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1. INTRODUCTION

The geometrical explanation of universality in terms of fixed points of renormalization-group

transformations has met with enormous success, but its lack of precision continues to present a challenge

to the mathematician, even for relatively simple models, such as percolation in two dimensions.

To begin to reflect on the problem, one can assume that the crossing probabilities (cf. [5]) at the

critical probability are universal and can therefore serve as coordinates of the fixed point. The current

climate imposes a more critical stance. Indeed comments of several physicists and mathematical

physicists have made it clear that this hypothesis was not universally shared, or at the very least that

its possible significance was not widely appreciated. We could find no mention of it, or its simple

consequences, in standard texts ([4], [8]).

It is not our intention here to comment further on the initial reflections, which will be developed

further, both numerically and theoretically, elsewhere. It seemed worthwhile none the less, in view of

the disparate views encountered, to examine the hypothesis itself numerically in order to establish a

concrete basis for confidence in the usefulness of the crossing probabilities. Although very crude in

comparison with many of the numerical results on percolation, the evidence that it is the purpose of

this paper to present establishes conclusively that the crossing probabilities are universal, and therefore

suitable coordinates for the fixed point, and that several basic models, to be described later, fall into the

same universality class.

The mathematical consequence is that attention is focussed not on the critical indices, which are

from a mathematical viewpoint both literally and figuratively derived objects, since they are given

hypothetically by eigenvalues of the jacobian matrix of the renormalization group at its fixed point, but

on an object with a more direct mathematical significance, the fixed point itself. The advantage resulting

from the change of focus is of course not only mathematical. Since the new object is of lower order it

is in most respects of easier numerical access, and the authors, by no means specialists in simulation,

have therefore imposed upon themselves standards other than those appropriate for the calculation of

critical exponents. The casual, implicit reference to η|| at the end of the paper notwithstanding, we shall

not be calculating critical indices. We will be comparing functions, and this creates different problems

of accuracy. We have tried, in what seems to us an appropriate substitute for the usual error analysis,

to explain clearly in Section 2 and 3 the sources of inevitable errors, and to estimate their magnitude.

It is best to formulate the questions not as they first presented themselves, but in the more cogent

manner suggested by our experience. Consider, for the sake of precision, percolation by sites or by
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bonds on a lattice at critical probability, and place on this lattice a large rectangle with sides parallel

to the two axes. Take its width to be an and its height to be bn. The positive numbers a and b are

fixed for the moment but n will approach infinity. The exact manner in which the rectangles grow is

unimportant, but to be definite we place the lower left corner at the origin.

For a given state of occupation of the sites or bonds, the notion of a horizontal crossing (or in

the language of [5], an occupied horizontal crossing) of the rectangle necessarily includes an arbitrary

element, because the crossing is from a band on the left to a band on the right, but the exact prescription

of the band in terms of width or other features is often unimportant. Thus the probability πn
h (a, b) is

somewhat ill-defined. None the less the limit

lim
n→∞πn

h (a, b) = πh(a, b) = πh(a/b),

provided it exists, as we assume, is well defined and depends only on the quotient r = a
b

.

The function πh(r) is defined for 0 < r < ∞, is monotone decreasing, and approaches 1 as r

approaches 0 and 0 as r approaches ∞. A similar function πv(r) is defined by vertical crossings, and is

again monotone, but increasing and approaches 0 as r approaches 0 and 1 as r approaches ∞. Granted

the continuity of both functions there is a unique value r0 of r such that

πv(r0) = πh(r0).

If the lattice is symmetric with respect to permutation of the two axes, as for a square lattice with its

usual orientation, then r0 is 1. Otherwise r0 is an invariant of the lattice, or more generally of the

model, whose value appears to be given in the cases considered in this paper by simple formulas that

can be explained heuristically, because they are immediate consequences of a symmetry that is almost

certainly present, but we have not been able to prove them.

The functions πh(r) and πv(r) are clearly not universal, because by changing the aspect ratio of the

lattice we can force πh(1) to take any value between 0 and 1. Our numerical results establish, however,

that the functions

ηh(r) = πh(rr0), ηv(r) = πv(rr0)

are universal. We stress that the models discussed in this paper are symmetric with respect to reflections

in the two coordinate axes. If this condition is not satisfied, universality continues to manifest itself but

differently.
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We presume, although our experiments were restricted to very few models, that the pertinent class

of universality includes all those for which the assumptions of Kesten’s book [2] are valid. In particular,

our conclusions apply to the probabilities π∗
h(r) and π∗

v(r) associated to the dual model. Since

πh(r) + π∗
v(r) = 1, πv(r) + π∗

h(r) = 1,

we conclude that r∗0 = r0.

The equation π∗
v(r) = πv(r) entailed by universality therefore implies that

πh(r) + πv(r) = 1,

and, as a consequence,

ηh(r) + ηv(r) = 1.

These equations are amply confirmed by our experiments.

One implication is that

πh(r0) = πv(r0) =
1
2
.

This equation is readily proved for percolation by bonds on a square lattice, but has not been proven

for percolation by sites on a square lattice. It is, moreover, to our surprise, not an equation whose

validity is immediately recognized, even by specialists, a strong indication that the consequences of

the universality of the crossing probabilities have not always been firmly grasped.

Consider, more generally, intervals α1, . . . , αm, β1, . . . , βm, γ1, . . . , γn, and δ1, . . . , δn on the sides

of the basic rectangle of width a and height b. We introduce the event E that on the dilated rectangle

of width an and height bn there are crossings from the dilation of αi to that of βi for 1 ≤ i ≤ m but no

crossing from the dilation of γj to that of δj for 1 ≤ j ≤ n.

It is natural to suppose once again that the limits of the probabilities

lim
n→∞πn

E(a, b) = πE(
a

b
)

exist, and that

ηE(r) = πE(rr0)

is a universal function, depending only on E. We present some evidence in support of this hypothesis,

but it should be examined more extensively.
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We have confined ourselves to very few events and to very few models, and have, as yet, made

little attempt to examine dilations of curves other than rectangles; nor have we considered percolation

in dimensions other than two. Conversations with Michael Aizenman have greatly clarified our views

as to the nature of the universality manifested by the crossing probabilities, and our understanding

of their invariance under various transformations of the curves defining the event E. In particular,

they have suggested a number of conjectures to which we shall return in a later paper, in which the

modifications required for models with less symmetry than those treated here will also be discussed.

A good deal of the work on the present paper was carried out at the Centre de recherches

mathématiques of the Université de Montréal and the authors are particularly grateful to its systems

manager François Lambert for the help and advice he gave them.

2. EXPERIMENTAL SETTING

The numerical evidence for the universality of crossing probabilities will be obtained on lattices

of finite size. It is therefore imperative to discuss our conventions and the limitations due to finiteness.

This section is devoted to these topics.

2.1 The six finite models and the four crossing functions

We have studied percolation by sites and by bonds on the three regular lattices of the plane: the

square, the triangular and the hexagonal lattices. For each of these six models, 81 different values of

the ratio r = a
b are considered. The integers a and b were so chosen that the product ab remained as

close as possible to 4× 104 while the numbers ln r
r0

distributed themselves uniformly over the interval

(−2, 2). The width a is, in these models, the number of sites in a line, and the height b the number of

sites in a column. To avoid any confusion as to which direction is horizontal and which vertical, we

have included in Figure 1 diagrams of most pertinent lattices.

As explained in the next paragraph, the values of the crossing probabilities in a finite lattice are

quite sensitive to the conventions. Our conventions for percolation by sites are immediate, once we

agree what points of the lattice belong to a rectangle of size (a, b), for a crossing must then join a point

on the extreme left to one on the extreme right. For a square lattice the conventions are clear; for

triangular and hexagonal lattices, we refer the reader to Figures 1a (triangular) and 1b. (hexagonal).
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(a)

(b)

(c)

Fig. 1. (a) A triangular lattice with (width, height)=(5,4), (b) a hexagonal lattice with (width,
height)=(10,5), (c) a triangular lattice with (width, height)=(4,3) for the percolation by bonds.

The conventions for the percolation by bonds are a little more intricate. We used the same

dimensions as for percolation by sites on the corresponding lattice. We chose however to add all bonds

attached to the sites, thereby creating spurious sites on the edges of the lattice. (For the triangular
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lattice, see Figure 1.c where the true sites are depicted by larger dots than the ones used for spurious

sites.) Crossings are taken to start from spurious sites and to end at them.

For each of the six models and each of the 81 values of the ratio r, four crossing probabilities are

to be measured. We denote the horizontal and vertical probabilities by πh and πv. The probability

of a horizontal and a vertical crossing occurring simultaneously is denoted by πhv. Finally πd is the

probability of a “diagonal” crossing: a diagonal crossing is a crossing starting from the upper half of

the left side and reaching the right half of the bottom edge. If either the width or the height is odd, the

diagonal crossing may start from a central site or end at one. The probabilities πhv and πd were added

as examples of the events E described in the introduction.

For the models on a square lattice (with percolation by bonds or by sites), the four crossing

probability functions are related by:

πh(r) = πv(1/r), πhv(r) = πhv(1/r), πd(r) = πd(1/r).

It is useful to introduce a second variable

s = ln
r

r0
.

For the square lattice r0 = 1, and as a function of s, ln πh

πv
is odd, while the functions πhv and πd are

even. As in the introduction, we define r0 for percolation by sites and by bonds on the triangular and

hexagonal lattices as that value of r for which πh(r0) = πv(r0). Then s = 0 at r = r0. If the crossing

probabilities are universal in our sense then the three functions ln πh

πv
, πhv and πd will be symmetric

with respect to the s = 0 axis. A secondary goal of our numerical work is to determine the invariants

r0. (See section 3.2.)

2.2 Sample size and limitations due to finiteness

In addition to the determination of a value for the critical probability, which we discuss in the

following section, we have identified two difficulties in comparing the crossing probabilities for the

six models: their sensitivity to the choice of conventions and the statistical errors. We discuss first the

sensitivity to conventions as the sampling size we choose is partly determined by it.

To understand the sensitivity to conventions, let us consider the bond percolation on a square

lattice and let us label the conventions introduced earlier as the set of rules I. Consider a second set of
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rules, labelled II, for which only the bonds between immediate neighbors among the m × n sites are

drawn. In this new convention no spurious sites need to be introduced. It is clear that

πI
h(m,n) < πII

h (m + 2, n + 2)

since πI
h is the crossing probability on a (m + 2) × (n + 2) lattice with rules II where the horizontal

bonds on the top and bottom lines and the vertical ones on the left and right columns are blocked.

Because of these blocked bonds, the top and bottom lines of the (m + 2) × (n + 2) lattice cannot be

used for horizontal crossings and:

πI
h(m,n) < πII

h (m + 2, n) < πII
h (m + 2, n + 2).

This shows that, to first order in 1
n∣∣∣πII
h (

m

n
) − πI

h(
m

n
)
∣∣∣ >

2
n

∣∣∣(πII
h )′(

m

n
)
∣∣∣ .

Hence a simple change of conventions alter the result by this quantity. Table I gives an idea of the

magnitude of this sensitivity of πh for the two extremes of the measured range of r/r0 and for r/r0 = 1.

The indeterminacy due to the choice of conventions is, as is clear from Table I, substantial and

inevitable. For the general events described in the introduction, and for other models than those

considered here, it is even more serious, because the curves defining E can be strongly curved, or

the symmetry of the model with respect to the coordinate axes severely violated, so that considerable

thought has to be given to the necessary corrections. In the present paper it is sufficient to keep

statistical errors within this indeterminacy. Because of computational limitations, this was not possible

over the whole range of r/r0. Instead we chose to measure each point with a sample size not smaller

than 2.5 × 105. Statistical errors also appear on Table I. (Statistical errors are taken in this paper to

represent a 95% confidence interval.) We observe that it is not πh that appears in the graphs or that

is analyzed in the next section but ln( πh

1−πh
). Since the derivative of this function is (πh(1 − πh))−1,

any error in πh is magnified by a factor of approximately 103 at the ends of our range of investigation,

so that possible statistical errors at the extremes are much larger than suggested by the last column of

Table I. The statistical errors at the extremes are, however, effectively an order of magnitude smaller

than those in the middle. As observed in Section 3, there is another improvement of one order of

magnitude introduced by scaling, so that the figure of 103 is ultimately reduced to 10. Even so, care

has to be exercised with the results for the extreme points.

Table I. Sensitivity to Conventions
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r πh
2
n |π′

h(m
n )| Statistical errors

7.3 7 × 10−4 2 × 10−5 10−4

1 0.5 5 × 10−3 2 × 10−3

0.14 1.0 10−4 10−4

We used a random generator of linear congruential type, xi+1 = (axi + c) mod m, with: a =

142412240584757; c = 11; m = 248. It is of maximal period m.

3. NUMERICAL RESULTS

3.1 The determination of the critical probabilities

Critical probabilities have been studied extensively and in detail in the literature. For several

reasons, we decided none the less to calculate again those we use. First of all, what appears to be a

standard reference ([1]) considers only dimensions greater than two, and does not provide references

to recent work in dimension two. Moreover, for obvious reasons, it gives the probabilities to only four

places. So does, in some cases, [8, p. 17], and we preferred five places. Moreover the recent results

that we could find ([6,9]) give, even when the intervals of error are taken into consideration, discrepant

values. Finally for the investigation of universality of the crossing probabilities for models other than

the standard ones, we will need simple, direct methods for calculating critical probabilities. It seemed

useful to experiment on the standard models with the obvious ones, and to do so independently,

applying clear, easily described principles.

If N = L2 is the lattice size then standard ideas (basically the existence and definition of the critical

index ν [8, §4.1]) suggest that for an accuracy δ in the crossing probability we need an accuracy in the

critical probability of AδL− 1
ν . The value of ν is 4

3
, and, at least, for a lattice of equal width and height,

A can be taken to be of order 1. Here N is about 40000 so that if we take δ = .001 as Table I suggests,

we need the critical probability to within two parts in 100, 000. This is what we have tried to achieve.

For a horizontal crossing on rectangles with large or small aspect ratio r, the value of A = Ah
r could,

however, be much different.
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Finite-size scaling suggests that we introduce the function πh(a, b) of the introduction as a function

of L and r = a
b

, and write it as in formula (55a) of [8] as

πh(a, b) ∼ Φr((p − pc)L
1
ν ),

where the function Φr depends on r. It is difficult to study the function Φr directly since we do not

know its value at 0. We may however also write

πv(a, b) ∼ Ψr((p − pc)L
1
ν ),

and

πh(a, b) + πv(a, b) ∼ Θr((p − pc)L
1
ν ).

The advantage of Θr is that we anticipate, as a result of the universality of crossing probabilities, that

its value at 0 is 1. Thus, if we assume as in [8, §4.1, (55b)], that Θr(x) is a differentiable function of x,

we have

Θr((p − pc)L
1
ν ) = 1 + Ar(p − pc)L

1
ν + B,

where B is of the order of ((p − pc)L
1
ν )2, and thus negligible. The constant Ar is the sum of Ah

r and

Av
r .

Thus to estimate pc and Ar , the latter for a given r, we find, by simulations and for a given L, the

function Θr((p − pc)L
1
ν ), treating it as a linear function of p, and then calculate its intercept with the

line Θ = 1 and its slope. Whatever value we choose ultimately to take as an approximation for pc ,

we can expect that the error it causes in the calculation of πh(r) and πv(r) is comparable to that in the

difference between the values Θr and 1.

On the other hand, we were hesitant to anticipate in our calculations a result, the equality πh(r) +

πv(r) = 1, that we were trying to establish. So we used a second method to calculate pc. We started

once again with the equation (55a) of [8], which asserts that near pc, Φr((p− pc)L
1
ν ) is a linear function

of p. If one takes this seriously, it suffices to calculate the intersection of these two lines for two values

of L in order to calculate both pc and Φr(0) = πh(r). Since the equation (55a) and its variants are by no

means to be taken literally, we preferred to begin by making the procedures they entail explicit in a case

for which pc can be calculated exactly. This allows us also to verify that Ar is not too large for extreme

values of r, on the contrary. We recall those values of the critical probabilities that are known exactly.

For percolation by sites on a triangular lattice and for percolation by bonds on a square lattice pc = 1
2

,

and for percolation by bonds on a triangular lattice and on its dual, the hexagonal lattice, the critical
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probabilities are respectively 2 sin π
18 and 1 − 2 sin π

18 . Moreover the critical probabilities of the two

remaining models have been established by several computational experiments (for site percolation on

a square lattice see [6,9]).

To make the methods we use for the calculation of pc clear, we consider percolation by sites on a

triangular lattice. The choice of this model is easy to justify. Not only is pc known to be 1
2 , but it is also

known that, at p = pc, the relation πh + πv = 1 holds for any value of s, even for finite lattices. We

measured πh and πv for the following lattice sizes:

small lattices large lattices
186 × 215 558 × 644
83 × 480 249 × 1440

and for p from 0.49998 to 0.50002 in steps of size 0.00001. (Even though this is not relevant to the

present discussion, the sizes were so chosen that the ratios 186/215 and 558/644 would make s as close

as possible to 0 and the two other ratios 83/480 and 249/1440 so that s would be near to ln 5. See the

next section.) The number of sites in the small lattices is roughly 4 × 104 and the large lattices contain

9 times that number. For this experiment, the same set of random numbers (between 0 and 248 − 1)

were used for a given grid at the five different values of p. Hence we were sure from the beginning that

the measurements of πh and πv would be increasing functions of p. The sample sizes have been 1005

K for the small lattices and 500 K for the large ones.

We begin with the results for the two lattices with s ∼ 0 thus r ∼ 1. The measured values of

πh + πv , thus the function Θr are plotted on Figure 2.a as functions of p together with linear fits, the

line with the largest slope belonging to the 558 × 644 lattice.

(a)

πh + πv
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1.004

1.002

0.49998 049999
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(b)
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Fig. 2. Numerical determination of pc for the percolation by sites on a triangular lattice:
(a) for the lattices with s ∼ 0, (b) for the lattices with s ∈ ln 5.

The first method yields pc = 0.500003 (for the 186 × 215 lattice) and pc = 0.500001 (for the

558 × 644 lattice). The second yields pc = 0.499999. Calculating A1 by dividing the slopes of the

lines in Figure 2.a by L
1
ν , we obtain in both cases approximately 1.5. Thus our initial estimates of the

accuracy to be expected in the values of πh and πv were too generous, but by a factor of only 1.5.

What are the statistical errors for these numbers? A straightforward analysis using the linear

regression hypothesis gives for the first method an error of 1.2 × 10−7 for the small lattice and of

2 × 10−7 for the large one. For the second method one gets an error of 3 × 10−7. These are not to

be taken seriously however as we failed to satisfy the independence of the measurements of the five

points along the line. Because we used the same set of random numbers at the five values of p, we

must face a possible shift in the intercept of the linear fit. This shift cannot be assumed to be less than

the the accuracy of one of the five points. Since the sample size for the small lattice was 106 and for the

large one 5 × 105, the two methods give the following estimates for pc:

first method
{

pc = 0.500003± 0.000018 for the 186 × 315 lattice
pc = 0.500001± 0.000011 for the 558 × 644 lattice

second method pc = 0.499999± 0.000019.

Hence we can claim to have obtained the value of pc to five places, the last one having an indeterminacy

of ±2. The values coincide with the theoretical pc = 1
2 in the limit of the error.

The values of πh, πv and πhv at p = 0.50000 have been measured to be:

lattice πh πv πhv

186 × 215 0.5010 0.4987 0.3220
558 × 644 0.4995 0.5002 0.3215
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which coincide to four parts in 1000, as we expected. Hence the small lattice will be sufficient for the

purpose at hand.

We turn now to the elongated lattices 83 × 430 and 249 × 1440. The estimates of pc are:

first method
{

pc = 0.49998± 0.00006 for the 83 × 430 lattice
pc = 0.50002± 0.00004 for the 249 × 1440 lattice

second method pc = 0.50005 ± 0.00008.

Moreover, calculating the slopes of the lines in Figure 2.b we obtain for Ar , r now being either about .2

or about 5, the values .084 and .083. This means that for the same accuracy in pc we gain an additional

figure at the ends of the interval. Given the increase in error when we pass to ln( πh

1−πh
) that was

mentioned in Section 2, this improvement is certainly welcome.

For the percolation by sites on square and hexagonal lattices, we chose pc with the help of both

methods described above. These methods agree fairly well to the first four signicant digits. For the

square lattice, we used a 200× 200 and a 600× 600 grid. The sample sizes were 1.5× 106 and 8× 105

respectively. The results are:

first method
{

pc = 0.592712± 0.000014 for the 200 × 200 lattice
pc = 0.592740± 0.000009 for the 600 × 600 lattice

second method pc = 0.592762± 0.000019.

The runs to calculate the functions πh, πv, πhv and πd were started before the final sample size for the

present experiment was reached; pc was set to 0.59272. The above results indicate that 0.59273 (or

even 0.59274) might have been a better choice. The errors introduced by the early choice of pc, if any,

are smaller or equal to the statistical errors.

For the hexagonal lattice, we used a 265 × 153 and a 989 × 571 grid. The sample sizes were

respectively 5 × 106 and 106 and the results are

first method
{

pc = 0.697014± 0.000007 for the 265 × 153 lattice
pc = 0.697034± 0.000006 for the 989 × 571 lattice

second method pc = 0.697049± 0.000011.

We measured the functions πh, πv, πhv and πd at pc = 0.69703.

3.2 The constants r0 and the four functions πh, πv, πhv and πd

Figure 3 shows the results for the percolation by bonds on a hexagonal lattice (dots) together with

polynomial fits for the percolation by sites on a square lattice (curve); the functions plotted are ln πh

1−πh
,
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ln πv

1−πv
, ln πhv and lnπd. (See below for the discussion of the fits.) Since all models are visually

indistinguishable, we present diagrams only for this comparison.

(a)

-2 -1 1 2
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-5
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(b)
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-5

-2.5
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Fig. 3. The four crossing probability functions for the percolation by bonds on a hexagonal lattice
(dots) and by sites on a square lattice (curve): (a) ln[πh/(1 − πh)], (b) ln[πv/(1 − πv)], (c) ln πhv, (d)
lnπd.
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(c)
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Fig. 3. (Continued)

To plot the above curves for the hexagonal lattice, we had to fix the constant r0. The constants

r0 were also sought for the three other models not on the square lattice. Guided by the numerical

evidence, we chose:
r0 =

√
3 for the hexagonal lattice

r0 =
√

3
2

for the triangular lattice

for the models of percolation by sites and by bonds. These values of r0 are those suggested by the

hypothesis that r0 = 1 when the triangular and hexagonal lattices are represented in their usual

symmetric forms, and the fundamental domains not deformed to rectangles as in our programs. Our

numerical simulations strongly confirm these values.

As an example, we fitted a curve through the points of the function ln πh

1−πh
of the model of

percolation by sites on a hexagonal lattice. Since this function is thought to be odd, we used polynomials

with terms (s − a), (s − a)3 and (s − a)5, varying the parameter a to get the best fit. The best a was

0.0010 which corresponds to a difference between
√

3 and the measured value of r0 of 0.1%. (For this
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fit we excluded the three points at both extremities of the range of s because of their low accuracy.)

Similar results were obtained for the other functions and the other models. Because of the simplicity

of their interpretation and the close agreement with those obtained by computation, we henceforth use

the exact values and not the numerical estimates.

To compare the six models, we chose to measure one of them with a good accuracy and to fit the

four curves ln πh

1−πh
, ln πv

1−πv
, lnπhv and ln πd with polynomials of the proper parity; this allowed us

to compare points of different models with neighboring but distinct values of s. The easiest model to

study was the model of percolation by sites on a square lattice since, by symmetry, only 41 of the 81

values of s in the range [−2, 2] need to be measured. For this model we pushed the sample size to over

106. For this size, the errors on the estimates of πh and πv vary from 10−3 for s ∼ 0 to 6 × 10−5 for

s ∼ ±2. (Note that ∆πh(s ∼ 2) � 6× 10−5 is a rather large relative error since πh(s ∼ 2) � 8× 10−4.)

The results for this model are gathered in Appendix A. (Only the first 41 points are given, the others

being obtainable by the permutation width ↔ height.) We have added, for convenience, two columns

with the ratio r and its inverse.

To fit ln πh

1−πh
, we tried odd polynomials with 3 and 4 terms. We tried also to fit the measurements,

excluding the 3 points at both extremities of the range (s ∼ ±2). As the residual sum of squares [7] for

4 terms is almost equal to the the residual sum for 3 terms when the whole set of data is considered

but larger when the extreme points are deleted, we conclude that our numerical study cannot give a

proper estimate of the coefficient of the fourth term. Similar methods were used for ln πhv and ln πd.

The results are:

fit of ln
πh

1 − πh
= ph(s) = −2.062s − 0.305s3 − 0.022s5

fit of ln
πv

1 − πv
= pv(s) = ph(−s)

fit of lnπhv = phv(s) = −1.139 − 1.300s2 − 0.035s4 − 0.005s6

fit of ln πd = pd(s) = −1.122 − 0.618s2 − 0.018s4 − 0.004s6.

To compare each of the remaining models with the above one, we calculated the root-mean-square

deviations from these fits; for example:

∆h =

√
1
n

∑[(
ln

πh

1 − πh
− ph

)
(si)

]2

,

the sum ranging over the n points measured (41 or 81). We also computed rms deviations ∆′, given

by a similar expression but with the 3 points at both extremities of the range of s deleted. (As the
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reader will see, these points are the main source of errors, because of their low accuracy.) The results

are contained in Table II. The first line gives the rms deviations of the measurements used to obtain the

fits and the fits themselves. The others are the deviations of the other models from the above fits for

the percolation by sites on a square lattice. What are the acceptable rms deviations ∆ for the sample

size (∼ 2.5× 10−5) that we used for the other five models? The 7th line (labelled “statistics”) gives the

rms deviations for the measured quantities assuming that the errors are of purely statistical origin.

TABLE II. Deviations from the Fits for the Percolation

by Sites on a Square Lattice

∆h ∆′
h ∆v ∆′

v ∆hv ∆′
hv ∆d ∆′

d

square-sites 0.018 0.012 0.015 0.013 0.013 0.012 0.0047 0.0045
hexagonal-sites 0.023 0.012 0.025 0.022 0.032 0.015 0.0080 0.0074
triangular-sites 0.044 0.024 0.035 0.023 0.041 0.029 0.0186 0.0175
square-bonds 0.030 0.028 0.030 0.022 0.040 0.035 0.042 0.040
hexagonal-bonds 0.043 0.028 0.056 0.035 0.074 0.038 0.027 0.024
triangular-bonds 0.031 0.024 0.036 0.029 0.044 0.030 0.030 0.028

statistics 0.023 0.015 0.023 0.015 0.023 0.015 0.008 0.007
conventions 0.063 0.052 0.063 0.052 — — — —

Note that the models of percolation by bonds are slightly more off than the ones by sites. This

appears to be a consequence of the limitations arising from the convention used, and underlines the

need for the careful choices of §2.1. Recall that the two conventions discussed in section 2.2 led to a

systematic deviation of πh given by
2
n

∣∣∣π′
h

(m

n

)∣∣∣ .
This, by itself, produces a ∆h = 0.063 (or ∆′

h = 0.052). Hence, we conclude that in the limit of

our analysis and in the range of s studied, the four crossing probability functions coincide for the six

models.

Systematic errors are most easily detected by examining 1− πh − πv. In Figure 4.c, for a model of

bond percolation, a systematic positive error is clear. It is also clear in Figure 4.a but there it is negative,

so that πh + πv tends to be greater than 1, even though we used a value for pc that was slightly too
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small. These errors are presumably the result of the finite size of our lattices. For a triangular lattice,

which is self-dual even at a finite size and for which we used a known value of pc, Figure 4.b shows no

systematic error. The left side of Figure 4.a is obtained from the right by reflection, and the one point

on the right far above the horizontal axis appears to be a failing of our random-number generator In

general, the error in πh + πv is seen to remain within the five parts in 1000, that has been our implicit

goal, and the systematic errors, due to the conventions, dominate the statistical errors, especially in

4.c. The differences are smaller for large values of |s| because, for these points, one of the crossing

probabilities is essentially 1 and absolute statistical errors are then minute on the scale chosen for the

graph.
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Fig. 4. The difference (1 − πh − πv) as a function of s: (a) percolation by sites on a square lattice, (b)
percolation by sites on a triangular lattice, (c) percolation by bonds on a triangular lattice.

As a last remark, we compare the results with a prediction of Cardy [2] about the asymptotic

behavior of ηh(r) = πh(r/r0). Using finite-size scaling, he suggests that:

πh(r) ∼ Ce−πr/3,

as r → ∞. In [2] he takes the constant to be 1, but that was an oversight and on the basis of more recent

work ([3]) it appears that it should be 1.42635. Figure 5 displays the points

(r,−πr/3 + ln(C) − lnπh(r/r0)

obtained for site-percolation on a square lattice. It shows clearly the limitations in the accuracy of our

results for the verification of the prediction in this form. They do however permit the verification of a

stronger prediction, a formula for the function ηh (cf. [3]).
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��r=3 + ln(C)� ln�h(r=r0)

Fig. 5. Asymptotic behavior of ln πh.

APPENDIX

Table III contains the four crossing probability functions πh, πv, πhv and πd measured for the

percolation by sites on a square lattice. The numbers were obtained with a sample size of over 106.
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Table III. The Crossing Probability Functions π

width height r r−1 πh πv πhv πd

200 200 1.000 1.0000 0.50072 0.50036 0.32250 0.32480
205 195 1.051 0.9512 0.47499 0.52645 0.32160 0.32637
210 190 1.105 0.9048 0.44926 0.55181 0.31878 0.32299
216 186 1.161 0.8611 0.42149 0.57657 0.31143 0.31892
221 181 1.221 0.8190 0.39796 0.60303 0.30597 0.31835
227 176 1.290 0.7753 0.37071 0.63016 0.29562 0.31297
232 172 1.349 0.7414 0.34925 0.65291 0.28640 0.30787
238 168 1.417 0.7059 0.32400 0.67676 0.27328 0.30142
244 164 1.488 0.6721 0.30177 0.69927 0.26060 0.29459
250 160 1.562 0.6400 0.27850 0.72155 0.24601 0.28656
257 156 1.647 0.6070 0.25556 0.74512 0.23031 0.27934
263 152 1.730 0.5779 0.23474 0.76561 0.21537 0.27009
270 148 1.824 0.5481 0.21223 0.78836 0.19800 0.25864
277 145 1.910 0.5235 0.19495 0.80668 0.18381 0.25170
284 141 2.014 0.4965 0.17496 0.82583 0.16668 0.23970
291 137 2.124 0.4708 0.15609 0.84461 0.15019 0.22912
298 134 2.224 0.4497 0.14094 0.86028 0.13679 0.21713
306 131 2.336 0.4281 0.12482 0.87531 0.12180 0.20637
314 128 2.453 0.4076 0.11120 0.89023 0.10919 0.19447
322 124 2.597 0.3851 0.09624 0.90563 0.09491 0.18224
330 121 2.727 0.3667 0.08367 0.91724 0.08276 0.17080
338 118 2.864 0.3491 0.07208 0.92765 0.07146 0.15863
347 115 3.017 0.3314 0.06177 0.93820 0.06141 0.14842
355 113 3.142 0.3183 0.05484 0.94623 0.05456 0.13935
364 110 3.309 0.3022 0.04591 0.95498 0.04576 0.12732
374 107 3.495 0.2861 0.03811 0.96278 0.03804 0.11628
383 104 3.683 0.2715 0.03091 0.96962 0.03087 0.10561
393 102 3.853 0.2595 0.02612 0.97431 0.02608 0.09662
403 99 4.071 0.2457 0.02118 0.97927 0.02117 0.08662
413 97 4.258 0.2349 0.01731 0.98299 0.01730 0.07906
423 94 4.500 0.2222 0.01357 0.98674 0.01356 0.07010
434 92 4.717 0.2120 0.01075 0.98945 0.01074 0.06190
445 90 4.944 0.2022 0.00864 0.99180 0.00864 0.05559
456 88 5.182 0.1930 0.00654 0.99356 0.00654 0.04862
468 85 5.506 0.1816 0.00468 0.99550 0.00468 0.04173
480 83 5.783 0.1729 0.00351 0.99650 0.00351 0.03598
492 81 6.074 0.1646 0.00273 0.99745 0.00273 0.03082
504 79 6.380 0.1567 0.00190 0.99813 0.00190 0.02687
517 77 6.714 0.1489 0.00142 0.99868 0.00142 0.02245
530 75 7.067 0.1415 0.00098 0.99908 0.00098 0.01845
544 74 7.351 0.1360 0.00077 0.99930 0.00077 0.01587
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