
The Factorization of a Polynomial Defined by Partitions∗

1. Introduction

It is best to work with unordered partitions. Thus if k is a positive integer, a partition of length r

of the interval [0, k] is a sequence, 0 = k0 < k1 < · · · < kr = k, of positive integers. Set k′1 = k − ki.

Fix k, and let x, Y , and ∆ be three indeterminates. From the polynomial Pk(x, Y,∆) given by

∑
{k1,...,kr−1}

xk−r
r∏

i=1

(
k′i + Y + ∆(ki − ki−1)

)( r−1∏
i=1

kik
′
1

)−1

.

In the summation r is not fixed, so that the sum runs over all unordered partitions of k. The polynomial

is of degree k in Y , and the coefficient of Y k is
(
(k − 1)!

)−2
.

It can be factored explicitly. For this it is convenient to write

∆ = hp,q(m) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
.

Observe that if m �= 0,−1 then, given ∆, this equation can always be solved for p and q. Set

Ys(m) =
((

(1− k)2 − (p− q + s)2
)
m2 + 2

(
(1− k)− (p− q + s)p)m+ 1− p2

)
/4m(m+ 1)

= h1,k(m)− hp,q−s(m),

Y ′r (m) =
((

(k − 1)2 − (p− r − q)2
)
m2 + 2

(
(k − 1)k − (p− r − q)(p− r)

)
m

+ k2 − (p− r)2
)
/4m(m+ 1)

= hk,1(m)− hp−r,q(m).

Theorem 1.

(a) If m is defined by x = −m/(m+ 1) and if ∆ = hp,q(m), then

Pk(x, Y,∆) =
(
(k − 1)!

)−2 ∏
|s|<k

s≡k−1(mod 2)

(
Y − Ys(m)

)
.

(b) If m is defined by x = −(m+ 1)/m and if ∆ = hp,q(m), then

Pk(x, Y,∆) =
(
(k − 1)!

)−2 ∏
|r|<k

r≡k−1(mod 2)

(
Y − Y ′r (m)

)
.

∗ Appeared in Commun. Math. Phys. vol. 124 (1989).
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The purpose of this paper is to prove this theorem. As is explained in an appendix, it has its

origins in the theory of the Virasoro algebra and conformally invariant quantum fields. Thanks are due

to Y. Saint-Aubin for explaining to me the formulas (A.1), (A.2) proved by him and Benoit in [BSA],

for they were the starting point of this paper, to W. Casselman for a number of conversations and, in

particular, for checking the critical Identity 2.4 on the computer long before I was able to prove it, to

Lyman Hurd for instruction in the use of the computer, and to W.-C. Hsiang for avuncular advice about

the title.

2. Simple Reductions

The two parts of the theorem are equivalent. They are both stated, because they are both to be

used in the Appendix. If m′ = −m− 1 then

m+ 1
m

=
m′

m′ + 1

and

hp,q(m) = hq,p(m′)

for all p, q. Thus upon interchange of p and q the expression Ys(m′) becomes Y ′s (m).

It is enough to prove the first statement of the theorem. We begin with a sequence of observations,

stated as lemmas. To indicate the dependence of Ys(m) on k we write Y k
s (m).

Lemma 2.1.

Y k+2
s (m) = Y k

s (m)− 1− (k + 1)x.

The difference Y k+2
s (m)− Y k

s (m) is seen upon inspection to be

((k + 1)2 − (k − 1)2)m2 − 2((k + 1)− (k − 1))m
4m(m+ 1)

=
km− 1
m+ 1

=
(k + 1)m
m+ 1

− 1.

Lemma 2.2. The product (
Y − Y k+2

k+1 (m)
)(
Y − Y k+2

−k−1(m)
)

is equal to

(Y + ∆)(Y + ∆ + k + 1) + (k + 1)x
(
Y + (k + 2)∆

)
.

The lemma is tantamount to two assertions:

Y k+2
k+1 (m) + Y k+2

−k−1(m) = −2∆− (k + 1)− (k + 1)x;

Y k+2
k+1 (m) + Y k+2

−k−1(m) = ∆(∆ + k + 1) + (k + 1)(k + 2)x∆.
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The sum on the left of the first identity is equal to

(− 2(p− q)2m2 − 4(k + 1)m− 4(p− q)pm+ 2(1− p2)
)
/4m(m+ 1).

Since

∆ =
(
(p− q)2m2 + 2(p− q)pm+ p2 − 1

)
/4m(m+ 1),

the first equality is immediate.

For the second, one observes that the product on the left is

((
(p− q)2m2 + 2

(
(k + 1) + (p− q)p

)
m+ p2 − 1

)2

− 4(k + 1)2
(
(p− q)m2 + pm

)2)
/16m2(m+ 1)2.

and this is (
∆ +

k + 1
2(m+ 1)

)2

− (k + 1)2
(
∆ + 1/4m(m+ 1)

)
(m/m+ 1).

The second equality follows.

Lemma 2.3.

(a) P1(x, Y,∆) = Y − Y 1
0 (m),

(b) P2(x, Y,∆) =
(
Y − Y 2

−1(m)
)(
Y − Y 2

1 (m)
)
.

The first assertion is clear; the second follows from the previous lemma and a direct calculation of

P2(x, Y,∆) as

(Y + 1 + ∆)(Y + ∆) + x(Y + 2∆).

Theorem 1(a) is thus seen to be equivalent to the validity of the following identity.

Identity 2.4. The polynomial Pk+2(x, Y,∆) is equal to the product of

(
k(k + 1)

)−2
Pk

(
x, Y + 1 + (k + 1)x,∆

)
(2.a)

and

(Y + ∆)(Y + ∆ + k + 1) + (k + 1)x
(
Y + (k + 2)∆

)
.

Fix r > −2 and consider on both sides of the identity the coefficient of xk−r. On the left it is

P r+2
k+2 (Y,∆), the sum over all partitions {k1, . . . , kr+1} of [0, k+2] into r+2 intervals of the expression

r+2∏
i=1

(
k′i + Y + ∆(ki − ki−1)

) r+2∏
i=1

(kik
′
i)
−1.
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Since ki − ki−1 = k′i−1 − k′i, this equals

r+2∏
i=1

(
∆(Y + k′i−1) + (1−∆)(Y + k′1)

) r+1∏
i=1

(kik
′
i)
−1. (2.b)

If Sr
k(Y + 1,∆) is the coefficient of xk−r in (2.a) then the coefficient of xk−r on the right side of

the identity is

Sr
k(Y + 1,∆)(Y + ∆)(Y + ∆ + k + 1) + Sr+1

k (Y + 1,∆)(k + 1)
(
Y + (k + 2)∆

)
. (2.c)

We fix k and r, and show that the coefficients xk−r on both sides of the identity are equal.

3. Further Reductions

To calculate Sr
k(Y,∆) we have to expand the products

xk−s
s∏

i=1

(
k′i + Y + (k + 1)x+ ∆(ki − ki−1)

)
,

retaining only the coefficient of xk−r . Thus we obtain a sum over all partitions of k and over all subsets

Σ with r elements of those partitions of

(k + 1)s−r ∏
i∈Σ

(
k′i + Y + ∆(k′i−1 − k′i)

) s−1∏
i=1

(kik
′
i)
−1. (3.a)

Observe that r is fixed but that s varies from term to term in the sum. The notation i ∈ Σ is abusive. It

is the interval I = [ki−1, ki] that belongs to Σ. Let eI = ki−1, e
′
I = k′i.

The union of the intervals I in Σ may or may not cover [0, k]. There will be a certain number

g(Σ) of open intervals or gaps left uncovered. We divide the endpoints θ of the intervals in Σ into

four types, the extreme, the bound, the left free, the right free. The corresponding sets will be denoted

Θe,Θb,Θlf ,Θrf . The endpoint θ will be said to be extreme if it is 0 or k, to be left free if it separates a

gap on its left from an interval of Σ on its right, to be right free if it separates an interval on its left from

a gap on its right, and to be bound if it is a common endpoint of two intervals in I .

Lemma 3.1. The coefficient Sr
k(Y + 1,∆) is the sum over all Σ with r elements of the product of

(k + 1)g(Σ)−2 ∏
I∈Σ

(
∆(Y + k + 2− (eI + 1)

)
+ (1−∆)(Y + e′I + 1)

)

and {∏
Θe

k
∏
Θb

θ(k − θ)
∏
Θlf

(k − θ)(k + 1 + θ)
∏
Θrf

θ(θ + 1)
}−1

.
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The product in the first factor is obtained by writing

k′i + Y + 1 + ∆(k′i−1 − k′i) = ∆
(
Y + k + 2− (eI + 1)

)
+ (1−∆)(Y + e′I + 1).

The factor (k+ 1)−2 is extracted from the factor
(
k(k+ 1)

)−2
in (2.a). Ignoring it, we have to evaluate

the sum over all partitions containing a given Σ of

k−2(k + 1)s−r

(
s−1∏
i=1

kkk
′
i

)−1

. (3.b)

The partitions containing Σ are obtained by partitioning all the gaps. Thus the sum of the expressions

(3.b) is the product of {∏
Θe

k
∏
Θb

θ(k − θ)
}−1

with the product over all gaps of

(
a(a+ h)a′(a′ + h)

)−1
∑
A

∏
j∈A

(a+ j)−1(a′ + h− j)−1(a+ a′ + h+ 1)|A|+1. (3.c)

Here a is the left endpoint of the gap, a′ is the distance of its right endpoint from k, and h its length, so

that k = a + a′ + h. If one of a or a′ is 0, it is to be omitted from the factor preceding the sum, which

runs over all subsets of {1, . . . , h− 1}.
The expansion (3.c) is the product of k + 1 with

(
a(a+ h)a′(a′ + h)

)−1 h−1∏
j=1

(
1 +

a+ a′ + h+ 1
(a+ j)(a′ + h− j)

)
.

Upon simplification this become

(
a(a+ h)a′(a′ + h)

)−1 h−1∏
j=1

(a+ j + 1)(a′ + h− j + 1)
(a+ j)(a′ + h− j)

=
1
aa′
· 1
(a+ 1)(a′ + 1)

.

The lemma follows. Notice that if, for example, a = 0 then it is to be omitted, and a + 1 = 1; so the

right side of this equality is 1/a′(a′ + 1).

The expression (2.b) is equal to

∏
I

(
∆(Y + k + 2− eI) + (1−∆)(Y + e′I)

) r+1∏
i=1

(kik
′
i)
−1.

The first product is over the intervals in the partitions. We expand this product by writing each of the

linear factors in the first product as a sum of four terms: ∆(Y + k + 2);−∆eI ; (1 −∆)Y ; (1 −∆)e′I .

To these we attach respectively the labels: (−1, 0); (−1, 1); (1, 0); (1, 1); or often, and preferably, the
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symbols: �←−; ←−; �−→; −→. The labels or the symbols are to be regarded as attached to the interval

defining the linear factor, so that the label may be written
(
α(I), µ(I)

)
. The first term defines the

direction of the arrow. The whole collection of symbols defines a diagram

→−−−−→� ←−−−←−−, (3.d)

the lengths of the arrows being the lengths of the partitions. Let a′, a, b′, b be the number of arrows of

the four types, so that a′ + a+ b′ + b = r + 2. Then P r+2
k+2 (Y,∆) may be written as

∑
a′,a,b′,b

(−1)a∆a′+a(1−∆)b′+b(Y + k + 2)a′
Y b′Pk+2(a′, a, b′, b).

The expression Pk+2(a′, a, b′, b) is the sum over all diagrams (3.d) for which a′, a, b′, b have the

given values of ∏
I

A(I),

where

A(I) = e
µ(I)−1
I eI

′−1

if I is negatively oriented, and

A(I) = e′µ(I)−1
I e−1

I

if it is positively oriented. It is again understood that eI or e′I is suppressed if it is 0. Moreover, those

diagrams for which the initial interval is of type ← or the final interval of type → are excluded

from the sum.

It is clear from Lemma 3.1 that Sr
k(Y + 1,∆) has a similar expansion

∑
a′,a,b′,b

(−1)a∆a′+a(1−∆)b′+b(Y + k + 2)a′
Y b′Sk(a′, a, b′, b),

where now the constraint on a′, a, b′, b is that a′ + a + b′ + b = r. If any of a′, a, b′, b is negative then

Sk(a′, a, b′, b) is understood to be 0.

Observe that (Y + ∆)(Y + ∆ + k + 1) is equal to the sum of

∆2(Y + k + 2)2 + 2∆(1−∆)Y (Y + k + 2) + (1−∆)2Y 2,

−∆(1−∆)(k + 1)2 −∆(1−∆)Y (k + 1) + ∆(1−∆)(Y + k + 2)(k + 1),

and

−∆2(Y + k + 2)(k + 1) + (1−∆)2(k + 1),

while

Y + (k + 2)∆ = ∆(Y + k + 2) + (1−∆)Y.

Thus the identity is a result of the following lemma.
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Lemma 3.2. Pk+2(a′, a, b′, b) is equal to the sum of the four expressions:

Sk(a′ − 2, a, b′, b) + 2Sk(a′ − 1, a, b′ − 1, b) + Sk(a′, a, b′ − 2, b);

(k + 1)2Sk(a′, a− 1,b′, b− 1) + (k + 1)Sk(a′, a, b′ − 1, b− 1) + (k + 1)Sk(a′ − 1, a− 1, b′, b);

(k + 1)Sk(a′ − 1, a, b′, b− 1) + (k + 1)Sk(a′, a− 1, b′ − 1, b);

and

(k + 1)Sk(a′, a, b′ − 1, b) + (k + 1)Sk(a′ − 1, a, b′, b).

If we ignore the length of the arrows in (3.d) we obtain diagrams in which only the direction and

the type of arrow is significant. Given such a diagram, we let P (∗) be the sum over all partitions and

labelings of type ∗ of
∏

I A(I). To each diagram ∗ we can attach integers a′(∗), a(∗), b′(∗), and b(∗).

Then

Pk+2(a′, a, b′, b) =
∑

Pk+2(∗),

the sum being over all diagrams with the given values of a′, a, b′ , and b. For example, recalling the

conditions on the extreme arrows, we see that

Pk+2(0, 1, 1, 1)

equals

Pk+2(−→�−→� ←−) + Pk+2(−→←− �−→� ) + Pk+2( �−→�−→←−).

In the same way,

Sk(a′, a, b′, b) =
∑

Sk(∗).

4. A Special Case

If a′ = b′ = 0 then Lemma 3.2 reduces to

Pk+2(0, a, 0, b) = (k + 1)2Sk(0, a− 1, 0, b− 1).

This is implied immediately by the following proposition.



8

Proposition 4.1. If a′(∗) = b′(∗) = 0 then

Pk+2(→ ∗ ←) = (k + 1)2Sk(∗).

The abstract diagram→ ∗ ← is obtained by juxtaposing a sequence of diagrams of the form

θ0 θ1−−−−−→ · · ·
θi−1

−−−→−→
θi θi+1

←−←−−−− · · ·
θs←−− , (4.a)

in which a sequence of positively directed arrows is followed by a sequence of negatively directed

arrows. The contribution to P (→ ∗←) from a concrete diagram, one in which the endpoints of all

arrows have been fixed, is the product over the diagrams (4.a) of

1
θ0

1
θ1
· · · 1

θi−1
(θi+1 − θi−1 − 1)

1
k + 2− θi+1

· · · 1
k + 2− θs−1

1
k + 2− θs

.

Notice that θi does not occur here and the only condition on the sequence θ0, θ1, . . . , θi−1,

θi+1 · · · θs−1 is that

θ0 < θ1 < · · · < θi−1 < θi+1 < · · · < θs−1 < θs.

Notice that 1/θ0 is suppressed if θ0 = 0 and 1/k + 2− θs is suppressed if θs = k + 2.

On the other hand, the abstract diagram ∗ begins with a sequence

→ · · · →,

that is then followed by a sequence of diagrams

← · · · ←−�−→ · · · →,

and finally by a sequence

← · · · ← .

Any or all of these sequences may be empty.

The expression (k + 1)2Sk(∗) will be treated using Lemma 3.1. Since we have multiplied by

(k + 1)2 the factor (k + 1)g(Σ)−2 may be replaced by (k + 1)g(Σ).

There are two simple but important relations to note before beginning:

∑
θ<j<η

1
(k − θ)j

· k + 1
(j + 1)(k + 1− η)

+
1

k − θ
· 1
η

=
1

(θ + 1)(k + 1− η)
: (4.b)
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∑
θ<j<η

1
η(k − j)

· k + 1
(k + 1− j)(θ + 1)

+
1

(k − θ)η
=

1
(θ + 1)(k + 1− η)

. (4.c)

Since
1

j(j + 1)
=

1
j
− 1
j + 1

,
1

(k − j)(k − j + 1)
=

1
k − j

− 1
k − j + 1

,

the left-hand sides are easily calculated and found to be equal to the right-hand sides.

We next calculate a factor of that part of Sk(∗) obtained from diagrams whose first segment is

η1 θ1
−−−−−→

ηs θs

−−−−−→

with θ1, . . . , θs given. Fixing θ1 and summing over the possible η1, we obtain a contribution

(k + 1− θ1)
{ θ1−1∑

η1=1

k + 1
(k + 1− η1)(k − η1)

· 1
θ1

+
1

k · θ1

}
= 1.

The factor k + 1− θ1 comes from the product in the first term of Lemma 3.1. The factor (k + 1) in the

numerator in the sum comes from the first gap, which is present if η1 > 0 but not if η1 = 0. The factor

1/θ1 is there whether θ1 is right free or bound. If θ1 is right free the additional factor 1/(θ1 +1) will be

part of the contribution attached to the second arrow. The factor (k + 1− η1)(k − η1) is there because

η1 is left free if it is positive. If η1 = 0 then it is extreme and contributes 1/k.

Passing on to the contribution from the second arrow, we fix θ1 and θ2, and form the sum,

(k + 1− θ2)
{ θ2−1∑

η2=θ1+1

k + 1
(k + 1 + η2)(k − η2)

· 1
θ2

+
1

(k − θ1)θ2

}
=

1
θ1 + 1

.

Continuing, we obtain as the contribution from the initial segment, except for a supplementary factor

arising from the last arrow that is to be treated later,

1
θ1 + 1

· · · 1
θs−1 + 1

,

where 0 < θ1 < · · · < θs. In the same way the contribution of the final segment

η1←−−−− · · ·
ηt←−−−−

is
1

(k + 1− η1)
· · · 1

(k + 1− ηt−1)
.
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We now turn our attention to the contribution of one of the intermediate segments

← · · · ←→ · · · → .

First of all, fix θ, η and consider the total contribution of

θ i←−−−−−−−
j η
−−−−−−−→

for all possible i, j. It is
(η − θ − 1)
(k − θ)η

.

Once again, if θ is left free we do not include the factor 1/(k + 1− θ), and if η is right free we do not

include the factor 1/(η + 1), nor do we include a factor (k + 1) from a gap at either end.

For a fixed i and j the contribution is

θ + 1
k − θ

· 1
i(i+ 1)

· 1
(k − j)(k + 1− j)

· (k + 1− η)
η

· (k + 1), i < j,

θ + 1
k − θ

· 1
i(k − j)

· k + 1− η

η
, i = j.

Fixing j and summing over i we obtain

∑
0<j<η

1
(k − j)

· 1
(k + 1− j)

k + 1− η

η
=

(η − θ − 1)
(k − θ)η

.

This is not a very useful form in which to have the contribution. To transform it, we prove some

simple lemmas. To have some notation, set

fθ(θ1) =
k + 1

(θ + 1)(k + 1− θ1)
θ > θ1,

= 1 θ = θ1.

Set

gη(η1) =
k + 1

(k + 1− η)(η1 + 1)
η1 > η

= 1 η1 = η.

Lemma 4.2. If θ and η are given, θ < η then

∑
θ≤θ1<η1≤η

fθ(θ1)
(η1 − θ1 − 1)
(k − θ1)η1

gη(η1)
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is equal to
1

(θ + 1)(k + 1− η)

∑
θ<θ2<η

θ2(k − θ2)
(θ2 + 1)(k + 1− θ2)

.

To calculate the sum over θ1, η1 we write

η1 − θ1 − 1 = (k − θ1) + η1 − (k + 1),

obtaining three sums that we easily evaluate using (4.b) and (4.c).

∑
θ1

∑
η1

fθ(θ1)gη(η1)
η1

=
1

(θ + 1)(k + 1− η)

{ ∑
θ<θ1<η

(k + 1)(k − θ1)
(k + 1− θ1)(θ1 + 1)

+ k − θ

}
,

∑
η1

∑
θ1

fθ(θ1)gη(η1)
(k − θ1)

=
1

(θ + 1)(k + 1− η)

{ ∑
θ<η1<η

(k + 1)η1

(k + 1− η1)(η1 + 1)
+ η

}
,

−
∑
θ1

∑
η1

fθ(θ1)(k + 1)gη(η1)
(k − θ1)η1)

=
1

(θ + 1)(k + 1− η)
·
{
−

∑
θ<θ1<η

(k + 1)2

(k + 1− θ1)(θ1 + 1)
− (k + 1)

}
.

Replace in all three sums the right variable of summation by θ2. Note also that

∑
θ<θ2<η

(k + 1− θ2)(θ2 + 1)
(k + 1− θ2)(θ2 + 1)

= η − θ − 1 = (k − θ) + η − (k + 1).

Then to complete the proof of the lemma, we have only to observe that

(k + 1)(k − θ2) + (k + 1)θ2 − (k + 1)2 + (k + 1− θ2)(θ2 + 1) = θ2(k − θ2).

Note that
θ′−1∑

η=θ+1

(k − θ)(k + 1− θ′)
(k + 1− η)(k − η)

= (θ′ − θ − 1) =
θ′−1∑

η=θ+1

(θ + 1)θ′

η(η + 1)
. (4.d)

Lemma 4.3. If θ and η are given, η > θ, and

A =
∑

θ<θ1<···<θs<η

η · (θ1 − θ − 1)
θ1

· 1
θ1 + 1

· · · 1
θs + 1

,

B =
∑

θ<θ1<···<θs<η

1
θ1 + 1

· · · 1
θs + 1

(η − θs − 1),

then A = B.

Set

A′ =
∑

θ<θ1<···<θs<η

η(θ + 1)
θ1

· 1
θ1 + 1

· · · 1
θs+1

,

B′ =
∑

θ<θ1<···<θs<η

1
θ1 + 1

· · · 1
θs−1 + 1

.
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It suffices to show that A′ = B′. Clearly

B′ =
∑

θ<θ1<···<θs−1<η

1
θ1 + 1

· · · 1
θs−1 + 1

· (η − θs−1 − 1),

and

A′ =
∑

θ<θ2<···<θs<η

η · (θ + 1)
(

1
θ + 1

− 1
θ2

)
1

θ2 + 1
· · · 1

θs + 1
.

Since

η(θ + 1)
(

1
θ + 1

− 1
θ2

)
=

η(θ2 − θ − 1)
θ2

,

the lemma follows by induction, for it is clearly true for s = 1, when B′ = η − θ − 1 = A′.

Lemma 4.4. If θ and η are given, η > θ and

A =
∑

θ<ηs<···<η1<η

(k − θ)(η − η1 − 1)
(k − η1)

1
k + 1− η1

· · · 1
k + 1− ηs

,

B =
∑

θ<ηs<···<η1<η

1
(k + 1− η1)

· · · 1
(k + 1− ηs)

(ηs − θ − 1)

then A = B.

This is the previous lemma in another guise. Before we begin transforming the contributions of

the intermediate segments, we treat the simplest case, that in which no intermediate sequence occurs

in ∗. Then→ ∗ ← has concrete diagrams of the form

θ1−−−→ · · ·
θs−1 θs−→−−−→

θs+1←−−−− · · ·
θr+1←−−− ,

and P (→ ∗ ←) is the sum over 0 < θ1 < · · · < θs−1 < θs+1 · · · < θr+1 < k + 2 of

1
θ1
· · · 1

θs−1
(θs+1 − θs−1 − 1)

1
k + 2− θs+1

· · · 1
k + 2− θr+1

. (4.e)

The concrete diagrams of type ∗with gaps are either of the form

θ1−−−→ · · ·
θs−1−−−−→

θs+1←−−−− · · ·
θr+1←−−,

in which there is a gap between θs−1 and θs+1 or of the form

θ1−−−→ · · · →← · · ·
θr+1←−−− .
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In the first case the supplementary factors arising from the two internal arrows are 1/(θs−1 + 1) and

1/(k + 1 + θs+1), together with a factor k + 1 coming from the gap. This yields a contribution

(k + 1)
1

θ1 + 1
· · · 1

θs−1 + 1
1

k + 1− θs+1
· · · 1

k + 1− θr+1
0 < θ1 < · · · < θr+1 < k. (4.f)

Substituting θi for θi + 1 in this product we see that we obtain all possible sequences contributing to

(4.e) except those for which θ1 = 1 or θr+1 = k + 1. Subtracting a term (4.f) from the corresponding

term of (4.e) we obtain

1
θ1
· · · 1

θs−1

(− θs−1 − (k + 2− θs+1)
) 1
k + 2− θs+1

· · · 1
k + 2− θr+1

.

Breaking this into parts, cancelling either θs−1 or k + 2 − θs+1, and then taking account of the multi-

plicities with which the missing θs−1 or θs+1 could occur, we see that we have contributions

−1
1

1
θ1
· · · 1

θs−2
(θs+1 − θs−2 − 1)

1
k + 2− θs+1

· · · 1
k + 2− θr+1

,

where

0 < 1 < θ1 < · · · < θs−2 < θs+1 < · · · k + 1,

and
−1
θ1
· · · 1

θs−1
(θs+2 − θs−1 − 1)

1
(k + 2− θs+2)

· · · 1
k + 2− θr+1

1
(k + 2)− (k + 1)

,

where

1 < θ1 < · · · < θs−1 < θs+2 < · · · < k + 2.

This accounts for all contributions to P (→ ∗ ←) except those for which θ1 = 1, θk+1 = k + 1.

However, concrete diagrams with no gap between θs−1 and θs+1 yield

1
θ1 + 1

· · · 1
θs−2 + 1

1
k + 1− θs+2

· · · 1
k + 1− θr+1

.

Taking account of the multiplicity θs+2−θs−2−1 with which the missing θs−1 = θs+1 can occur, we see

that we obtain exactly those contributions to P (→∗←) associated to sequences θ1 = 1, θr+1 = k + 1.

We now suppose that there is at least one intermediate segment, and treat the contribution of the

first of these together with that of the initial segment. The junction of the two segments has the form

θ1−−→ θ2−−→
θs−1−−−−→

θs+1ξs+1←−−−−−−−
θt ξ1←−−−−−

θt ηt−−−−−→ · · ·
θµ ηµ−−−−−→ .

The arrow following upon ηµ is of the form←. Suppose it begins at η.
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If u = 1 let η′ = η, but if u > 1 we let η′ = ν2. If t = s+1, let θ′ = θs−1; otherwise let it be ξt−1. If

the initial segment is empty, take θ′ = 0. In the same way let η′ = k if it is otherwise undefined. Then

Lemma 4.2 transforms the contribution of the interval [θ′, η′] to

∑
θ′<θ′′<η′

θ′′

θ′ + 1
· 1
(θ′′ + 1)(k + 1− θ′′)

· k − θ′′

k + 1− η′
. (4.g)

The (θ′′ + 1)(k + 1 − θ′′) in the denominator will not be touched. If t > s + 1 we take θ′′/(θ′ + 1)

together with the rest of the contribution of the interval [θt−1, ξt−1] obtaining

θ′′

ξt−1 + 1
· 1
ξt−1

· θt−1 + 1
k − θt−1

.

Summing over ξt−1 we obtain
θ′′ − θt−1 − 1
k − θt−1

.

The contributions of the other intervals [θi, ξi], s + 1 � i < k − 1 then yield the sum of

∑
θs−1<θs+1<···<θt−1<θ′′

θ′′ − θt−1 − 1
k − θt−1

· 1
k − θt−1 + 1

· · · k + 1
k − θs+1 + 1

, (4.h)

and ∑
θs−1<θs+2<···<θt−1<θ′′

θ′′ − θt−1 − 1
k − θt−1

· 1
k − θt−1 + 1

· · · k + 1
k − θs+2 + 1

· (θs−1 + 1). (4.i)

The first factor is there so that in both cases we can use 1/(θs−1 + 1) as the contribution from the final

arrow in the initial segment.

If t− 1 is s+1, this manner of expressing the contribution is not obviously meaningful. It is better

to take it as

∑
θs−1<θt−1<θ′′

(
θ′′ − θt−1 − 1
k − θt−1

)(
k + 1

k + 1− θt−1

)
+

(
θ′′ − θs−1 − 1
k − θs−1

)
· (θs−1 + 1). (4.j)

Lemma 4.5. The sum (4.j) is equal to

∑
θs−1<θt−1<θ′′

θt−1

k + 1− θt−1
.

Write the numerator in the first sum as

(k + 1)(k − θt−1)− (k + 1)(k + 1− θ′′).
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The first term yields ∑
θs−1<θt−1<θ′′

k + 1
k + 1− θt−1

.

The second may easily be summed in closed form to yield

−(k + 1)(k + 1− θ′′)
(

1
k + 1− θ′′

− 1
k − θs−1

)
.

Adding to this the final term in (4.j) we obtain

(− (k + 1)(θ′′ − θs−1 − 1) + (θ′′ − θs−1 − 1)(θs−1 − 1)
)
/(k − θs−1) = −(θ′′ − θs−1 − 1).

Since

θ′′ − θs−1 − 1 =
∑

θ′
s−1<θt−1<θ′′

k + 1− θt−1

k + 1− θt−1
,

the lemma follows.

To deal with the case that t− 1 > s+ 1, we use Lemma 4.4 to write (4.h) as

∑
θs−1<θs+1<···<θt−1<θ′′

(k + 1)
(
θs+2 − θs+1 − 1

k − θs+1

) (
1

k + 1− θt−1

)
· · ·

(
1

k + 1− θs+1

)
,

and (4.i) as

∑
θs−1<θs+2<···<θt−1<θ′′

(
θs+2 − θs+1 − 1

k − θs+1

)
(θs−1 + 1)

(
1

k + 1− θt−1

)
· · ·

(
1

k + 1− θs+2

)
.

Applying Lemma 4.5 we obtain

∑
θs−1<θs+1<···<θt−1<θ′′

θs+1

(
1

k + 1− θt−1

)
· · ·

(
1

k + 1− θs−1

)
.

Thus the conclusion is the same in all cases.

We put these contributions together with the contributions from the initial segment, writing θs+1

as θs+1 − θs−1 − 1 + θs−1 + 1. This yields a sum of two terms. The first is

1
θ1 + 1

· · · 1
θs−1 + 1

(θs+1 − θs−1 − 1)
1

k + 1− θs+1
· · · 1

k + 1− θt−1
;

the second, in which the multiplicity of the missing θs−1 is taken into account, is

1
θ1 + 1

· · · 1
θs−2 + 1

(θs+1 − θs−2 − 1)
1

k + 1− θs+1
· · · 1

k + 1− θt−1
.
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Observe that upon replacing θi + 1 by θi these products correspond exactly to the initial contributions

to P (→ ∗ ←), the second corresponding to θ1 = 1.

We now return to (4.g), and work towards the right; only the contribution (k − θ′′)/(k + 1− η′)

being pertinent. If there is only one intermediate segment, so that the complete diagram ∗ has the form

θ1−−→ · · ·
θs−1−−−→

θs+1←−−−
θt←−−−−

η1−−−−→
ηµ−−−−−→

ηµ+2←−−− · · ·
ηr−−−→

then the contribution from the right is treated like that from the left and is the sum of

(
1
η2

)
· · ·

(
1

ηu + 1

)
(ηu+2 − ηu − 1)

(
1

k + 1− ηu+2

)
· · ·

(
1

k + 1− ηv

)

and (
1

η2 + 1

)
· · ·

(
1

ηu + 1

)
(ηu+3 − ηu − 1)

(
1

k + 1− ηu+3

)
· · ·

(
1

k + 1− ηv

)
.

The second corresponds to the contribution to P (→ ∗←) in which the final θ is k + 1. Putting all

contributions together, first multiplying the two parts and then adding over all possible sequences, and

not forgetting (θ′′ + 1)−1(k + 1− θ′′)−1 from (4.g) we see that we obtain P (→∗←).

Suppose, however, that there is a second intermediate segment. so that where they abut the

diagram has the form

←−−
θ1−−→ · · ·

θs−−→
η1←−− · · ·

ηt←−− ν−−→

The contribution up to η1 is calculated as before. For example, if s = 1 it, or rather the part coming

from the right of θ′′, is
k − θ′′

k + 1− η1
.

More generally, using Lemma 4.3 and the obvious modification of Lemma 4.5, we obtain

(
1

θ2 + 1

)
· · ·

(
1

θs + 1

)(
k − θs

k + 1− η1

)
.

The product (
1

θ2 + 1

)
· · ·

(
1

θs + 1

)

corresponds exactly to what we need for the comparison with the contributions to P (→∗←).

The final factor is to be put together with the contribution from η1 on to yield

∑
θs<η1<···ηt<ν

(
k − θs

k + 1− η1

) (
1

k + 1− η2

)
· · ·

(
1

k + 1− ηt

) (
ν − ηt − 1
(k − ηt)ν

)
.
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The final factor is the contribution previously calculated for a diagram←→. Lemma 4.4 replaces this

with

(η1 − θs − 1)
(

1
k + 1− η1

)
· · ·

(
1

k + 1− ηt

)
· 1
ν
.

The initial terms correspond exactly to what is needed for the comparison. Keep the final two for

proceeding further to the right. Choose θ′, η′ as for (4.g). Thus θ′ is either ηt−1 or θs. Then we have a

contribution ∑
θ′<ηt<ν�η′

1
(k + 1− ηt)

1
ν
fη′(ν). (4.k)

The sum is over ηt and ν.

Lemma 4.6. The sum (4.k) is equal to

∑
θ′<θ′′<η′

1
(θ′′ + 1)(k + 1− θ′′)

· k − θ′′

k + 1− η′
.

This is an immediate consequence of (4.b). The factor 1/(θ′′ + 1)(k + 1− θ′′) is what we need for the

comparison with the contribution to P (→ ∗ ←). The factor

k − θ′′

k + 1− η′
,

which we have seen before, is what we need to treat the second intermediate segment like the first, and

then inductively to proceed all across the diagram, thereby proving the proposition.

5. Completion of the Proof

The proof of Lemma 3.2 will now be reduced to Proposition 4.1. Although the value of P (∗) or

S(∗) depends on the directions of the uncircled arrows in ∗ it does not depend on the directions of the

circled arrows. They are important only when calculating Pk+2(a′, a, b′, b) or Sk(a′, a, b′, b). Thus we

sometimes indicate a circled arrow simply by the symbol �−−−.

Lemma 5.9.

(a) P ( �−−−−) = 1
k+1P (→←).

(b) P (∗ �−−−−) = 1
k+1P (∗ →←) + 1

k+1P (∗ ←),

(c) P ( �−−−−∗) = 1
k+1

P (→← ∗) + 1
k+1

P (→ ∗),

(d) P (∗1 �−−−− ∗2) = 1
k+1P (∗1 →← ∗2) + 1

k+1P (∗1 → ∗2) + 1
k+1P (∗1 → ∗2).

(e) S(∗1 �−−−− ∗2) = 1
k+1S(∗1 ←→ ∗2) + 1

k+1S(∗1 ← ∗2) + 1
k+1S(∗1 → ∗2).
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In the formula (e) for S both ∗1 and ∗2 may be empty, but in the formula (d) for P they must not

be, as ∗must not be in formulas (b) and (c). Since P ( �−−−−) = 1, P (→←) = k + 1, the first formula is

clear. Consider the second. The contribution of a concrete diagram

θ∗ �−−−−−

is of the form A · 1/θ. The contribution of

θ∗ −−−−−→ θ′←−−−−−

to P (∗ →←) is A · (1/θ)(k+ 1− θ), while that of

θ∗ ←−−−

to P (∗ ←) is A. The formula (c) is of course proved in exactly the same way. For (d) the verification is

also similar. The diagram

∗1 θ1 θ2�−−−−−−− ∗2

contributes a term A · (1/θ1) · (1/k + 2− θ2) · B. The contributions of the three diagrams appearing

on the right are respectively:

A · 1
θ1
· 1
k + 2− θ2

· (θ2 − θ1 − 1) ·B; A · 1
θ1
·B; A · 1

k + 2− θ2
·B.

Proving the final formula is just a little less simple because we cannot operate entirely with concrete

diagrams. The pertinent part of the concrete diagram for the left side of (e) is

θ θ1 θ2 η

| | �−−−−−| |.
θ1 and θ2 are the endpoints of �−−−−− and θ and η are the closest endpoints of the arrows in ∗1 or ∗2. If

∗1 is empty then θ = 0 and if ∗2 is empty then η = k.

The contribution from the interior of the interval [θ, η] is

∑
θ�θ1<η1�η

fθ(θ1) · 1
(k − θ1)η1

· gη(η1).

By this we mean that the factors 1/θ and 1/(k − η) are not taken into account.

On the other hand, replacing the undirected arrow �−−−−− in the interval θ1, θ2 by the directed arrow

→, we obtain ∑
θ�θ1<η1�η

fθ(θ1) · k + 1− η1

(k − θ1)η1
gη(η1).
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Taking instead←, we obtain

∑
θ�θ1<η1�η

fθ(θ1) · θ1 + 1
(k − θ1)η1

gη(η1).

Next, inside the same interval [θ, η] we insert two opposing arrows

θ
|

θ1 η1←−−−−−−−−−−−−−−−
θ2 η2−−−−−−−−−−−−−−−−→

η
| .

We have to take the sum

∑
θ�θ1<η1�θ2<η2�η

fθ(θ1)
(

θ1 + 1
(k − θ1)η1

)
gθ2(η1)

(
k + 1− η2

(k − θ2)η2

)
gη(η2).

Use (4.b) to sum over η1 to obtain

∑
θ�θ1<θ2<η2�η

fθ(θ1)
(

1
k + 1− θ2

) (
k + 1− η2

(k − θ2)η2

)
gη(η2).

Then sum over θ2 to obtain ∑
θ�θ1<η2�η

fθ(θ1)
η2 − θ1 − 1
(k − θ1)η1

gη(η2).

The last formula of the lemma follows immediately on replacing η2 in this sum by η1, for

(θ1 + 1) + (k + 1− η1) + (η1 − θ1 − 1) = k + 1.

It is clear that the expansion permitted by this lemma can be iterated so that Pk+2(a′, a, b′, b)

becomes a weighted sum of P (∗), where ∗ is a diagram with no circled arrows, and with its extreme

arrows pointing inwards. The diagrams that we obtain have distinguished subdiagrams of the type→←
,→, or←, each provided with a supplementary orientation. Suppose there are c, c+, c− distinguished

subdiagrams of the three types with negative orientation and d, d+, d− with positive orientation. Then

a′ = c+ c+ + c−, d′ = d+ d+ + d−. In addition, P (∗) is to be provided with the weight (k+1)−a′−b′ .

Since the weight is independent of ∗ it can often be ignored. Each ∗ that occurs is actually of the

form → ∗1 ← with a′1 = a′, b′1 = b′. By Proposition 4.1 we may replace (k + 1)−a′−b′P (∗) by

(k + 1)2−a′−b′S(∗1).

There are many types of diagrams that contribute to the sum of Lemma 3.2, and it is best to

introduce a supplementary lable, because the same diagram ∗2 may contribute more than once. This

supplementary label is one of the diagrams:

�−−→ �−−→ ; �←−− −�−−→; �−−→ �←−− ; �←−− �←−− ; −−−→ �←−−
−−→ �−−→; �−−→ ←−− ; �←−− ←−− ; −−→←−− ; �←−− −�−−→ .
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Each of the diagrams defines two numbers e′, the number of negatively oriented circled arrows, and f ′,

the number of positively oriented circled arrows. If a′2 = a′(∗2), b′2 = b′(∗2) then a′2+e′ = a′, b′2 +f ′ =

b′ and the weight attached to the contribution with the double label is (k + 1)2−e′−f ′
.

For example, the term 2Sk(a′− 1, a, b′− 1, b) is the sum of contributions from pairs (∗2, �−→ �←− )

and pairs (∗2, �←− �−→ ), while Sk(a′, a, b′ − 1, b) is the sum of contributions from pairs (∗2, �−→ ).

Using the lemma to expand, we obtain the common weight (k + 1)2−a′−b′ . The terms of the

expansion are labeled by the same supplementary diagram ∗′3, and by a diagram ∗3 with no circled

arrows but with a certain number of distinguished subdiagrams of the form ←→,→, or ←. Each

of these subdiagrams is provided with an orientation, corresponding to the orientation of the circled

arrow from which it arose. Let there be i, i+, i− negatively oriented arrows of the three types and

j, j+, j− positively oriented. Then a′2 = i+ i+ + i−, b′2 = j + j+ + j−.

We have to establish a bijection between the diagrams ∗1, taken with multiplicity, and the diagrams

(∗3, ∗′3), also taken with multiplicity. Suppose ∗1 is obtained from ∗ =→ ∗1 ←. Thus ∗ is obtained by

introducing one of the three diagrams→←,→,←, in place of each of the circled arrows.

Let D1, . . . ,Ds be the introduced diagrams of the form→←, so that ∗ has the form

→ · · · D1−→←− Ds−→←− · · · ← .

Thus there are s+ 1 sequences Si of arrows, from the beginning to the beginning of D1, from the end

of D1 to the beginning of D2, and so on. In Si, 1 � i < s, let there be pi positively directed arrows and

qi negatively directed arrows. Let p′i of the pi arrow arise from positively directed circled arrows by

the substitution of→ for �−→, let p′′i arise from negatively directed circled arrows, and let p′′i be original

arrows. Define q′i, q
′′
i , q
′′′
i similarly. Define ps, qs, p

′
s, p
′′
s , p
′′′
s , q

′
s, q
′′
s , q
′′′
s in the same way, except that the

two end sequences are put together for the counting. Then the multiplicity with which the diagram

with given locations of the Di and given Si, as well as given p′i, p
′′
i , p
′′′
i , q

′
i, q
′′
i , q
′′′
i contributes is

s∏
i=1

pi!
p′i!p

′′
i !p
′′′
i !
· qi!
q′i!q
′′
i !q′′′i !

.

Between the center of Di and that of Di+1, 1 � i < s there is at least one diagram←→. Let the first be

Ei. If there is such a diagram after Ds, let Es be the first. Consider the number of ways of assigning to

the arrows between the centers of Di and Di+1 that do not lie in Ei both circles and circled directions,

and in such a way that the total number of each is as before . The number is

pi!
p′i!p

′′
i !p
′′′
i !
· qi!
q′i!q
′′
i !q′′′i !

.
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Notice that we have begun to describe the diagrams ∗3 for which E1, . . . , Es−1 , and Es if it has been

assigned, are the diagrams←→ introduced in the expansion.

If Es does not exist, then the multiplicity with which we can make the various assignments up to

the center of D1 and after the center of Ds is

ps!
p′s!p′′s !p′′′s !

· qs!
q′s!q′′s !q′′′s !

.

Notice that the extreme arrows of ∗ no longer play a role; they are replaced by the first arrow of D1 and

the last of Ds.

To make the comparison, we note that if Es does not exist then Ds is determined as the final

subdiagram of the form→←. We also agree that Ei and Di, 1 � i < s are to be obtained from circled

arrows with the same orientation. Moreover if Es does not exist, then we take ∗′3 to be �−→ or �←− ,

according to the circled orientation of the arrow yielding Ds. We finally note that Di is determined by

Ei. We simply move to the left from Ei to the first diagram→←.

Thus the bijection with multiplicity is established between diagrams ∗1 in which Ds is the final

diagram→← in ∗ and diagrams (∗3, ∗′3) in which ∗′3 has only a single arrow.

If Ds is not the final diagram→← then Es exists, and we take it as coming from a circled arrow

with the same orientation as Ds. The only difference in the counting of the multiplicities is that for the

contribution to Ss we remove the arrows in Es as well as the extreme arrows and only add the first

arrow of D1 and the last of Ds. To make the count come out correctly, we adjoin the supplementary

∗′3 with two arrows, each of which has three states that can be interpreted as circled with positive

orientation, circled with negative orientation, and uncircled. Observe that this argument is also valid

for the case that s = 0.

A pair of tables for the case r = 1, a′ = a = b = 1, b′ = 0 may help. Diagrams with the same lable,

which lies between (i) and (v), are matched in the bijection.

Initial Expanded ∗ ∗1 s
−→ �←−←− −→−→←−←− −→←− 1 (i)

−→−→←− −→ 0 (iv)
−→←−←− ←− 0 (v)

−→←− �←− −→←−−→←− ←−−→ 1 (ii)
−→←−←− ←− 0 (v)

�←−−→←− −→←−−→←− ←−−→ 1 (iii)
−→−→←− −→ 0 (iv)
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Initial ∗2 Expanded ∗3 ∗′3
−→←− −→←− �←− (i)
←−−→ ←−−→ �←− (ii)
�←− ←−−→ −→←− (iii)

←− −→←− (v)
−→ −→←− (iv)

←− ←− −→ �←− (v)
−→ −→ −→←− (iv)

Appendix

The Virasoro algebra g as an infinite-dimensional Lie algebra over C with basis Lk, k ∈ Z, and C

and is defined by the conditions:

(i) C is central

(ii) [Li, Lj ] = (i− j)Li+j + δi,−j
i(i2−1)

12 C .

The facts reviewed below can be found in [4].

The Verma modules are infinite-dimensional vector spaces Vh,c on which g acts and are attached

to two real parameters h and c. They are defined by the condition that they be universal with respect

to the following property.

Vh,c is generated by a vector vφ satisfying:

Cvφ = cvφ, L0vφ = hvφ, Lnvφ = 0, n > 0.

Thus Vh,c has a basis

vk1,k2,...,kr
= L−k1 · · ·L−kr

vφ, k1 � · · · � kr > 0.

However it may have other convenient bases as well. It carries a unique hermitian form 〈u, v〉 satisfying

(i) 〈vφ, vφ〉 = 1; (ii) 〈Lku, v〉 = 〈u,L−kv〉.

Let P (n) be the number of partitions of n. Then the space Vn spanned by {vk1,...,kr
|Σki = n} has

dimension P (n). If { , } is the hermitian form defined by {vk1,...,kr
, vl1,...,ls} = 0 unless r = s, k1 =

l1, . . . , kr = lr then the matrix Hn(h, c) of 〈 , 〉 on Vn with respect to { , } is a polynomial in h and c

whose determinant is a constant times

∏
pq�n

(h− hp,q)P (n−pq).
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If we introduce m by the condition c = 1− 6/m(m+ 1), then

hp,q = hp,q(m) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
p, q ∈ N.

In particular if n = pq then det Hn vanishes on the curve h = hp,q(m). A null vector is obtained by

taking some row ck1,...,kr
(m) of the matrix adjoint to Hn, and then setting

wp,q(m) =
∑

k1+···+kr=m

ck1,...,kr
(m)vk1,...,kr

.

Choose the row so that the vector (ck1,...,kr
(m)) does not vanish identically. Since the coordinates of

this vector are rational functions of m, we may write
(
ck1,...,kr

(m)
)

as the product of a rational function

of m and a vector up,q(m) =
(
dk1,...,kr

(m)
)

with coefficients that are polynomials in m whose greatest

common divisor is 1. To stress the dependence on p, q, for it is important, I write

dk1,...,kr
(m) = dp,q

k1,...,kr
(m).

To pass to a more convenient notation we take this p, q to be p′, q′ and with another p, q we set

∆ = hp,q(m). We form the rational functions of m,Y,∆ defined by

ak1,...,kr
(m,Y,∆) = (kr + · · ·+ k2 + y + ∆k1)(kr + · · · + k3 + Y + ∆k2) · · · (Y + ∆kr)

and by

Pp′,q′(m,Y,∆) =
∑

k1�···�kr>0

k1+···+kr=p′q′

ak1,...,kr
(m,Y,∆)dp′,q′

k1,...,kr
(m).

The highest power of Y that appears in Pp′,q′(m,Y,∆) is Y n, where n = p′q′, and it appears with

coefficient dp′,q′
1,...,1(m).

On the other hand, set

Y p′,q′
r,s = hp′,q′(m)− hp−r,q−s(m).

Conjecture. If ∆ = hp,q, then

Pp′,q′(m,Y,∆) = dp′,q′
1,...,1(m)

∏
r+1≡p′(mod 2),|r|<p′
s+1≡q′(mod 2),|s|<q′

(
Y − Y p′,q′

r,s (m)
)
.
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It is important to observe that p, q and p′, q′ play utterly different roles in this identity. Before

explaining the significance of this conjecture, I observe that for genericm the null space ofHn(h, c), h =

hp′,q′(m), c = c(m) is of dimension 1. Moreover, for all k1, . . . , kr such that Σki = n the vector

vk1,...,kr
= L−k1 · · ·L−kr

vφ

lies in Vn, whether k1, . . . , kr are in decreasing order or not. In addition, it is not difficult to show that

∑
k1+···+kr=n

k1≥0

ek1,...,kr
ak1,...,kr

(m,Y,∆)

depends only on the vector ∑
k1+···+kr=n

ek1,...,kr
vk1,...,kr

.

Thus if ∑
ek1,...,kr

(m)vk1,...,kr

is any vector with values in the null space of Hn(c, h) the function

P (m,Y,∆) =
∑

ek1,...,kr
(m)ak1,...,kr

(m,Y,∆)

is determined by the coefficient p(m,∆) of Y n. Provided that this is not zero, the conjecture is

tantamount to

P (m,Y,∆) = p(m,∆)
∏
r,s

(
Y − Y p′,q′

r,s (m)
)
.

In the two extreme cases, p′ = 1 or q′ = 1, Benoit and Saint-Aubin [BSA] have found an explicit

formula for ek1,...,kr
(m):

a) q′ = 1

ek1,...,kr
(m)

(
− (m+ 1)

m

)n−r{ r−1∏
i=1

(k1 + · · · + ki)(ki+1 + · · ·+ kr)
}−1

, (A.1)

b) p′ = 1

ek1,...,kr
(m)

(
− m

m+ 1

)n−r{ r−1∏
i=1

(k1 + · · · + ki)(ki+1 + · · · + kr)
}−1

. (A.2)

The conjecture in these extreme cases follows immediately from these formulas in Theorem 1.



25

The quotient of the Verma module Vh,c by the space of null vectors is an irreducible module Mh,c.

Select two parameters ∆′,∆′′, as well as a third parameter ∆. A primary holomorphic field attached

to these parameters is a formal series.

Φ(z) = z∆′′−∆′−∆
∑
k∈Z

ϕkz
k.

Here ϕk is a matrix ϕk,n′′,n′ , n′ � 0, n′′ � 0, n′, n′′ ∈ Z and

ϕk,n′′,n′ : M ′n →M ′′n′′ .

We have set M ′ = M∆′,c,M
′′ = M∆′′,c, c = c(m), and

M ′n′ = {v ∈M ′|L0v = (∆′ + n′)v}, M ′′n′′ = {v ∈M ′′|L0v = (∆′′ + n′′)v}.

Moreover ϕk,n′′,n′ = 0 unless k = n′′ − n′, so we write ϕn′′,n′ for ϕn′′−n′,n′′,n′ .

The formal series Φ(z) is said to define a primary holomorphic field of weight ∆ if the identity

LkΦ− ΦLk = zk+1 d

dz
Φ + ∆(k + 1)zkΦ (A.a)

is valid for all k ∈ Z. The formal identity translates immediately into real identities for the operators

ϕn′′,n′ between finite-dimensional vector spaces. Although it is usually ignored, a basic problem is to

decide for what values of ∆′,∆′′, and ∆ a primary field exists. This is particularly important for the

discrete series parameters m � 2,m ∈ Z,

h = ha,b(m), 1 � a < m, 1 � b < n+ 1.

Thus ∆′,∆′′,∆ are all to belong to this set, ∆′ = hp′,q′ ,∆′′ = hp′′,q′′ ,∆ = hp,q.

It appears that it is not difficult to prove the existence of Φ(z) satisfying (A.a) provided one can

construct ϕ0,k, ϕk,0 for all k � 0, satisfying the conditions implied by (A.a). It is moreover easy to see

that ϕn′′,n′ is the adjoint of the operator ϕn′,n′′ attached not to ∆′,∆′′ but to ∆′′,∆′ and the same ∆.

Thus the necessary and sufficient condition for the existence of Φ(z) is that ϕ0,k exist for all k for the

parameters ∆′,∆′′ and ϕ0,k for the parameters ∆′′,∆′.

It is clearly enough to determine the conditions for the first problem. Normalize Φ so that

ϕ0,0 : v′φ → v′′φ. A simple calculation shows that

ϕ0,kv
′
k1,...,kr

= ak1,...,kr
(m,∆′ −∆′′,∆)v′′φ, k =

∑
ki.
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Thus a necessary and sufficient condition for the existence of ϕ0,k is that

u =
∑

ck1,...,kr
v′k1,...,kr

= 0

imply that ∑
ck1,...,kr

ak1,...,kr
(m,∆′ −∆′′,∆) = 0. (A.b)

It will probably be easy to show that if the condition (A.b) is satisfied by one null vector, then it is

satisfied for all null vectors obtained from it by repeatedly applying elements of the Virasoro algebra.

After that, it should not be too difficult, using results of Feigin and Fuchs [FF], to show that for the

discrete series it is enough to verify it for u = up′,q′ and u = um−p′,m+1−q′ . Provided that dp′,q′
1,...,1(m)

and dm−p′,m+1−q′
1,...,1 (m) are not zero, and this seems likely, although I am not at the moment clear as to

how it is to be proved, then the conjecture implies that the operators ϕ0,k exists for all k and only if

∆′ −∆′′ = Y p′,q′
r1,s1

(m) (A.c)

and

∆′ −∆′′ = Y m−p′,m+1−q′
r2,s2

(m), (A.d)

for some pairs r1, s1, r2, s2 satisfying r1 ≡ p′ + 1, r2 ≡ m− p′ + 1, s1 ≡ q′ + 1, s2 ≡ m− q′ modulo 2,

and |r1| < p′, |s1| < q′, |r2| < m− p′, |s2| < m+ 1− q′.

For the present it is sufficient to examine the first equation, our only purpose being to verify that

it leads to explicit conditions on p, q, p′, q′, and p′′, q′′. Set p0 = p− r1, q0 = q − s1. Since

∆′ −∆′′ = hp′,q′ − hp′′,q′′ ,

we infer from (A.c) that

(p′′ − q′′)2m2 + 2(p′′ + q′′)p′′m+ p′′2 = (p0 − q0)2m2 + 2(p0 − q0)p0m+ p2
0.

This equation is readily seen to be equivalent to the condition that either

(p′′ − q′′)− (p0 − q0)m+ (p′′ − p0) = (p′′ − p0)(m+ 1)− (q′′ − q0)m = 0

or

(p′′ − q′′) + (p0 − q0)m+ (p′′ + p0) = (p′′ + p0)(m+ 1)− (q′′ + q0)m = 0.

The second equation is obtained from the first on substituting p′′ → m− p′′, q′′ → m+ 1− q′′.
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Since all quantities involved are integers, all solutions of the first equation are of the form p′′ =

p0 + am, q′′ = q0 + a(m+ 1), a ∈ Z. Since 0 < p, p′, p′′ < m, 0 < q, q′, q′′ < (m+ 1), the integer must

be 0,±1 although not all these values are necessarily allowed.

The conclusion is that the conjecture leads to explicit, albeit somewhat elaborate, necessary and

sufficient conditions on p, q, p′, q′, p′′, q′′ for the existence of a primary conformally invariant holomor-

phic field. There is a close connection between the problems of existence and the problem of establishing

fusion rules. The conditions derived from the conjecture are close to those the attentive reader of the

discussion of fusion rules in [BPZ] would expect, although perhaps not exactly the same.
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Note added in proof. After this paper was submitted two preprints came to my attention that render

the combinatorial arguments in it superfluous from some points of view, although not necessarily

redundant. First of all, G. Felder in BRST Approach to Minimal Models has used the BRST method

to construct primary fields and the conjecture of the appendix follows readily from his conclusions.

Moreover, B. L. Feigin and D. B. Fuchs in Cohomology of some nilpotent subalgebras of the Virasoro

and Kac-Moody Lie algebras take the direct algebraic approach of the Appendix to the existence

of primary fields, but deal with the whole matter much more efficiently, more generally, and more

elegantly. It is in particular clear from their discussion that the conjecture is an easy consequence of

results already in [3].


