \leq q$ then the same argument shows that $\det H_n < 0$, so that $\langle \cdot, \cdot \rangle$ assumes negative values on V_n.

The treatment of those points (h, c) for which $P(h, c)$ lies on the boundary of D is more delicate. There are at first three possibilities for $(p, q) = P(h, c)$:

(A) $mp - (m + 1)q = M$;

(B) $(m + 1)p - mq = M$;

(C) $mp - (m + 1)q = -M, p \neq q$;

Lemma 6. The case (C) above does not occur.

Proof. It is clear from the diagram defining D that in case (C), $p \geq M, q \geq M$. If $q = 1$ then $M = 1$ and $p = 1$, so that we have rather case (B). If $q > 1$ then $p > 1$ and $(m + 1)(q - 1) - m(p - 1) = (m + 1)q - mp - 1$, so that $M > (m + 1)(q - 1) - m(p - 1) > -M$. Moreover, $(m + 1)(p - 1) - m(q - 1) - M = (m + 1)(p - 1 - q) - m(q - 1 - p) = (2M + 1)(p - q) - 1$. Since $m \geq 2$ this is positive if $p \neq q$. Consequently $(p - 1, q - 1) \in D$, and this is a contradiction.

Fix (p, q). In case (A) we have $h = h_{q,p}(m), c = c(m)$. In case (B) we have $h = h_{p,q}(m), c = c(m)$.
Lemma 7.
(a) The set of all \(m \geq 2 \) for which \(h = h_{q,p}(m), c = c(m) \) yields case (A) is the interval \(m > q + p - 1 \).

(b) The set of all \(m \geq 2 \) for which \(h = h_{p,q}(m), c = c(m) \) yields case (B) is the interval \(m > q + p - 1 \) if \((p, q) \neq (1, 1) \) and is the interval \(m \geq 2 \) if \((p, q) = (1, 1) \).

It will be helpful, when proving this and the following lemmas, to keep the diagrams IIA and IIB in mind.

Diagram IIA

Proof. We first show that if \(h_{q,p}(m_0), c(m_0) \) yield case (A) then so does \((h_{q,p}(m), c(m)) \) for \(m \geq m_0 \). It is clear from the diagram that it is sufficient to verify that \(M, \frac{M}{m+1}, \) and \(\frac{M}{m} \) are increasing functions of \(m \). But \(M = m(p - q) - q, \frac{M}{m} = (p - q) - \frac{q}{m}, \frac{M}{m+1} = (p - q) - \frac{p}{m+1} \). It is also clear that
we can decrease \(m \) without passing out of case (A) so long as \(M = m(p - q) - q \) remains greater than or equal to 1 and \((m + 1)(p - 1) - mq > mp - (m + 1)q\). But

\[
(m + 1)(p - 1) - mq = mp - (m + 1)q \iff m = p + q - 1.
\]

As we decrease to these points, \(M \) decreases to

\[
(p + q - 1)(p - q) - q = p^2 - q^2 - p = (p - 1)^2 - q^2 + p - 1.
\]

This number is greater than 1 because \(p > q \geq 1 \).

For case (B), \(M = m(p - q) + p \) is a non-decreasing function of \(m \), and \(\frac{M}{m} = (p - q) + \frac{p}{m} \cdot \frac{M}{m+1} = (p - q) + \frac{q}{m+1} \) are decreasing functions. Since the slope of \(mp - (m + 1)q = M \) is \(1 - \frac{1}{m+1} \), it is increasing and the conclusion is the same. The minimal value of \(m \) is given by

\[
(m + 1)p - mq = mp - (m + 1)(q - 1) \iff m = p + q - 1.
\]

because
\[(p + q - 1)(p - q) + p = p^2 - q^2 + q \geq 1,\]

unless \(p = q = 1\) when \(m\) cannot go below 2.

In case (A) the intersection of the two lines \((m + 1)x - my = M\) and \(x - y = p - q - 1\) is a point \((x(m), y(m))\) with \(p' \geq x(m) > p' - 1\) where \(p'\) is an integer, \(p' \geq p\). If \(x(m) = p'\) then \(y(m) = q' = p' - p + q + 1,\) and \(m = p' + q.\) Thus \(m \in \{2, 3, \ldots\}, p' < m, q' \leq p'\) and \(c = c(m), h = h_{p', q'}(m).\)

In case (B) the intersection of the lines \(x - y = p - q + 1\) and \(mx - (m + 1)y = M\) is a point \((x(m), y(m))\) with \(p' \geq x(m) > p' - 1, p' - 1 \geq p.\) If \(x(m) = p'\) then \(m = p + q'\) lies in \(\{2, 3, \ldots\}, q \leq p, p < m\) and \(c = c(m), h = h_{p, q}(m).\)

Thus to prove the theorem it suffices to establish the following proposition.

Proposition. If case (A) or (B) obtains and \(p' > x(m) > p' - 1\) then the form \(\langle \cdot, \cdot \rangle\) assumes negative values in \(V.\)

We assume the contrary and derive a contradiction. We occasionally abbreviate \(c(m)\) to \(c\) and \(h_{q, p}(m)\) or \(h_{p, q}(m)\) to \(h(m)\) or to \(h.\)

Lemma 8.

(a) Suppose \(p' > x(m) > p' - 1.\) If \((p_1, q_1)\) lies on the boundary of \(D(h, c)\) and \(p_1q_1 \leq p'q'\) then \((p_1, q_1) = (p, q).\)

(b) Define \(m'\) by \(p' = x(m')\) and set \(c' = c(m'), h' = h_{q, p}(m')\) or \(h_{p, q}(m').\) If \((p_1, q_1)\) lies on the boundary of \(D(h', c')\) and \(p_1q_1 \leq p'q'\) then \((p_1, q_1)\) is \((p, q)\) or \((p', q').\)

Proof. Set \((x, y) = (x(m), y(m))\) and define \(z, z'\) as indicated by the diagrams. It clearly suffices to show that in case (A) \(y - z < 2, z' - x < 2,\) and that in case (B), \(x - z < 2, z' - y < 2.\) In case (A) elementary algebra yields \(m = x + q, y - z = \frac{x + z}{m} = 1 + \frac{y - q}{x + q}\) and \(\frac{y - q}{x + q} = \frac{z - y}{x - p} \cdot \frac{z - q}{x - p} < 1.\) On the other hand \(z' - x = \frac{x + y}{m} = 1 + \frac{y - q}{p + y - 1} < 2.\) A similar argument works for case (B).

Since \(p, q\) and \(p'\) are fixed it will be useful to let \(C\) denote the curve \(c = c(m), h = h_{q, p}(m)\) (A) or \(h = h_{p, q}(m)\) (B), \(m > p' - 1.\)
Lemma 9.

(a) If \(x(m) > p' - 1, x(m) \neq p' \), and \(n_1 \leq n' \), then the dimension of the space of null vectors in \(V_{n_1} \) is \(P(n_1 - n) \).

(b) If \(x(m) = p' \) and \(n_1 < n' \) then the dimension of the space of null vectors in \(V_{n_1} \) is \(P(n_1 - n) \), but if \(n_1 = n' \) it is \(P(n_1 - n) + 1 \).

Proof. Observe that \(P(n_1 - n) = 0 \) if \(n_1 < n \) and that when this is so the lemma is clear. So take \(n_1 \geq n \) and denote the pertinent dimension by \(d_{n_1}^0 \). We begin by showing that \(d_{n_1}^0 > 0 \) and that \(d_{n_1}^0 \leq P(n_1 - n) \) unless \(x(m) = p' \) and \(n_1 = n' \) when \(d_{n_1}^0 \leq P(n_1 - n) + 1 \).

For \(0 \leq c < 1, m \) is locally an analytic function of \(c \) and we may write \(h_{p,q}(m) = h_{p,q}(c) = h(c) \) or \(h_{q,p}(m) = h_{q,p}(c) = h(c) \). Fix \(c \) and consider \(H_{n_1}(h, c) \) as a function of \(h \) near \(h(c) \). Its eigenvalues are the roots of a polynomial equation with real analytic, indeed polynomial, coefficients and they are all real for \(h \) real. It is easily seen that this implies that there is no ramification at \(h = h(c) \) and that in a neighborhood of this point there are expansions

\[
\alpha_i(h) = \alpha_{i0} + \alpha_{i1}(h - h(c)) + \alpha_{i2}(h - h(c))^2 + \ldots, \quad 1 \leq i \leq P(n_1)
\]

for the eigenvalues of \(H_{n_1} \). Thus

\[
\det H_{n_1}(h, c) = \Pi_{i=1}^{P(n_1)} (\alpha_{i0} + \alpha_{i1}(h - h(c)) + \ldots),
\]

and the power of \(h - h(c) \) that divides it is greater than or equal to the number of zero eigenvalues of \(H_{n_1}(h(c), c) \). On the other hand, the left side is equal to

\[
A_n \Pi_{k \leq n_1} \Pi_{p_1, q_1 = k} (h - h_{p_1, q_1}(c))^P(n_1 - k),
\]

and \(h_{p_1, q_1}(c) = h(c) \) only if \((p_1, q_1) \) or \((q_1, p_1) \) lies in boundary of \(D \). Thus the assertion follows from Lemma 8.

Choosing \(n_1 = n \), we see in particular that the dimension of the null space of \(V_n \) is 1. Thus if \(m > p' - 1 \) then in a neighborhood of \((h(m), c(m)) \) we can find an analytic function \(v(h, c) \) with values in \(V_n \) such that \(v(h, c) \) has length 1, is an eigenvector of \(H_n(h, c) \), and corresponds to the eigenvalue 0 when \((h, c) \) falls on the curve \(C \).
Since

\[L_0 v(h(m), c(m)) = (h(m) + n)v(h(m), c(m)), \]

\[L_k v(h(m), c(m)) = 0, \quad k > 0, \]

there is a homomorphism of \(v \)-modules, \(\phi : V^{h(m)+n,c(m)} \to V^{h(m),c(m)} \), taking \(v_{\phi}^{h(m)+n,c(m)} \) to \(v(h(m), c(m)) \). If it is injective on \(V^{h(m)+n,c(m)} \) then \(d_{n_1}^0 \geq P(n_1 - n) \) because the image consists of null vectors. Since \(d_{n_1}^0 \) is lower semicontinuous, \(d_{n_1}^0 \) will be greater than or equal to \(P(n_1 - n) \) everywhere on \(C \) if it is so on a dense set. The homomorphism \(\phi \) will be injective if \(\det H_{n_1-n}^{h(m)+n,c(m)} \neq 0 \) because the kernel consists of null vectors. So it is enough to show that this determinant does not vanish identically on \(C \). However, if \(h(m) + n = h_{p_1,q_1}(m) \) then

\[((m+1)p + mq)^2 = ((m+1)p_1 - mq_1)^2 \]

or

\[(mp + (m+1)q)^2 = ((m+1)p_1 - mq_1)^2. \]

This can occur for at most two values of \(m \).

It remains to show that at \(m' \) the dimension of the space of null vectors in \(V_{n'} \) is \(P(n' - n) + 1 \). For this we need further lemmas.

Lemma 10. \(\det H_{n'-n}^{h(m')+n,c(m')} \neq 0. \)

Proof. It has to be shown that equality \(h(m') + n = h_{p_1,q_1}(m'), p_1q_1 \leq n' - n \) is impossible. This equality amounts to

\[(m'p + (m'+1)q)^2 = ((m'+1)p_1 - m'q_1)^2 \quad (A) \]

or

\[((m'+1)p + m'q)^2 = ((m'+1)p_1 - m'q_1)^2. \quad (B) \]

It is not supposed that \(p_1 \geq q_1. \)
The first equation implies that \(m'p + (m' + 1)q = \pm((m' + 1)p_1 - m'q_1) \) or \(m'(p \pm q_1) = (m' + 1)(\pm p_1 - q) \). Since \(m' \) is an integer this implies \((p \pm q_1) = a(m' + 1), (\pm p_1 - q) = am' \). Since \(n' = p'q' = (m' - q)(m' - p + 1) \) the inequality \(n' \geq n + p_1q_1 \) becomes

\[
(m' - q)(m' - p + 1) \geq a(m' + 1)q - am'p + a^2m'(m' + 1)
\]
or

\[
((1 + a)(m' + 1) - p)((1 - a)m' - q) \geq 0.
\]

Since \(m' = p' + q = p + q' - 1, m' > q, m' + 1 > p \). So the inequality is possible only for \(a = 0 \), but \(a \) cannot be 0. The case \(B \) is treated in a similar fashion.

For \(n_1 < n' \) or \(m \neq m' \) we let \(U_{n_1} = U_{n_1}(m) \) be the space of null vectors in \(V_{n_1} \). For \(h, c \) close to \(h(m'), c(m') \) we let \(U_{n_1}(h, c) \) be the span of

\[
\{ L_{-k_1} \ldots L_{-k_r}v(h, c)| k_1 \geq \ldots \geq k_r > 0, \Sigma k_i = n' - n \}.
\]

We set \(U_{n'}(m) = U_{n'}(h(m), c(m)) \), the two definitions of \(U_{n'}(m) \) coinciding when they both apply. Thus for \(m > p' - 1, U_{n_1}(m) \) is defined and analytic as a function of \(m \). Let \(W_{n_1} \) be its orthogonal complement with respect to the form \(\langle \cdot, \cdot \rangle \). It follows from that part of Lemma 9 already proved that the restriction \(J_{n_1} = J_{n_1}(m) \) of \(H_{n_1} \) to \(W_{n_1} \) is non-singular unless \(n_1 = n', m = m' \). In particular, our assumption, which was made for a particular \(m \), implies that \(J_{n_1}(m) \) is positive for all \(m > p' - 1 \) if \(n_1 < n' \).

Lemma 11. Near \(m' \), \(\det J_{n'}(m) = \delta(m)(m - m') \) where \(\frac{1}{\delta} \geq |\delta(m)| \geq \delta > 0 \).

It will follow from this lemma that the remaining assertion of Lemma 9 is true. In addition the lemma together with our assumption on the non-negativity of \(\langle \cdot, \cdot \rangle \) for a particular \(m, p' > x(m) > p' - 1 \), will imply that the form takes negative values for \(m > m' \) because \(\det J_{n'}(m) \) changes sign at \(m' \).

Let \(v(h, c) \), defined in a neighborhood of \((h(m'), c(m')) \), correspond to the eigenvalue \(\alpha(h, c) \) of \(H_n(h, c) \). All the other eigenvalues of \(H_n(h, c) \) are bounded above and, if the neighborhood is sufficiently small, away from 0. On the other hand, all factors \(h - h_{p_1,q_1}(c) = h - h_{p_1,q_1}(m), c = c(m) \), of \(\det H_n(h, c) \) are bounded away from 0 in a neighborhood of \(h(m'), c(m') \) except for \(h - h(c) \), where
To verify this it is sufficient, for the pertinent basis can be supposed to depend analytically on h, c to verify that they are zero when h is a transformation O.

I claim that the entries in the off-diagonal blocks are bounded in absolute value above and below. So it is enough to consider $U(h,c)$ orthogonal with respect to the form $\langle \cdot, \cdot \rangle_n$. However the basis $\{\phi(v_\alpha)|v_\alpha \in V^{h(m)+n,c(m)}, n(\alpha) = n' - n\}$ is related to such a basis by a matrix whose determinant is bounded in absolute value above and below. So it is enough to consider $\det(\{\phi(v_\alpha), \phi(v_\beta)\})$.

We have

$$
\langle \phi(v_\alpha), \phi(v_\beta) \rangle = \langle L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), v(h,c) \rangle \\
= \{L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), H_{n'}(h,c) v(h,c) \rangle \\
= \alpha(h,c) \{L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), v(h,c) \rangle.
$$

At $h(m), c(m)$ the value of $\det(\{L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), v(h,c) \rangle)$ is

$$
\det((v_\alpha, v_\beta)^{h(m)+n,c(m')})_{n' - n}.
$$

By Lemma 10 this is not 0. Lemma 13 follows.

In a neighborhood of $h(m), c(m)$ we decompose $V_{n'}$ as an orthogonal sum $U_{n'} \oplus W_{n'}$. The linear transformation $H_{n'}(h,c)$, or its matrix with respect to a compatible basis, then decomposes into blocks.

I claim that the entries in the off-diagonal blocks are $O(h - h_{p,q}(c))$ in a neighborhood of $h(m), c(m)$. To verify this it is sufficient, for the pertinent basis can be supposed to depend analytically on h, c, to verify that they are zero when $h = h_{p,q}(c)$, but that is clear by the definition of $U_{n'}$.

It follows that

Lemma 12. In a neighborhood of $(h(m'), c(m'))$ we have $\alpha(h,c) = a(h,c)(h - h(c))$ with $\frac{1}{a} \geq |a(h,c)| \geq a > 0$, a being a constant.

Here $h(c)$ is $h_{q,p}(m)$ (A) or $h_{p,q}(m)$ (B), $c = c(m)$. More generally we have

Lemma 13. Let $K_{n'}(h,c)$ be the restriction of $H_{n'}(h,c)$ to $U_{n'}(h,c)$. Then, in a neighborhood of $(h(m'), c(m'))$, $\det K_{n'}(h,c) = k(h,c)\alpha(h,c)^{P(n'-n)}$, with $\frac{1}{k} \geq |k(h,c)| \geq k > 0$.

Proof. The determinant of $K_{n'}(h,c)$ is that of the form $\langle \cdot, \cdot \rangle_{n'}$, calculated with respect to a basis of $U_{n'}(h,c)$ orthogonal with respect to the form $\{\cdot, \cdot\}_n$. However the basis $\{\phi(v_\alpha)|v_\alpha \in V^{h(m)+n,c(m)}, n(\alpha) = n' - n\}$ is related to such a basis by a matrix whose determinant is bounded in absolute value above and below. So it is enough to consider $\det(\{\phi(v_\alpha), \phi(v_\beta)\})$.

We have

$$
\langle \phi(v_\alpha), \phi(v_\beta) \rangle = \langle L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), v(h,c) \rangle \\
= \{L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), H_{n'}(h,c) v(h,c) \rangle \\
= \alpha(h,c) \{L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), v(h,c) \rangle.
$$

At $h(m), c(m)$ the value of $\det(\{L_{ell_1} \ldots L_{ell_k} L_{-k_1} \ldots L_{-k_r}, v(h,c), v(h,c) \rangle)$ is

$$
\det((v_\alpha, v_\beta)^{h(m)+n,c(m')})_{n' - n}.
$$

By Lemma 10 this is not 0. Lemma 13 follows.
\[\det H_{n'}(h, c) = \det J_{n'}(h, c) \det K_{n'}(h, c) + O((h - h_{p,q}(c))^{P(n'-n)+1}) \]

(1)

If \(J_{n'}(h, c) \) is the matrix in the diagonal block corresponding to \(W_{n'} \). Since

\[\det H_{n'}(h, c) = A_{n'} \Pi_{k \leq n'} \Pi_{p,q_1 = k}(h - h_{p,q_1}(c))^{P(n'-p_1q_1)} \]

we may divide the relation (1) by \((h - h_{p,q_1}(c))^{P(n'-n)} \) and then set \(h = h_{p,q}(c), c = c(m) \). The result clearly yields Lemma 11 because \(h(m') = h_{p_1,q_1}(m'), p_1, q_1 \leq n', \) only if \((p_1, q_1) \) is \((q, p) \) or \((p', q') \) (case A) or \((p, q) \) or \((q', p') \) (case B).

Our assumption that \(H_{n_1}(h(m), c(m)) \) is non-negative for a given \(m, p' > m > p' - 1 \), has led to the conclusion that \(J_{n_1}(m) \) is positive for large \(m \) and \(n_1 < n' \) but that \(J_{n'}(m) \) has negative eigenvalues for large \(m \). We show not that this is impossible.

As \(m \) approaches infinity, the point \((h(m), c(m)) \) approaches \((h_0, c_0) = \left(\frac{(p-q)^2}{4}, 1 \right) \). If \(p \neq q \) a suitable coordinate on the curve is \(\mu = \frac{1}{m} \). If \(p = q \) we may take \(\mu = 1 - c \). All the matrices \(H_{n_1}(\mu) = H_{n_1}(m) = H_{n_1}(h(m), c(m)) \) are analytic functions of \(\mu \). The eigenvalues of \(H_{n_1}(\mu) \) are given by power series.

\[\alpha_i = \alpha_i(\mu) = \alpha_{i0} + \alpha_{i1} \mu + \alpha_{i2} \mu^2 + \ldots \]

Let \(V^1_{n_1}(\mu) \) be the space spanned by the eigenvectors corresponding to \(\alpha_i \) with \(\alpha_{i0} = 0 \); let \(V^2_{n_1}(\mu) \) be the space spanned by the eigenvectors corresponding to \(\alpha_i \) with \(\alpha_{i0} = \alpha_{i1} = 0 \) and so on. One proves by induction that these spaces are well defined, depend analytically on \(\mu \) (in the sense that we have analytic functions \(v_1(\mu), \ldots, v_{p(n_1)}(\mu) \), such that \(\{v_1(\mu), \ldots, v_{d_1}(\mu)\} \), \(d_k \) = \(\dim V^k_{n_1}(\mu) \) forms a basis of \(V^k_{n_1}(\mu) \) for each \(\mu \), and that \(\mu^{-k} \{H_{n_1}(\mu)v_i(\mu), v_j(\mu)\}, i \leq d_k, j \leq P(n_1) \) is analytic for small \(\mu \). It can even be supposed that \(\{H_{n_1}(\mu)v_i(\mu), v_j(\mu)\} = 0, i \leq d_k, j > d_k \).

Let \(V^k = \oplus_{n_1} V^k_{n_1}(0) \) and \(X^k = V^k/V^{k+1} = \oplus_{n_1} V^k_{n_1}(0)/V^{k+1}_{n_1}(0) \). If \(u = \sum_{i \leq d_k} a_i v_i(0) \in V^k_{n_1}(0) \) and \(v = \sum_{i \leq d_k} b_i v_i(0) \in V^k_{n_2}(0) \), define \((u, v)^{(k)} \) to be 0 if \(n_1 \neq n_2 \), and if \(n_1 = n_2 \) set

\[(u, v)^{(k)} = (u, v)_{n_1}^{(k)} = \sum_{i} \tilde{a}_i \tilde{b}_j \lim_{\mu \to 0} \mu^{-k} \langle v_i(\mu), v_j(\mu) \rangle \]

\[= \sum_{i} \tilde{a}_i \tilde{b}_j \lim_{\mu \to 0} \{\mu^{-k}H_{n_1}(\mu)v_i(\mu), v_j(\mu)\} \]

It is clear that \(H_{n_1}(\mu) \) is non-negative for small \(\mu \) if and only if the forms \((u, v)^{(k)}_{n_1} \) are all positive.
Lemma 14.

(a) The spaces V^k are all invariant under $\pi = \pi^{h_0, c_0}$, so that v operates on X^k.
(b) The form $< \cdot, \cdot >^{(k)}$ on X^k satisfies $< L_m x, y > = < x, L_{-m} y >$, $m \in \mathbb{Z}$.

Proof. Set $L_m(\mu) = \pi^{h(\mu), c(\mu)}(L_m)$ and $L_m = L_m(0)$. We have to show for each n_1 that $L_m v_i \in V^k$ if $v_i = v_i(0)$ and $i \leq d_k$. However

$$L_m v_i = \lim_{\mu \to 0} L_m(\mu) v_i(\mu) = \lim_{\mu \to 0} \Sigma_{j} c_{ij}(\mu) v_j'(\mu)$$

where the c_{ij} are analytic functions of μ. It is to be shown that $c_{ij}(0) = 0$ for $j > d_k$. The primes refer to $n_2 = n_1 - m$ rather than to n_1. In other words it has to be shown that $\{ H_{n_2}(\mu) L_m(\mu) v_i(\mu), v_j'(\mu) \} = O(\mu^k)$ for all ℓ. Since $H_{n_2}(\mu) L_m(\mu) = L_{-m}(\mu) H_{n_1}(\mu)$, the adjoint of $L_{-m}(\mu)$ being taken with respect to the form $\{ \cdot, \cdot \}$, this is clear. So is the second assertion of the lemma.

For any $h \geq 0$ the representation $\pi^{h, 1}$ on $V^{h, 1}$ has a unique irreducible quotient $\rho^{h, 1}$ on $X^{h, 1}$, which by Lemma 3 carries a hermitian form for which $\rho^{h, 1}$ is unitary in the sense that the adjoint $\rho^{h, 1}(L_m)$ is $\rho^{h, 1}(L_{-m})$. Such a form is unique up to a scalar multiple. Take in particular $h = \frac{r^2}{4}, r \in \mathbb{Z}$. Then $h = h_{p_2, q_2}(c)$ if and only if $(p_2 - q_2)^2 = r^2$. In particular, $h = h_{r + 1, 1}(c)$. Thus the lowest weight for a null vector in V is $r + 1$ and $h + r + 1 = \frac{(r + 2)^2}{4}$, so that the kernel of $V^{h, 1} \to X^{h, 1}$ contains a quotient of $V^{h', 1}, h' = \frac{(r + 2)^2}{4}$. Thus $V^{h, 1}$ admits a sequence of invariant subspaces $V^{h, 1} \supseteq V^{h, 1}(1) \supseteq V^{h, 1}(2)$ such that the representation on $V^{h, 1}(0)/V^{h, 1}(1)$ is $\rho^{h, 1}$ and that on $V^{h, 1}(1)/V^{h, 1}(2)$ is $\rho^{h', 1}$. In general set $h^{(\ell)} = \frac{1}{4}(r + 2\ell)^2$.

Lemma 15. $V^{h, 1}$ admits an infinite decomposition series $V^{h, 1}(0) \supseteq V^{h, 1}(1) \supseteq \ldots \supseteq V^{h, 1}(\ell) \supseteq \ldots$ such that the representation on the quotient $V^{h, 1}(\ell)/V^{h, 1}(\ell + 1)$ is $\rho^{h^{(\ell)}, 1}$.

Proof. If $\lambda = h + k, k \in \mathbb{Z}, k \geq 0$, let $d_{\lambda} = \dim\{ v \in V^{h, 1} | L_0 v = \lambda v \}$, $d_{\lambda}(\ell) = \dim\{ v \in X^{h^{(\ell)}, 1} | L_0 v = \lambda v \}$. The lemma follows easily from a formula of Kac([2], Th. 5), according to which $d_{\lambda} = \Sigma_{\ell=0}^{\infty} d_{\lambda}(\ell)$. Indeed, suppose we have constructed an initial segment of the series $V^{h, 1}(0) \supseteq \ldots \supseteq V^{h, 1}(\ell)$. Then $\frac{1}{4}(r + 2\ell)^2$ is a lowest weight in $V^{h, 1}(\ell)$ and $\dim\{ v \in V^{h, 1}(\ell) | L_0 v = \frac{1}{4}(r + 2\ell)^2 \} = 1$. Take $V^{h, 1}(\ell + 1)$ to be the sum of all invariant subspaces of $V^{h, 1}(\ell)$ for which the lowest weight is greater than $\frac{1}{4}(r + 2\ell)^2$.
Now take \(r = p - q \). It follows immediately from the preceding lemma that \(X^k_j \) is the direct sum of irreducible invariant subspaces \(X^k_j \) carrying distinct representations and that the restriction of \(\langle \cdot, \cdot \rangle^k \) to \(X^k_j \) is either positive or negative. The assumption that we are trying to contradict implies that the form is positive if \(X^k_j \) contains non-zero vectors of weight \(h + n_1, n_1 < n' \), but that for some \(j \) and \(k \) for which \(X^k_j \) contains vectors of weight \(h + n' \), it is negative.

Thus the following lemma completes the proof of Theorem FQS.

Lemma 16. The equation \(\frac{r^2}{4} + n' = \frac{1}{4}(r + 2\ell')^2 \) has no solution \(\ell \geq 0 \) in \(\mathbb{Z} \).

Proof. The equation may be written as \(n' = \ell\ell + r \). Recall that \(n' \) is \((p+a)(q+a+1) \) in case A and \((p+a+1)(q+a) \) in case B, with \(a \geq 0 \). Since \(r = p-q \), the equation is \((p+a+\ell)(q+a+1-\ell) = \ell \) or \((p+a+1-\ell)(q+a-\ell) = -\ell \). Both equations are manifestly impossible.

References

