1. Introduction. This is the rest of the letter | promised. After making the necessary apologies for its length, the
style in which it is written, and the delay in sending it let me tell you what is in it and what is not in it. There are

also one or two matters about which you should be concerned.

Of course the goal is to extend the theorem of your paper to all number fields and to function fields. If |
have made no mistakes such an extension is obtained in paragraph 7 (Although | am not really at home with
function fields | do not think | made any blunders). Moreover as | said | do have to assume the existence of an

Euler product.

If you want to see quickly what the basic idea of the proof is you should probably concentrate on function
fields. For these only paragraphs 6 and 7 are necessary. Indeed in this letter the only difference between a number
field and a function field is that a function field has some archimedean primes. The reason that so much space is
devoted to archimedean fields is that, at the moment, | know more about the representation of GL(2, K') for such
fields. As soon as | understand the representation theory of GL(2, K') for non-archimedean fields I should be
able to avoid the assumption, which appears in both the letter and your paper, about the character . Of course
ignorance of the representation theory of GL(2, K) for a non-archimedean field is not fatal. The same ignorance

for an archimedean field would be.
Perhaps it will help when you read paragraph 7 if | give some idea of the relations between the notation of
the letter and your paper. Associate to the function I' of your paper the function

(ad — bc)WF (ai + b)

F; =
0(9) (ci+ d)¥ ci+d

a b
g = (C d) EGL+(2,R)

If K = Q, as we now assume, the divisor D of the letter is just the number A of your paper. Let ¢’ be the € of your

paper and let § be a character modulo A. If ((j 2) liesin UL% set

ep<‘z Z)—e/(a)é(ad)
a b
6p<c d>_1
a b a, b
= 1I P P)
E(C d) p;«éprp(Cp dp

is the ¢ of the letter. The relation F' | v = e(y) T fory = (: ' ) inTy(A) is equivalent to

S
u

if p | D and set

if p\ D. Then, for (” 2) inUP

Fo(vg) = 11 ey ()} Folg)
p|D
for v in Gx N Gk, x UP,dety > 0. Define a function ¢ on G by
©(79) = Fo(gs0) 11 €4(9p)
p|D
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if v belongs to G N GY, g belongs to Gk,  x UP, and det(gos) > 0. ¢ is well defined and is the ¢ of my letter.

If we want to indicate its independence on ¢ we should write ¢ = 5.

Now let me show that the assumption
FlwA)=C"Y"F

implies that § = i { %ep(l 1)}%/5- Since (¢')* =1
p

o (4 ) = ¢@itad) = @5

of p | D. If g belongs to Gk, x UP and detgos > 0
. 0 A! 0 1
@(9)—@((1 0 )QH(Ap 0))

(5 ) (oI )

mov

:F()((Ago1 )(A(; —1>goo pl|_1£€g Ip }{g%( _ >}
Zg{pl;[)%((l) Ol) 0(ge0) pll_]gq’ )}
.

a0\, a1 k2 k k
— R
(o DR e anare
the representation I, _ isthe infinite-dimensional quasi-simple irreducible representation deducible from 7, ¢, __ |}

will have to lie in L(&,_, mp ). & will of course be the character

f({E) _ eQwimw Hef27rizp.

Let x’ be one of the x of your paper. x’ determines a homeomorphism of I O, into C*. m is of course the

plm

conductor of x. Let x’ also denote the character of K *\ I which satisfies

X/(l;[ﬁp) =x'( I B)

plm

if B,.. > 0and 3, € O) for p # po.. Then x = (¢/6x’) ! is one of the characters of the letter.

1 L
I x 11 < mp >
pipe \O 1
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the value of the integral of Lemma 7.3 is, in your notation, *

1 /ZC 627r1n(f— )ts-l-zg t.

90( anodm

This equals

9 1 k = 9(x) k
— Av(s+ =
T3 zz: 27n) S+2 s )

go(m (p(m)mSJr% 2
On the other hand it is equal to the product of (s, x) and the expression (D) on page 7.20". If ¢, __ is suitably

normalized then, for the g chosen, this expression equals

This is equal to

1 g¥)
(27)sts @(m)
Thus
— _jam\str o,
560 = () A (s +3)
Moreover

i* T
o =STa (o 5 PED+Easts+ )

p|D

[11)

The letter and the paper will be consistent of

27 s+35 s € g(XI) -1/
(AT Ccdm) T (-A)
is equal to
ik ™ 1k —
101 IR DIERt 1 CA QR DECRCRENTY ) ()}

pt0

D
Pl P#Poo

p|D

* The second formula from the bottom on p. 150 of your paper does not look correct.
T Added - this is pagination of the original letter.



This is a consequence of the following relations.

Ool(o 5 )=o)

p|D
o5 1)) =Ts (75" )= venenenta
p|D ptD

€(Cpocpoes Tpos) = ik(ZW)QS
€(¢p,&p,mp) =1ofpfDandpim
_9(xX) m 0
16 = SR Tl )

plm

HCp(<n8p _72;1)) =[] (=my ) [T (€6x) " (=md) T Imp >

plm plm plm plm

= {H(e/)_l(mp)}{H X/(_mp—Q)}m—Qs

plm plm
= {JT¢mo)HTT X (=mp)ym—>
ptm ptm

=€ (m)x'(=1)m™%.

Of course all these formulas will be meaningless to you until you have read the letter.

For lemma 2.4 and 4.3 | have referred to a paper of Harish-Chandra. These lemmas are not stated explicitly

in that paper. It has been a long time since | looked at that paper and | should read it again to see that the lemmas

are really implicit in it. 1 will do so as soon as possible. The appendix to paragraph 7 is not relevant to the rest of

the paper. You should not read it. | include it only because the footnotes contain corrections to paragraph 5.

With so many formulae there are bound to be some small errors. They should show up as soon as one starts

to apply the theorem.



2. Representations of GL(2,R). In this paragraph the next G will be GL(2,R) and G} will be the group of
matrices in Gg with determinant 1. U will be O(2,R) and U° will be SO(2,R). g will be the Lie algebra of Gg
and gc its complexification. g° will be the Lie algebra of G and g2 its complexification. 2 and A° will be the

universal enveloping algebras of gc and g?c respectively. Since neither Gg nor G?R is connected it is not sufficient

(0 1)

A representation 7 of {o, 2} on a vector space W assigns to each X in 2 a linear transformation 7(X) of W. It

for us to study representations of 2 or 2°. Let

also assigns to o a linear transformation (o). We demand not only that X — 7(X) be a representation of 2 but
also that (7(0))? = I, and 7(o)m(X)n(c~!) = m(ad o(X)) for all X in 2. A representation of {o,2°} is defined

in a similar manner. If 7 is a representation of {o, 2}, 7° will denote its restriction to {o, 2%}
01 00 1 0
(o) r=(0) 2200
0 1 1 =« 1 —i
=(he) = h) (G D)

U is contained in the Lie algebra of the one-dimensional group U. If 7 is a representation of {o, 2} on W let

Two bases of g2 are

and

W, ={w € W|rn(U)w = inw}. We shall always assume that W,, = {0} if n is not an integer. The representation
7 will be called quasi-simple* if W = X, W,, and 7(Z) is a scalar for all Z in the centre of 2. If w; and 75 are
two representations of {0, 21} on W, and W respectively w2 will be said to be deducible from 7 if there are two
invariant subspaces. W3 O W, of W7 and 75 is equivalent to the representation of {o, 2} on W5/W,. Similar

notions can be introduced for representations of {o, 2A°}.

If Z lies in the centre of 2 then ad o(Z) = Z. The centre of 2A° is generated by
1 2 1 2 1 2
D:XY+YX+§Z :2YX+Z+§Z =2XY—Z+§Z.

The centre of 2 is generated by D and J = ((1) (1))

If Gisany Lie group and X liesinits Lie algebra p(X) is the left-invariant vector field defined by p(X)¢(g) =
4 s(gexptz)|i—o and A(X) is the right-invariant vector field defined by A(X)¢(g) = 4 p(exp(—tX)g)|i=o. The

maps X — p(X)and X — A(X) extend to representations of the complex universal enveloping algebra.

Let w be a continuous homomorphism of Ag, the group of diagonal matrices in G, into C*. Let w; and ws

be the homomorphisms of R* into C* defined by

at=wl(g 1))

* 1 use the expression in a slightly different sense than Harish-Chandra.




and

e = (5 )

Si(L)mi m; = 0or1,andset s = s; — s2,m = my — ma. If Ny is the group of all matrices of the

(1)

let L (w) be the space of all infinitely differentiable U-finite functions on Ng\Gr satisfying ¢(ag) = w(a)| 52 |1/250(9)I

= a1 0
o 0 (65

in Ar. If ¢ belongs to L(w) and X belongs to 2 then p(X )y also belongs to L(w). Of course p(o)e which is

Let w;(t) = |t

form

for all

defined by (p(o)¢)(g) = ¢(go) also belongs to L(w) and we obtain a representation 7, of {o, 2} on L(w).

Because of the Iwasawa decomposition Gg = NrArU" the functions in L(w) are determined by their

restrictions to U°. The functions ¢,, with 25 € Z, which are defined by

Pn(g) = wla)|—

! |1/26m9
(€5

if g = (1 x)a( cos? Sina) and ¢ = (T)l 5 ),formabasis of L(w).
2

01)%\ ~sins coso
Lemma 2.1.
(i) mo(0)on = (—1)g (i1) (U)o = inon
(#0) T (V)ion = (s + 14+ n)pni2(iv) m(W)pn = (s + 1 —n)pn_s
(v) 7(D) = 522_ iy (vi) 7 (J) = (51 + 59)T

The relations (i), (ii), and (vi) are clear. To prove (iv) we observe that p(D) = A(D) and that if ¢ €
Lw),A\(D)p =XZ)p+ sMNZ®)p=[-(s+ 1)+ 3(s+1)}p = L;lgo. Since [U, V] = 2iV and [U, W] = 2iW,
7w (V) isamultiple of ¢, o and 7, (W), isamultiple of ,,_». Itiseasily seenthat (7, (V)¢,)(1) = (s+1+n)
and (m,(W)p,)(1) = (s +1 — n). The relations (ii) and (iii) follow

Corollary. (i) If s —m is not an even integer the restriction of 7., to A% is irreducible
(ii) If s — m is an odd integer and s > 0 the only subspaces of L(w) invariant under A° are

Miw)= > Cpn Mw) = > Cp,

n>s+1 n<—(s+1)
n—m n—m

7 < =z ¢

and M (w) = M (w) + Ma(w). The spaces M1(w), M2(w), and L(w)/M(w) are irreducible under A°. The
only subspace invariant under {o,A°} is M(w). The representations of {o,A°} on M(w) and L(w)/M (w)

are irreducible.



i) If s — m is an odd integer and s < 0 the only subspaces of L(w) invariant under 2A° are
(idi) If g y subsp

Z Cen, M2 Z Ceon,

n>s+1 n<—(s+1)
nomey nomey

and M(w) = My (w) N Ma(w). The only subspace invariant under {o,A°} is M(w) and the representations
of A% on M(w) and L(w)/M(w) are irreducible.

This follows immediately from the lemma and and the observation that an invariant subspace of L(w) is
spanned by the ¢, it contains.

If 7 is a quasi-simple representation of {o, A} on H then n(V)H,, C H,y2 and ©7(W)H, C H,_s.
Consequently H® =% H,and H' =" ., H, are invariant subspaces of H. We shall say that = is of
type 0 if H! = {0} and that  as of type 1 if H® = {0}.

Lemma 2.2. Suppose m is a quasi-simple irreducible representation of {o,A°} on H which is of type m.

Suppose moreover that w(D) = 5251[ and s —m is not an odd integer. If n > 0 let A, be the restriction of

m(o)m(W)"
T (s 2k — (n— 1))

to H,. If n <0 let A, be the restriction of

7(o)m(V)!"!
It (s + 2k — (In] — 1))

to H,. Then A%2 =1 for all n. Let A(r) be the operator H whose restriction to H,, is A,. A(r) commutes
with 7(o) and with ©(X) if X is in AY.

Using the relations Z = V+ ,2X=U — (V=W) , 2V = U — =) W) one shows easily that
vw  wv  U? VW U wv U?
D = — _—  — _— = — — _
R R S T

Thus, if ¢ lies in H,,,
7(V)n(W) = (2D — 2iU + U?)p = (s> =14 2n —n?)p = [s* — (n — 1)%]p
a(W)n(V)p = 7(2D + 2iU + U*)p = (s> =1 —2n —n?)p = [s* — (n + 1)%]p.
In particular if 0 < j < |n| and ¢ € W,
(VY Tae(W) e =[5> — (n — 25 — ) r(V)ir(W) ¢ ifn>0
(WY Ha(V)y e = [s? — (In| = 2j = 1)*la (W) n(V) ¢ ifn <0.
since 7(o)m(W)r (o) = n(V) and 7(0)m(V)r(c) = =(W) it follows that

7 s? — (nf — 25 — 1)2)
{5 (s + 2k — (|n| — 1)))2

Anp =

p=¢
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It is easy to see that A(m) commutes with (o) and 7(U). Thus to prove the last assertion of the lemma we
need only show that it commutes with (V) and 7(W) or that A,, o (V) = (V) A, and A,,_on (W) = 7(W) A,,.
We must study various cases separately.

Suppose that n > 0 and ¢ belongs to H,,.

1 n+2
AT,,+27T(V)QO = HZI& G1ok—(nt 1))7T(U)7T(W) + 7T(V)<p
= (V) (s = (n Hr(o)w "
b o et s GG LU AR
=m(V)Anep.
Ifn>2
1 n
W(W)AHSO = HZ;&(S ok (n _ 1))7T(W)7T(U)7T(W) 2
_ (o) 2 — (—n 2\ n—1
Sk o R
= An_Qﬂ-(W)(p.
Ifn=1
7(W)Auip = ~(W)m(0)r(W)p = ~7(o)n(V)m(W)p = Anom(W)p.
Ifn=0
AW = m(o)n(V)5 (W) = T x(0)r(V)r(W)g = m(W)r(o)p = (W) Adngp

Thereis no need to discuss the case n < 0 because (o)A, (o) = A_,,,w(o)m(W)m(o) = n(V), and w(o)m(V)n (o) =}
m(W).

Lemma 2.3. A quasi-simple representation m of {o, A} is irreducible if and only if ©° is irreducible. If 7 is

an irreducible quasi-simple representation of {o,2} on H there are two possibilities.

(i) The restriction T of w to A is wrreducible and the two representations X — 7(X) and X — T(ado (X))

are equivalent.

(ii) H is the direct sum of two subspaces Hy and Ha invariant under 2. The representations T1 and Ta of

A on Hy and Hy are inequivalent but T2 is equivalent to X — 71 (ad o(X)) and w(c)Hy = Ha.

The first assertion is a matter of definition. Suppose 7 is irreducible. Either H is irreducible under 2, when
the first possibility occurs, or it is not. Suppose it is not. Let H; be a proper subspace of H invariant under 2 and
let Hy = w(0o)H;. Since Hy + H» and Hy N Ho are invariant under {o,2}, Hy N Hy = {0} and H = H, ® Ha.
If H{ were a proper subspace of H; invariant under 2 then H| & H), with H), = w(o)Hj, would be a proper
invariant subspace of H. 75 is certainly equivalentto X — 7;(ad o(X)). To complete the proof of the lemma
we have merely to show that 7; and X — 7;(ad o(X)) are not equivalent. To do this we use the following
lemma which is a special case of a theorem of Harish-Chandra (Representations of semi-simple Lie groups, II,

T.A.M.S. v. 16, 195}).



Lemma2.4. Let @ be an irreducible quasi-simple representation of 2 on W. There is at least one continuous
. . — . p— 2_ p—
homomorphism w of Ag into C* such that @ is of type |m| and 5(D) = =511 and o(J) = (s1 + s2)1.

Moreover if w is any such homomorphism & is deducible from T, the restriction of m, to .

As usual w;(t) = w((;f)),wg(t) - w(((l)(t))),wi() = |t

Although the adjectives of the lemma have only been defined for representations of {0, 2} their meaning for

9’( )"” s = 81 — 89, and m = mq — mo.

representations of 2 is clear. The lemma implies that W,, is of dimension at most 1. Consequently any linear
transformation leaving W,, invariant has an eigenvector and any linear transformation commuting with 7(X)

for all X in 2 is a scalar.

If 71 and X — 7(ado(X)) were equivalent there would be an operator A such that
AT (X)A = T(ado(X)) for all X. Thus A%7 (X)A™2 = A(Ti(ado(X))A™r = 7 (X) and A% is a
scalar. We may suppose that A2 = I. If z liesin H; and X liesin A then (X )(z @ 7(0)Az) = y ® 7(0)w(A)y if
y=n(X)rand n(o)(x ®7(0)Azx) = y®7(o)Ay ify = Az so that {x @ 7(c) Az} is a proper invariant subspace.

Lemma 2.5. Suppose 7 is an irreducible quasi-simple representation of {o,2} on H. There is a continuous

homomorphism w of Ar into C* such that w is of type |m|, (D) = SZ;II,W(J) = (s1+ s2)I and, if s—m
is not an odd integer, A(m) = (—=1)"21. If w is any such homomorphism and 7 is infinite dimensional then

7 is deducible from w,,.

Choose s so that 7(D) = 327—11- and define s; and s by s1 — so = s and w(J) = (s1 + s2)I. Choose ms
to be 0 or 1 and define m4, which is 0 or 1, by the condition that = is of type |m| if m = ma. If s — m is not an
odd integer A(w) is defined and commutes with 7(o) and all 7(X). By the previous two lemmas H,, is finite
dimensional. Consequently A(r) is a scalar. Since A%(w) = I, A(w) = +1. Choose ms so that A(w) = (—1)™21.
If s —m is an odd integer msy may be chosen to be either 0 or 1. It follows from Lemma 2.1 that if s — m is hot an
odd integer then A(w,,) = (—1)™=21.

Suppose first that s — m is not an odd integer. Lemmas 2.3, 2.4 and the corollary to Lemma 2.1 imply
that 7, the restriction of 7 to , is irreducible and equivalent to 7,,. Let B be a map from H to L(w) such that
Bn(X) = 7, (X)B for all X. I claim that Bw (o) = 7, (c)B. Itis enough to verify that Br(o)x = (o) Bz for
xin H,. Clearly BA(r) = A(r,)B. Since A%(7) = I, Br(0)x = Br(0)A?%z. Ifn >0

Br(o) = EHOA@T@(W) s
;- 0(s+2k (n—1))

__ bAmr(W)"e

TGt 2k (0 1))
 A(m,)m,(W)" Bx
SIS (s+2k = (n—1))

n

=m,(0)Bzx



andifn <0

Br(o)x = B‘Wl(f)A(W)W(J)w(V)\nIx
1" (s + 26 — (In| — 1))

 BAm(V)e

T (s + 2k — (|nf — 1))

_ A(m,)mo (V)" Ba:

IS (s 4 2k — (Inl — 1)

= 7,(c)Buz.

If s — m is odd integer and 7 is infinite dimensional it follows from Lemmas 2.3, 2.4 and the corollary to
Lemma2.lthat H = H, ® Hs. Let V'’ D V" be subspaces of L(w) invariant under 2 such that 7, is equivalent to
the representation of 2 on V’/V"”. Let W' be the intersection of all subspaces of L(w) which contain V" and are
invariant under {o, 2}. Let W" be the union of all subspaces of L(w) which are contained in V"’ and are invariant
under {c,2(}. By the corollary to Lemma 2.1 the representation 7, of {o,2} on W = W’/W" is irreducible.
By Lemma 2.3 W is the direct sum of two subspaces W; and W, invariant under 2. We may suppose that the
representation of 2L on W1 is equivalentto 7;. Let By be a map of H; to Wi such that By7(S) = n,,(X)B; for X
ing. Let By = 7, (0)Byw(o) and set B = By @ Bs. Itisimmediate that Bw (o) = 7,,(0)B and Bn(X) = 7,(X)B
for all X.

Itis not difficult to see that every finite dimensional representation of {c, 2(} is deducible from some 7,,. Asa

consequence A(r) can be defined by the formulas of Lemma 2.6. If 7 is deducible from 7, then A(7) = (—=1)™21.

Corollary. Suppose A(D), A(J), and m, which is to be 0 or 1, are given numbers. Let A(D) = 52;1, Ifs—m

is not an odd integer there are two irreducible quasi-simple representations w of {o, A} of type m for which
m(D) = X(D)I and w(J) = XN(J) = MJ)I. For one A(w) = I and for the other A(w) = —I. If s —m is
an odd integer there are three such representations. One is infinite dimensional. The other two are finite

dimensional. For one of these A(w) = I and for the other A(mw) = —1I.

Since s is not unambiguously determined neither is A(7). However once a representation 7, from which 7
is deducible is specified s can be taken to be s; — s5. Such a choice was implicit at various places in the preceding

paragraph.
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3. The local functional equation for GL(2,R). If 7 is an irreducible quasi-simple representation of {o, 2} and 74
is a representation of {o, 2} on W we shall say that 7 is contained in m if there is an invariant subspace V' of W
such that the restriction of 7, to V' is equivalent to 7. We shall say that 7 is contained at most once in 7 if there is
at most one such subspace. If V' were another such subspace either VN V' = {0} or V' = V/; thus to show that
7 is contained at most once in 1 one has merely to show that two such subspaces must have a non-zero element

in common. Similar notions can be introduced for representations of {o, 21°}.

If i is a continuous homomorphism of Ay into C* let L(n) be the space of all infinitely differentiable U-finite
functions on Gy satisfying ¢(ag) = n(a)p(g) for all a in Ag. If ¢ liesin L(n) so does p(c)y and p(X ) for X in
2. Thus we have a representation p(n) of {0, 2} on L(n).

Lemma 3.1. No irreducible quasi-simple representation of {o, U} is contained more than once in p(n).

Let 7 be an irreducible quasi-simple representation of {o,2(} and let 7° be its restriction to {o, A°}. Suppose
7 is deducible from 7,,. Let L%(n) be the space of infinitely differentiable U-finite functions on G satisfying
v(ag) = n(a)e(g) for all a in Ax N G and let p°(n) be the representation of {o,2A°} on L%(n). Itis enough to

show that 7¥ is contained at most once in p°().

Suppose H C L°(n) and the restriction of p°(n) to H is equivalent to 7°. The integers n for which H,, # {0}

are determined by 7. To prove the lemma we need only show that, for some such n, H,, is uniquely determined
t 0 10
by . Letm(t) = n(( ;| ))ome() = n(( ), )), and let mi(t) = |t

1z

(@) =¢((, 7)) then

7"7"(%)47" with ¢; = 0 or 1. If o lies in H,, set

_ 1 x cosf sinf
9=% o 1 —sinf cosf

with a in Ag N G%. Consequently ¢ is uniquely determined by 1. Let o1 = p(V)y, p2 = p(W)ep, and let 4, and

1p9 be the corresponding functions on R. Since

sl 1)) =invte)
o2l 1)) =rvte) 205
el ) =%
and
V=24+2X—-1U
W=27-2X+:iU
one has p
Ya(e) = =2~ )50 + (4 o

Yalw) = 2+ )5 + (= ).

11



Moreover p(D)p = p(@—iU—U;)@ corresponds to the function 2(3:24—1)‘;2715—0—(43:—27"3:—22'71)%—!—%1&.
Consequently
4> dp | [(r—1)* - 57

2(z? +1)— + (4o — 27z — 2in)—
(x—l—)dxz—l—(a: rT Zn)dx+ 5

¥ =0. (4)
Finally p(c)¢ corresponds to (—1)%2¢(—x).

There are a number of separate cases to consider. If s — m is an odd integer and = is infinite dimensional
take ng = |s| + 1. Then H,,, # {0} and p(W)p =0if ¢ € H,,,. Thus

“2a 4 )% 4 (¢ o) = 0.

This equation determines ) up to a scalar factor.

If s — m is not an odd integer or 7 is finite-dimensional and if m = 0 then Hy # {0}. If ¢ lies in Hy then
) must satisfy equation (A) and the condition ¢(—x) = (—1)%™24)(x) because A(7®) = (—1)™21. Thus 1) is
determined up to a scalar factor.

If s —m is not an odd integer or 7 is finite-dimensional and if |m| = 1 then H; # {0}. Referring to the

definition of A() in Lemma 2.2 we see that ¢ satisfies equation (A) and the equation
_ ; ﬂ _ _ (_1)l2t+m2 _
2+ i)+ (= Dib(a) = (~1)* Tt (—a).

This equation implies a non-trivial linear relation between the values of ¥ and its first derivative at x = 0. Thus

1) is determined up to a scalar factor.

If £(z) = e, with u # 0, is a non-trivial character of R let L (&) be the space of all infinitely differentiable

U -finite functions on Gy satisfying:

. 1 z .
() @((0 1) g) = &(x)p(g) forall z in R,
(ii) if g belongs to Gr and X belongs to 2 there is a constant M such that

(g ) @) < MG+l )

for |t1] > |ta].

Let p(&) be the representation of {o, 2} on L(¢).
Lemma 3.2. No irreducible quasi-simple representation of {o,} is contained more than once in p(§).

Let m be such a representation and let = be deducible from 7. Let L°(&) be the space of all infinitely

differentiable U-finite functions on G satisfying

0oy 7)o =d

12



(ii) If g liesin G2 and X lies in A there is a constant M such that
t2 0
(g )l < 2
fort > 1.

Let p°(&) be the representation of {o, 2"} on L°(&). It is enough to show that 7" is contained at most once

in p°(n). The proof of this will be similar to the proof of the previous lemma.

Suppose H is an invariant subspace of L°(¢) and the restriction of p°(¢) to H is equivalent to 7°. If ¢ lies in

H,, set

since p(g) = &(z)(t)e™ if

(1 =z \t|§/2 0 cosf sinf
9=\ o 1 0 Itﬁ/z —sinf cosf

the function ¢ is determined by ¢. Let o1 = p(V)g, 02 = p(W)p, and let ¢); and 2 be the corresponding

functions on R*. Since

i 0
p(U)so(< " e )) = (1)

oz 00\, dy
p(Z)so(< ) }/2>)2tﬁ

s 0
pX)e(| M )) = iuti (1)
[t]172
one has v
P1(t) = ZtE — (2ut — n)y
Pa(t) = Ztili—qf + (2ut — n)y.

Moreover p(D)y corresponds to 2t & (t42) — 2642 + (2nut — 2u?t?)1) so that

s2—1
2

d, dy dip 2,24
tht(tdt) 2tdt—|—(2nut 2ttt =

V. (B)

Finally p(o) corresponds to (—1)"w(—t).
Suppose that s — m is an odd integer and 7 is infinite dimensional. Take ny = |s| + 1. Then H,, # {0} and

p(W)e = 0 if ¢ belongs to H,,,. Consequently

d
th—lf + (2ut — ng)yp = 0.

If ¢ is to satisfy this equation and the growth condition it must vanish for ut < 0 and be a multiple of |t|"0/26‘“t

for ut > 0. Thus it is determined up to a scalar factor.

13



Before discussing the remaining cases we should comment on equation (B). It may be written as

d*i 5, nu  (1—s%)
T T e

Yo = 0.

Dropping the terms in % and tiz we obtain the equation % — 1%y = O. As a consequence the original equation
has one solution on the positive real axis of the form t#¢~1*I*(1+-O(4)) and one of the form t¢/“I*(1+-O(%)). Only
the first will satisfy the growth conditions. On the negative real axis it has solutions of the forms t”/e|“‘t(1 +O(%))
and " e~ lult(1 + O(%)). Only the first satisfies the required growth conditions. Thus the space of solutions of

equation (B) which satisfy the growth conditions has dimension two.

If s —m is not an odd integer or 7 is finite-dimensional and if m = 0 then Hy # {0}. If ¢ belongs to H, then
p(—t) = (=1)™24)(t) because A(7®) = (—1)™21. This supplementary condition will determine v up to a scalar
factor.

If s — m is not an odd integer or r is finite dimensional and if |m| = 1 then H; # {0}. If ¢ belongs to H;
then

Qt% + (2ut — 1)(t) = (=1)m2 D syp(—t).

This supplementary condition determines ) up to a scalar factor.

Suppose (t) satisfies equation (B) with n = 1 and

V(0 = (12T 1) - 2ut+ D(-0),
Then
mao+1 / _1)yma+1
o) — 2w+ w0 = T o () — (2wt 4 1) (1))
which equals
2 d._ dy (2ut + 1) dip

Simplifying we obtain

2 d, dy dip 1

Sl (ton) —2t— + (—2u*t* + 2ut + 3¢}

which is just v itself.

Corollary. Let m be an irreducible quasi-simple representation of {o,2}. 7 is contained in p(§) if and only if

w18 infinite dimensional.

It is enough to show that ¥ is contained in 7°(¢) if and only if 7° is infinite dimensional. Suppose H is

a non-trivial finite dimensional subspace of L°(¢). Let = be the representation of {o,2l} on H and let 7 be the

0 =z
(0

14
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the only eigenvalue of 7(X ) is zero because 7 is finite dimensional. Let ¢ be the element in the dual of H defined

by ¢(¢) = ¢(1). ¢ is not zero and

(7(X2)@) () = =p(T(Xa)p) = =(7(Xa)w)(1) = —iup(1)

so —iu is an eigenvalue of 7(X, ). This is a contradiction.

Suppose T is infinite dimensional and deducible from 7. Let L°(¢, s) be the space of functions in L°(¢)

s2—1

satisfying p(D)y = <51 . The dimension of LO(¢, s),, is two. Let
Lo(gv S, m) = EWGZLO(Ea S)n~

and let p° (&, s, m) be the representation of {o, 2} on L°(¢, 5, m).

Suppose W; O W, are two invariant subspaces of L°(¢,s,m) and W = W;/W,. The representation of
{o, U} on W is quasi-simple. Choose n so that TV, is not empty. The dimension of W,, is at most two. Among all
the non-zero subspaces of W,, obtained by intersecting W,, with an invariant subspace of W there is a minimal
one W0. Let W’ be the intersection of all invariant subspaces containing W, and let W be the sum of all
invariant subspaces of W’ which do not contain W,°. W does not contain W2 and the representation of {o, 2}
onV =W'/W" isirreducible.

If s —m is not an odd integer Lemma 2.1 and Lemma 2.5 and its corollary imply that V,, # {0} if 5™ is
an integer. Because the dimension of L°(¢, s),, is two we conclude that there is no chain L°(¢,s,m) 2 Wy 2
Wo 2 {0} of invariant subspaces. The operator A(p°(¢, s,m)) is defined and L°(, s, m) is the direct sum of
LT ={p | A(p°(&,5,m))p = ¢} and L™ = {¢ | A(p°(&,s,m))p = —p}. We have seen that neither of these
is empty. Consequently they are both irreducible and the corollary to Lemma 2.5 implies that the restriction of

p°(&, 5,m) to one of them is equivalent to 7°.

If s —m is an odd integer the same kind of argument shows that there is no chain L°(&, s,m) 2 W1 2 Ws 2
W3 2 Wy 2 {0} of invariant subspaces. As a consequence L°(¢, s, m) must contain an invariant irreducible
subspace. The restriction of p°(¢, s,m) to this subspace will be equivalent to 7% which is the only infinite

dimensional irreducible representation deducible from 72,

We return to the study of the functions 1 (¢). The Mellin transforms

0°(2) = [ wioear
RX
07(Z)= | (t)(sent)|t|* " dt
RX
are defined for Re z sufficiently large. Equations (B) are equivalent to the difference equations

(22 +1)% = s201(2) + dnub ™ (2 +1) —4u®0T (2 +2) = 0

[(22 4+ 1)% — 5207 (2) + 4nub™ (2 + 1) — 4u?0~ (2 +2) = 0.

15



If, as before, v corresponds to ¢, ¥; corresponds to g1 = p(V')p, and 12 corresponds to o = p(W )y let 6; and

6 be the Mellin transforms of ;. Then

07 (2) = —2207(2) — 2ub~ (2 + 1) + nd"(2)
07 (2) = =220 (2) —2ufT (z + 1) + nf~ (2)
05 (2) = —2207(2) +2ub™ (2 + 1) —nb " (2)
05 (2) = =220 (2) + 2ub" (2 + 1) — nb~ (2).

If o is replaced by p(o)p then 67(z) is replaced by (—1)"0%(z) and 6~ (z) is replaced by

(=107 (2).

If 7 is an infinite dimensional irreducible quasi-simple representation of {o, 2} let L°(¢, 7) be the unique

subspace of L°(¢) which transforms according to 7°.

Lemma 3.3. Suppose 7 is an infinite-dimensional irreducible quasi-simple representation of {o, 2} which is

deducible from m,. If L°(&,m), # 0 let 0,7(2) and 6, (2) be the Mellin transforms corresponding to some

non-zero element in L°(&, )y,

(i) If s —m is not an odd integer, m = 0, and mo = 0, then

2., 2+3+5 z+3—%
+ — 24T 2 2\ 2 2
0y (2) adM)( 5 N (—5—)
0 () =0

2 i+t +s 2+ E—3
+ — 22T 2 2\r 2 2
05 (2) aNMQZ( 5 N (—5—)

05 (2) = 2alsgnu(%)zf(

2

(it) If s —m is not an odd integer, m =0, and m + 2 =1, then

05 (2) =0
14 s
0 (=) = ol ) T (22

Jul

)

2 L. z+ts+8 z+3-%
9?(2)==2ﬁbsgDU(EJ)ZF( S N(—5—*
z+i4s

2

05 (2) = 61<|%>er< e

(iii) If s —m is not an odd integer, |m| =1, and mg = 0 then

s+345 2+3-3
2 —2).



(iv) If s —m is not an odd integer, |m| =1, and my; =1 then

2 L2 ts+s z+3-¢
9+ —_ 2T 2 2 r 2 2
2 z+3+5 2413
—(.) — 2 23 22
(v) If s — m is an odd integer and ny = |s| + 1 then
g
50 1 |8|
+ — i
0, (z) = e I'(z+ 5T )
- (2) = 0 sgnuI‘(z—f—l—l—ﬂ).
o |u|z+70 2 2

The letters ag, aq, Bo, B1, Y0, 71,00 denote constants.

If s — m is not an odd integer and m = 0 the supplementary conditions on 67 (z) and 6; (=) corresponding
to A(n%) = (=1)m2l are 67 = (—=1)"20 (2),0;, (z) = (—1)™2+16; (2). The first and second functions in parts
(i) and (ii) of the lemma satisfy these conditions as well as the difference equations. Taking the inverse Mellin
transform we obtain a function ¢ (¢) which satisfies the growth condition as well as the differential equation (B).
The function defined by ©(g) = ¥ (x)¥(t) if

(1 =z \t|+/2 0 cosf sinf
9= o 1 0 It\+/z —sinf cosf

will lie in L°(&,s,m)o. Moreover A(p°(&, s,m))p will equal (—1)™2¢ so that ¢ will lie in L°(&, 7). Thus the
first two equations of parts (i) and (ii) are valid. The last two can be obtained from the first two by applying

relations (C).

In the first four cases 7 is equivalent to 7,. It follows from Lemma 2.5 that 7 is equivalent to 7 if

Ay 2y B

Replacing w by @ interchanges cases (iii) and (iv) so we need discuss case (iii) alone.

2
Jul

Substituting the function ( )ZF(”%;E% )1“(”%2;%) (taking only all the upper signs or all the lower signs)

into the expression [(2z + 1) — s?]0(z) — 4u*6(z + 2) one obtains

(22 +1)2 — 52 3 1 2 (T 3E8) (2+1F3)
T T 9+ - )i r
[ 5 (z+3 s)(z+2¢s)]IUI(|u|) 5 5
which equals
) 1 lis 1 3 s
~aufsgou(n(EED R p EHU STy

2

u
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Consequently the functions of part (iii) satisfy the difference equations. The supplementary conditions on Q{F (2)

and 6; (z) correspond to the relation A(7) = I are
s0F (2) = 2207 (2) — 2uby (2 + 1) + 07 (2)
—s07 (2) = 2207 (2) — 2ub (2 + 1) + 67 (2).
These will be satisfied by the functions of part (iii) because

z+iFs a4 dis

(22 + 15 8)( o) P22y (E =)

+D)+1£8 (+1)+3F2

—

o

The formulae of part (iii) can now be proved in the same way as those of parts (i) and (ii).

= 2u{sgn u( T(

The simplest way to prove part (v) is to appeal to the explicit form for the corresponding function «(t) found

during the proof of Lemma 3.2.
Lemma 3.4. Suppose 1 (t) corresponds to ¢ in L°(&, ), and 7 is deducible from .

(i) If s—m is not an integer, m = 0, mg = 0 then, m a neighbourhood of 0,1 (t) has a convergent expansion

of the form

i 0o e [
) apt? + 77 > bt?.
p=0 p=0

(i) If s — m is an even integer, m = 0, and ma = 0 then, in a neighbourhood of 0,4 (t) has a convergent

expansion of the form

Ea Zapt” (log |¢])¢ Zb 3

(iii) If s — m is not an integer, m = 0, and ma = 1 then, in a neighbourhood of 0, (t) has a convergent

expansion of the form

th”

oo
(sgn )1 D" apt? +
p=0

(iv) If s —m is an even integer, m = 0, and mg = 1, then, in a neighbourhood of 0, (t) has a convergent

expansion of the form

( Zapt” (sgnt)ft|'= 1og|t|2btp

(V) If s — m is not an integer, |m| = 1, and mo = 0 then, in a neighbourhood of 0,1 (t) has a convergent

expansion of the form

oo oo
(sgnt)|t|% Z apt? + |t] -5 Z bytP.
p=0 p=0

18



(Vi) If s —m is an even integer, |m| = 1, and ma = 0 then, in a neighbourhood of 0,4 (t) has a convergent

expansion of the form

It| =2 Zapt” (sgnt)|t| = 1og|t|2b v

p=0

if s is positive and one of the form
(sgnt)|t|” =N Zapr +t77 log |t] Zb tP
p=0
if s is negative.

(vii) If s —m is not an integer, |m| = 1, and mq = 1, then, in a neighbourhood of 0,1(t) has a convergent

expansion of the form

|t = Za,,tp (sgnt)|t| == thp

(viii) If s — m is an even integer, |m| = 1, and mo = 1 then, in a neighbourhood of 0,1 (t) has a convergent

expansion of the form
(sgnt)|t| == Z ast?

if s is positive and one of the form

log|t|2b tP

|t = B Zaptp + (sgnt)|t| =7 1og|t|Zb tP

if s is negative.

(ix) If s — m is an odd integer then (t) is zero unless nut > 0 and in this region () has a convergent

expansion of the form

s 141
|t| 2 E Clttp.
p=0

We know that if ¢)(t) corresponds to ¢ then 2t% — (2ut — n)1 corresponds to p(V)ep, Qt% + (2ut —n)y
corresponds to p(W)ep, and (—1)™(—t) corresponds to p(o)p. Because each of these operations take a function
with an expansion of one of the given forms to a function with an expansion of the same form and 7 is irreducible
it will be enough to show that there is at least one n for which the lemma is valid. If s — m is not an odd integer

we shall take n = |m| and if s — m is an odd integer we shall take n = |s| + 1.

The indicial equation of the equation (B) does not depend on n. Itis (2\ — 1)? — s? = 0 and has the roots

A= 23\ = =t with difference Ay — X2 = s. If n = 0 the series t* Y7 | ¢,tP, ¢t > 0 satisfies the equation

p=0
if and only if

(20 +p) = 1)* = 5%y = du’cpa.
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Thus if s is not an integer v (t) has an expansion of the form

£ gt 4177 Y byt
Z Z

valid for ¢ positive and close to 0. If s is an even integer one of the two linearly independent solutions given by
the method of Frobenius must contain a logarithmic term because it will not be possible to solve these equations
recursively when ); is the smaller of the roots. Since the equation is invariant under the substitution t — —t the

logarithmic solution must be of the form
e ZCQ 12 4 ¢ 10thd2pt g
p=0
and ¢ (t) has an expansion of the form
f\ L+ 2p p
Z agpt? + 77 logt Z bopt?
p=0

valid for ¢ positive and close to 0. Cases (i) to (iv) of the lemma follow immediately because, since n = 0, ¢ (¢) is

even in the first two and odd in the second two.

Just as in the previous lemma, (vii) and (viii) are redundant since they are covered already by (v) and (vi)

S ept?, t > 0, satisfies equation (B), if and only if

[(£5 +2p)? — s%]ep + 2ucy—1 — 2uPcy 2 =0

N =

or

(+2ps + 2p%)c, + 2ucy 1 — 2u’c, 1 = 0.

For convenience let ¢, = 0 if p < 0. If s is not an integer choose cgt and define ci inductively by (£s + 2p)c§ +

2ucp 1 = Es(— 1)pc or, equivalently, (+s +p)c + ucp 1 = 0 when p is odd and pc + ucp 1 =0whenpis

even. This equation will be satisfied for all p if c;f = 0 when p is negative. If p is odd
(£ps +p*)cf + uc;il — UQC;EQ = —ul(p— 1)6;)&71 + uc;tfz] =0
and if p is even
i Py = —ul(Es + (p = 1))e,_y +ucy 5] = 0.

(£ps + pz)ci +uc,  —u

Thus, if s is not an integer, 1 (¢) will have an expansion of the form

+ Zc+tp Zc tP
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valid for ¢ positive and close to zero. Since ms =0

—sip(—t) = 21:% + (2ut — 1) (t).

The expression

ib+

%—{t }::%ﬂ+wmw—1

p=0

Z e

is equal to

E P = T Zc

Case (v) of the lemma for n = 1 follows immediately.

Since p A
ta(log tA(t)) = tﬁ logt + A(t)
d, d d, 6 dA dA
the series
—\ | +1
}:%ﬁ+ t>0,

will satisfy equation (B) when s is an odd integer and n = 1 if and only if

2 2 _ 2
Mdp + 2Udp,1 _ 2U2dp,1 _
or
(|5|p +p2)dp + 'Uzdp_l — U2dp_1 =0
and

(—|slp + p*)ep + UCp—1 — UQCI)—Q + (=Isl +2p)d,— |5 = 0.
Choose g and ¢|,| and define the other coefficients by (|s| + 2p)d, + 2ud, 1 = (—1)P|s|d,, or pd, + ud, 1 = 0 if
pisevenand (|s| + p)d, + udp—1 = 0 if p is odd and
(—Is] 4 2p)cp + 2ucy -1 +2dp_ |5 = (=1)P 1 s]e,
or
pcp + ucp—l + dp7|8\ = O

if pisevenand

(=Isl +p)ep +ucp—2 +dp_s =0

if p is odd. Take ¢, and d), to be 0 if p is negative. These equations are consistent and determine the remaining c,

and all d,, uniquely. We have already seen that the coefficients d,, will satisfy

(Islp + p*)dp + udp—1 — u?d,—1 = 0.

21



If pis even

(—Islp + p*)ep + ucp—1 — ucpz + (—|s| + 2p)d,_

equals
[ls| = (p = D]ucp—1 = wcpz +pdy_ o = udy )1 + (|s| + (0 = [5]))dp— 15 = 0
and if p is odd
(=lslp +p*)ep +ucp—1 — v'epa + (=Is| + 2p)dy
equals

—u[(p - 1)01)71 + ucpfl] + (p - |S|)dp—\s| = Udp—IS\—l + (p - |S|)dp—\s| =0.

Thus if ¢o and ¢y are suitably chosen

oo oo
Y(E) =77 et 4t logt Y dyt”
p=0 p=0

for t positive and close to 0.

Since my =0

—stp(—t) = Qt% + (2ut — 1)¢.

The right hand side is equal to

TS At S
p=0 p=0
with
c; = (—|s| +2p)ep + 2ucp—1 + 2d,_ 5| = —|s|(—=1)P¢,
dy, = (|s| + 2p)dy + 2udp—1 = (=1)7|s|d,.
Case (vi) of the lemma follows.
The assertion for case (ix) with n = |s| + 1 was established while proving Lemma 3.2.

If ¢(t) is the function of the lemma and « is a real number the functions

9+(z,x)=/ ctE (1))t

RX

9_(2,33):/ et () [t|F L sgn tdt
RX

are defined for Re z sufficiently large.
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Lemma3.5. 8% (z,z) are meromorphic in the whole complex plane and bounded in regions of the form |Reu| <

constant, |Imu| > constant > 0

+
() If s — m is not an odd integer, m = 0, and ms = 0 then L ANCEH.) B
AR A5} Eas- S 5
z+gi;(z’m)z+g_§ are entire functions of z.
IGas EE SRR B
.. ) ) +
(i) If s — m is not an odd integer, m = 0, and me = 1 then B ANCE) B
e NG
z+lf;(z’xz)+l_§ are entire functions of z.
N(—3—2)r(—%—=2)
- . . +
(i) If s — m is not an odd integer, |m| = 1 and mgy = 0 then B ANCE) B
P
z+lf;(z’xz)+ﬁi are entire functions of z.
D(—3—2)N(—%—2)
. . . +
(iv) If s — m is not an odd integer, |m| = 1, and me = 1 then (+lfi)(z’f)+§75) and
2 2z 2) 12 22 2
: +§f;>(z’f)+lfi> are entire functions of z.
T2 plFro Ty
2 2
_ : . 0t (z2) | Is| : :
(V) If s —m is an odd integer then are entire functions of z.

I'(z+3 2)
Let m(¢) be an infinity differentiable function with compact support on the line which is even and equal to
1 in a neighborhood of 0. #%(z, z) is the sum of
0¥(zsa) = [ el (sgnt) E i)
RX
and
[ el sgnt) = (1 = mie)ar.
RX
The second integral is an entire function of z which is bounded in vertical strips. Thus it is enough to prove the

lemma with 6% (z, z) replaced by 6% (z,z). The function ey (t) + (—1)F e~i=4)(—¢) is, for t > 0, a linear

combination of convergent series of the form

e
t*(logt)? Z cpt?
p=0

where « is 551 or %*1 and (is 0 or 1. Given a series of this form and a real number c there is a P such that
o0
/ t*(logt)*{ ) " cpt? 1> tm(t)dt
0 p>P
is analytic for Re z > ¢ and bounded in vertical strips of finite width contained in this region.

The first assertion of the lemma is a consequence of the relations

00 —1 o0
/ ta+p+z71m(t)dt — 7/ taerJrzm/(t)dt
0 a+p+zJo
00 —1 o0
o2 og tm/(t)dt = 7/ o+ p+ 2)t TP logt — tTPEEIm! (t)dt
/ stm(t)dt = o [l 2 g (1
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and the condition that m/(¢) vanish near zero. To prove the remaining assertions one shows that the zeros of the
denominator on the right are cancelled by the poles of the I'-factor. This is easy but the various cases of Lemma

3.4 must be examined separately. | leave it to the reader to do so.

If n is any homomorphism of Ag into C* then 7 will be the homomorphism defined by

a5 o= o)

If ¢ is a homomorphism of A; into C* such that
a 0 a 0
(5 oG o)

c<< ZRCHES )) = |t|*(sgnt)",

‘t|1/2

1

and z and / are defined by

with £ = 0 or 1, then ¢ is determined by z and ¢ and we shall sometimes write { = ((z, {).

Lemma 3.6. Suppose m is an infinite-dimensional representation of {o,2} and 7 is deducible from w,. Let

L(&,m) be the unique subspace of L(&) which transforms according to w. If ¢ belongs to L(&, ) and ¢ = ((z,£)

@(g,éw)—/ﬁww((é ?)g)<(<é ?))dXt

is defined for Re z sufficiently large

the function

(i) If s —m is not an odd integer set

P(9. ¢, )
T (z+|m1—2€\+%+§) T (z+|m2_2[‘+%_% .

®'(g,¢, ) =

(ii) If s —m is an odd integer set
®(g,¢,¢)

(g, p) = —2—.
I'(z+ % + ‘—;)

Then ®'(g,((z,£),p) is an entire function of z and ®(g,((z,£)p) is bounded in regions of the form

|Re z| < constant, |Im z| > constant > 0. Moreover if s — m is not an odd integer

272/ 0 1 =\ [y — mo— m2z/
(5 5) et =@ (2 e 6,

and if s —m is an odd integer

1...,/0 1 N m
(5 5) 960 =0 s
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Itis enough to prove the lemma for ¢ in L(&, 7),,. If ¢ is the restriction of ¢ to G let ¢(¢) be the function on

[t O 1 =z cosf sinf
9=\ o to 0 1 —sinf cosf )’

R* corresponding to ¢. Then, if

t 0 .
@((0 1) g) isequal to

zttt—luz |tt1t2|1/28g11t2 0 tt_l in6
c w(( 0 jttats]V2sgnt, PV E
Thus
t 0 t 0
s0(<0 1>g)<(<0 1>)
is equal to

1 tl 0 eittt—luz %;&_21|1/2 0 tt_l inf
‘ ((0 t2>)e 2 C(( 0 )V

and ®(g,((z,£), ) is equal to
)=,
2
C1(<t01 t(l))ﬂ (z,ux)e™?, ift=1.

All assertions of the lemma except the functional equations follow immediately from Lemma 3.5.

If n = ¢! the maps
¢ — 2'(g9,C, ),

- @’((_01 (1)) 9,¢;p)

are {0, 2(} invariant maps of L(¢,7) into L(n). According to Lemma 3.1 one must be a scalar multiple of the
other. To see what the multiple is we choose g = 1 so that ®(g, ¢, o) is equal to ;" (—z) if £ — |m| = 0 and is equal

to d, (—=z) if |¢ — |m|| = 1 and choose n in such a way that Lemma 3.3 can be applied.

<I>((_01 é)g,mo)

isequal to (i), (z) if ¢ = 0and to (1), (z) is £ = 1. In the first column below we write the values of ®'(1, (, ¢)

. . . 01
for the values of n and ¢ in the last column; in the second column we write the values of <I>’((_1 O)(, ©).
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Comparing them we obtain the lemma. In all but the last line s — m is not an odd integer.

vty (Y g).ew

ao(‘—a)*z ao(‘—a)z ¢=0,m=0,me=0,n=0.
2alsgnu(%)_z —2alsgnu(‘—3|)z =1, m=0,my=0,n=2.
251sgnu(|%‘)’z —ZBlsgnu(‘—il)Z £=0,m=0,m =1 n=2.
50(‘—3')72 50(‘—13')2 (=1, m=0,mo=1n=0.
’yosgnu(‘—il)_z i'yo(%)z £=0,|m|=1,me=0,n=1.
70(\72t|)_z i'yosgnu(h—%l)z =1,Im|=1,me=0,n=1.
'ylsgnu(‘%l)*z i'yl(l%‘)z ¢=0,Im|l=1 me=1,n=1
'yl(‘—il)*z i'ylsgnu(‘—il)z t=1,|ml=1 me=1,n=1.

If s — m is an odd integer the two values are

1
YEE 2 (sgnw)t (1)1 6 (— )P 2 (sgnu)t n=|s|+1,m = 0.

Jul

1 NP 1
Bo(p) TP egnw) ™t @) (sgnu) m = sl 41, fm] = 1.
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4. Representations of GL(2,C). In this paragraph and the next G¢ will be GL(2,C) and G2 will be SL(2,C). U

will be the group of unitary matrices in G¢ and U° will be U N G2. G¢ and G2 will be considered as real Lie

=0 )

groups. The Lie algebra of G¢ is
its complexification is
The Lie algebra of G2 is
its complexification is
The Lie algebra of U is
its complexification is

Finally u® = uny® and u = uc N g2. When there is no risk of confusion an element of uc will be identified by

giving its first component.

Let V,, be the space of binary forms of degree n and let V,, be its dual. We write the elements of V;, as

Z wk z +k

|k|<n
2 _keZ

¥* will be called the k'™ component of . If |[k| > 2 let* = 0. Let o, be the representation of U° on V;, defined
by
a b
oo (&) wlon) = vlas + b+ dy),

Denote the corresponding representation of u by o,, also. If 1, = 0n<0 g)w then i1 = (2 + k)yF = cppF
where ¢ # 0for —2 < k < 2 and if ¢ = an( )w then Y5t = (2 — k)y* = dj* where dj, # 0 for
-5 <k<3g.

Let 2A be the universal enveloping algebra of g¢ and 2° that of g%. If 7 is a representation of 2 on a vector

space W then 7° will be the restriction of 7 to 2°. Let I, be the set of all vectors in W which transform under

uﬁé according to o,,. 7 will be called quasi-simple* if

Hw=> oW,

* 1 use the expression in a different way than Harish-Chandra.
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(ii) If Z lies in the centre of 2 then 7(Z) is a scalar. Suppose 71 and 7o are two representations of 2 on W, and
W respectively. o will be said to be deducible from 7; if there are two invariant subspaces W3 and Wy
of W1 with W5 D W, and 2 is equivalent to the representation of 20 on W5/W,. The same notions will be

used for representations of °.

() () (G h)

The centre of the universal enveloping algebra 21° is generated by

Set

D:(X@O)(Y@O)-f—(Y@O)(XEBO)-F%(Z@O)Q
:2(Y@0)(X@0)+Z@0+%(Z@0)2

:2(X@0)(Y@0)—Z@0+%(Z@0)2
and
D’:(O@X)(OGBY)—&-(O@Y)(O@XH-%(O@Z)Q

:2(0@Y)(0@X)+(O@Z)+%(O@Z)2

:2(0@X)(0@Y)—(O@Z)+%(O@Z)2.

1

The centre of 2( is generated by D, D', J = (o

(1))690,andj’:0@(;(1)).

Let w be a continuous homomorphism of the group A of diagonal matrices into C*. If N¢ is the group of
1z
01
« . o [e5] 0
blag) = |2 |w(@)plg) ifa = (7

L(w). Define wy and we on C* by wy(t) = w((é (1))) and wy(t) = w((

matrices of the form ( ) let L(w) be the space of infinitely differentiable U-finite functions on N¢\ G satisfying

) isin Ac. The restriction of p to L(w) defines a representation 7, of 2( on

! 0)). Let wi(t) = |t

0t

Si(lfi‘)mi and set

S$1—82

M1 —1mso
3 .

2

s = ,m =

Lemma4.l. L(w), # {0} if and only if & — |m| is a non-negative integer and then L(w)y is irreducible under

u%, Moreover

 (s+m)?-1  s1+s my +m
m.(D) = Tlf, m.(J) = { 1 . 2 —I( 1 . 2)}17
ro(D') = (S_'n;) _ I, T (J) = {Sl_gSQ—I—i(ml_ng)}I.

The first assertion is an immediate consequence of the lwasawa decomposition and the Frobenius reciprocity

a- (30 (00 m - (%) (30
Go) =(o) x|
R R O B ¢
(o) = v) m =

28
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X, =



Then

7y —iZ 7 +iZ
Z@OZITH, oeazz%,
X, X X, +iX
X@OleZ{ O@X:%,
Vi 2 Y Yy + iV
Y@():lTH, O@Y:¥.

Itis clear that p(D) = A(D), that p(D’) = A(D’) and that A(X;)¢ = 0 if ¢ belongs to L(w). Thus
1
p(D)p = NZ @ 0)¢p + 5M(Z ®0)*)p
1
PD ) =X0® Z)p + A0 @ 2)*).

Combining this with the relations A\(Z;)p = —2(s + 1)y and \(Z2)p = —2im¢ one obtains the assorted values

for 7, (D) and m,, (D’). The other two relations of the lemma are very simple to verify.

Lemma 4.2. If neither —s — 1 — |m| nor s — 1 — |m| is a non-negative integer then m, is irreducible. If

—s —1—|m| = %> — |m| is a non-negative integer then

> L) =M(w)

|m|<n<ng
o —|m|eZ

is invariant and the representations of A on M(w) and L(w)/M (w) are irreducible. If s —1 —|m|= = —|m]|

is a non-negative integer then

> L) =M(w)

o —|m|ez

is invariant and the representations of A on M (w) and L(w)/M (w) are irreducible.

Set
ut = X @ -Y, U = Z & -2, U =Y & -X,
vVt = X o Y, V = Z & Z, V- =Y o X

These six elements form a basis of g-. U™,U, and U~ form a basis of uﬁé. The space pc spanned by V.V,
and V~ is invariant under the adjoint action of u and the map V* — 22,V — —2zy,V~ — —y? extends to
a ul-invariant map of pc to Vo. The map W @ ¢ — m,(W)p, W € pe,p € L(w), extends to a ul invariant
map of pc ® L(w),, into L(w). It follows from the existence of the Clebsch-Gordan series that the image lies in
L(w)p—2 + L(w)n + L(w)n42. To prove the lemma all we need do is show that the image contains a non-zero
elementin L(w),42 ifand only if s # — (% + 1) and that if & > |m/| it contains a non-zero element in L(w),,_ if
andonly if s # 3.

Let 2 —k € Z. If |k| < 2 let 6y (x,y) = 2 TFy> % and if [k| > 2 let 0y (z,y) = 0. If |[k| < Z let vy, be the
element of V, such that (Y, /a3 Hiy%—7) = ¢k, if k] > 2 lety, = 0. If g = (; 1)au with a = (”‘1 0 ) in

00(2

Ac and u in U° set

(6% n
@n,k(g) = |_1|W(a)'7m0'n(u)5k |k| <=
(%) 2
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The function ¢,, ;, form a basis of L(w),,.

Using the method described on p. 129-130 of Weyl’s book on quantum mechanics to decompose pc ® V,, or
Vo ® V,, into a direct sum of irreducible subspaces one finds that

(5 + k)G +k+ DoV eni-1 = (5 +k+1D(G = k+Dp(V)ens — (5

n _
5 5 5 5 5 k)(a —k+1)p(V7)pn k1

is equal to

(5 +k+ DG =k +Dla(m,w)pnran

and

n n
PV enik—1+p(V)onk — p(V" )pn g1 = (5 +k— 1)!(5 —k—=1)b(n,w)en—2k

of |[k| < § — 1. The image contains a non-zero element in L(w),2 if and only if a(n,w) # 0 and a non-zero
elementin L(w), 2 if and only if b(n,w) # 0. Since v, 42.,(1) = 1and ¢, 2, (1) = 1if § > |m| all we need

do to find a(n,w) and b(n,w) is to take k = m and evaluate the left sides of the above expressions at 1.

Now V' = Z1,VF = (X1 + ¥§) —i(Xp — ¥2),and V™~ = (X1 + 71) +i(Xz — *32). Since

P(Z1)en k(1) = 2(s + Dnr(1),
p(X1)en k(1) = p(X2)pn k(1) =0,

0 -1
p)pnr() = (] ) o

0 1
p(WQ)SOn,k(l) = YmOn (1 O) 5k;

one has p(V)enk(1) = 2(s + 1)ymy, and

((V+)<Pn,k(1) = —VmOn (8 (1)) Ok, p(V_)¢n7k(1) = YmOn ((1) 8) 0.
Thus

(5 +m+1l(5 —m+1)a(n,w)

is equal to

—(g+m)(g+m+1)(g—m+1)(g+m+1)(g—m+1)(s+1)—(g—m)(g—m+1)(g+m+1)

which equals

25+ 12— mls+ 5 + 1],

and

G+m=DIG —m—Dbnw) = (5 —m+ 1) +2s+1) = (5 +m+1) = 2(s - 7).
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Lemma 4.3. Suppose w is an irreducible quasi-simple representation of A on the vector space H. There is at

least one continuous homomorphism w of Ag into C* such that

S m2— S S m m
7T(D) — ( + 2) 1_[, 7T(J) _ { 1'; 2_2( 1'; 2)}1-7
’ _ (S_m)Q_l , o S1 + S2 .(m1—|—m2)
rp) = UTETL ey = (2t

and such that Hy,, # 0 for at least one ng with %> —|m| a non-negative integer. If w is any such homomor-

phism then 7 is deducible from .

The lemma is a special case of a theorem of Harish-Chandra (Representation of semi-simple Lie groups Il,

T.AM.S,, v. 76, 1954). It implies that H,, is irreducible under ul. A similar assertion isolated for 2.

Lemma 4.4. Suppose A(D), A\(D"), A\(J), and A(J') are four given numbers. Apart from equivalence there are

at most two quasi-simple irreducible representations of ™A satisfying

If there are two, then one of them is finite dimensional.

If there is one such representation there is an w such that A(D) = %,/\(D’) =

2
%,A(]) = xbn i(mlng),)\(J’) = afe 4 i(mlgmz). If w’ is such that these representations are

! ’ ’ !
satisfied by s{, s, m}, mj5, one must have =152 — 31;‘92 and mtme — "”1'5’”2. In particular m — m/ =

! ’
mi—mj m2—my

2 = my —m} is integral. The relations (s + m)? = (s’ +m/)* and (s —m)* = (s’ —m/)* are

satisfied if and only if one of the following holds.

(i) s=4s m=m' (iii) s=m' m=s
(ii) s=—s m=—-m’ (iv) s=-m/ m=—s".

If s — m is not integral only the first two are possible. 7, and 7,/ are irreducible by Lemma 4.2 and equivalent by
Lemma4.3. If s—m isintegral one can choose w so that s > |m|. Itfollows from Lemma 4.3 that every quasi-simple
irreducible representation deducible from m, is deducible from 7,,. There are only two such representations
deducible from 7, and one of them is finite-dimensional. It is clear that Lemma 4.4 could also be formulated for

20,
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5. The local functional equation for GL(2,C). If n is a continuous homomorphism of A¢ into C* let L(n) be the

space of all U-finite infinitely differentiable functions on G satisfying

p(ag) = n(a)e(g)

forall ain Ac. If p liesin L(n) and X lies in 2 then p(X )¢ lies in L(n) so that we have a representation p(7) of
A on L(n).

Lemma5.1. No irreducible, quasi-simple representation is contained more than once in p(n).

Let 7w be an irreducible, quasi-simple representation. Suppose it is deducible from 7, and suppose its
restriction to u contains o,,. If 7 occurs in L(n) then 7112 = wiws and for the proof we may as well assume
that this is the case. Let L°(n)) be the space of infinitely differentiable U°-finite functions on G satisfying
o(ag) = n(a)p(g) for a in A2 and let p°(n) be the representation of A% on L(n). We have to show that 70 is

contained at most once in p°(n).

Let H C L%(n) be A -invariant and suppose that the restriction of p°(n) to H is equivalent to 7°. There
isamap ¢ — ® of H, to V, and a function ®(g) on G° with values in V,, such that ©(g) = ¥(g)® and
B(gh) = W(ghm(k). Letwi(t) = [ (&)™ walt) = [ ()™ m(t) = [ () ma(t) = [ (). If

z:x—l—iyletw(z):\Il((l ?

o1 ) ). W is uniquely determined by . Let us rewrite the equations

(Lrmsa)tlm—ma)y2 (s+m)?—1

D)¥ = : v = v

p(D) ) 2 ’
(s1=s2)=(ma—ma)y2 _ 4 -m)?2—1

oDy = | = Loty L n;) Y

in terms of ¢». D may be written as

X1 —iXs Y1 —iY3 VAR VA 1,71 —iZs .4
2 — (===

(5T - (EF 555D
. (X1 - ZXQ)(X1 + ZXQ) (Xl — ZXQ)(Wl — ZWQ) (Zl — ZZQ) (Zl — iZQ)Q
= + — +

2 2 2 8
and D’ may be written as
9 (X1 +iXy) (V1 +iYs) (21 +i25) n 1(Z +iZ)*
2 2 2 2 2

_ (X X)) (X —iXe) | (X +iXo) (W +iWe) (21 +iZs) N (Zy +iZ3)*
N 2 2 2 8 '

It is easily seen that

2 oyt 2y B 0%
if

9 _ Lo 1o 9 10 19

dz  2°0x 10y 0z 20z 0y

32



and that r = =52 and / = _41542.

p((X1 — i Xo)(Wy — in))\II(((l) f)) = 4(?;”0" ((1) 8)
p((X1+z'X2)(W1+iW2))1/)(<(1) i))——élgwa (8 (1)>
piw((g 5 )= -2 - 23
pw((y 7)) = (it -2 - 2 5h),
Putting everything together one obtains the equation

There is an auxiliary equation corresponding to the relation

w0 (5 O ) = v

Itis
oY oY i 0\ ..
—2y8— + 2x8—y + Yo, (0 —z') = 2l
or
Lo 8w 1 0
G g ==y (o L))
Since v (z) is an analytic function of = and y it can be expanded in a power series
Z 2PZp 4.
P,q=0

According to the auxiliary equation,

1
(P — DVp.qg = Yp {1 — 50" ((1) _01)}

Thus z/;’[iq = 0 unless p — g = ¢ — k. Substituting in the first two equations one obtains

1 (s +m)?
2(p+q+ 2)¢p+1 ¢+1 T 20k7/’p+1 ¢T3 5 [(r+£—=1) + 2p]? p,q = B Izj,q

1 s —m)?
2+ g+ 2)Up 1 g1 — 2dkptL + 2 S[(r—t—1)+ 2y, = le=m)” 5 ) b

Here W = 0if [j| > § and ¢, # 0if 5* < k < §. The second equation can be used to determine the numbers

wp ¢ inductively, then the first can be used to determine the numbers w’“ fork < 5
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Let £(z) = e*fie(w2) with w # 0 be a character of C and let L(¢) be the space of all infinitely differentiable

U-finite functions on G satisfying

(i) @(((1) f) 9) =&(2)9(9)-

(ii) If £ € A and g € G there is a constant M such that

(g o) o< Ml + )
if [t1] > |t2].
Let p(&) be the representation of 20 on L(¢).
Lemma5.2. Every quasi-simple irreducible representation of A is contained at most once in L(§).

Let 7 be such a representation. Suppose 7 is deducible from 7, and the restriction of 7 to u contains 7,,. Let

L9(€) be the space of all infinitely differentiable U°-finite functions on G2 such that

(i) 99((5 i) 9) = &(2)¢(g)-

t/2 0

(i) If X € A% and g € G2 there is a constant M such that |p(X)<p(( )g)| < MtMfort > 1.

0o t1/2

Let p°(¢) be the representation of 21° on L°(¢). It is enough to show that ¥ is contained at most once in
P2 (€).

Suppose H C LY(¢) is invariant and the restriction of p°(¢) to H is equivalent to 7°. There is a function ¥(g)
on G2 with values in V,, such that H, is the set of functions of the form ¥ (g)®,® € V,,. ¥(gu) = ¥(g)o,(u)
ifuc U° Lety(t) = qf((tltf o
equations p(D)¥ = %\p and p(D")¥ = %\p in terms of ¢. Itis easy to verify that

)) for t > 0. ¥ is completely determined by . It is necessary to write the

2 2 t1/2 0 20,12
sz xiu(y e )=~

p((X1 — iXo2)(Wr — W))W (

(

o+ ixam + (s
(
(

Thus
1 0 1 0
%t%(tﬁ’)t%{f%an(o _1)}+%w{1%0n(0 1

|
—_

%t%(t%)—t%{l+%an(é _01>}+%w{1+%%((1) 0)}2_#¢+tmwan(8 _01>=%¢_
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In terms of components these equations are

2 2
A |w| P1oP g 1 cptinpit = B e
2" di 5 "
1L g1t Flol 'w|2wk  dtimypit = G
2 dt k B) ;

where 17 = 0if|j| > Z. Since ¢, # 0 for =% < k < Z and dj, # 0 for —% < k < Z these equations allow one to

solve for all 4% in terms of )% or ¢)—%

For k = 5 the second equation is

1.d n o, Blw? . (s—m)? .
sliq g Wy s e
which may be written as
1d%y% 1 n ldyz w2 (2+1)2 . (s—m)? .
sar T ra T e T e

Dropping the terms in % and f% one obtains an equation with the solutions e=!*!*, Thus the given equation has
one solution of the form t~#e~1*l{(1 4+ 0(1)) and one of the form t~“el**(1 + 0(3)). Since 1% (t) = 0(tM) as

t — oo it must be a multiple of the first solution. The lemma follows.

To find p we examine the formal solution
(o)
PE(E) =t e MY gt
n=0
If a_1 = a_y = 0 the first derivative is

‘w\t{z (Jwan + (1 + 71— V)ap_1 )t "}
and the second derivative is

o0
e Iy “(lwlPan + |wl(2p + 20— Dan—1 + (+n—1)(p+n—2)an )t """},
n=0

Substituting into the equation, dividing be e ~1** and equating coefficients of t*~! we obtain p + 7 =0.

For k = —3 the first of the equations (A) is

1. dy=% n o wl? _a (s+m)? .
= T3 i e e

This is the equation just discussed except that —m is replaced by m. Thusif [k| = % then PR (t) = tlkle=lwlt(1 4
0(%)) ast — oo.
During the preceding discussion we have assumed the existence of H and thus the existence of solutions of

equation (A) which satisfy the required growth condition. We continue with our discussion of this assumption.
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Since 0 is a singular point of the first kind for the first equations of (A) there is an N such that, for all k, % (t) =
O(7x)ast — 0. Thus

0 (u) = /0 kLt
is defined for Re u sufficiently large. These functions satisfy the difference equations
[w]20% (u+2) = [(u—k+ 1)% — (s +m)?]0% (v) + 2icrwd* * (u+1)
|w|?0% (u +2) = [(u+ &k + 1)? — (s — m)?]0% (u) — 2idpwh** (u + 1).

Lemma5.3. If [k| = % then 6% (u) is a multiple of

uF(u+1+s+|k—m|)F(u—|—1—s+|k—|—m|)

(2/Ju)) > -

Since § > |m| the second of the difference equations is, when k = %, just
2k n n k
w6 (u+2) = (ut 1+ s+ |5 —m)(u+1—s+]5 +m]e* )

which is an equation satisfied by the function of the lemma. Thus the inverse Mellin transform of that function,
which is bounded by a power of t, satisfies the differential equation determining )% and must be a multiple of

% . A similar argument proves the lemma when k = -5

Lemma5.4. If |m| = & the functions

u+1+s+ |k —m)|
2

u+1—s+|k+m|
2

2% qw
= (—

0 (u) = yEE T

)T )

Jw[* " fw]

satisfy the difference equations. They are the only solutions of the equations for which

2 2 +1+s+15 - +1—-s+|2+
0 (u) = 2opletltstly mm)pfutlzstly+ml)
|wl* 2 2
The uniqueness is evident from the form of the equations. It is convenient to treat the cases m = 7 and
m = — 7 separately when verifying that they satisfy the equations. If m = % then lw|20k (u+2)—2ickw9§_1(u+1)
is equal to
2w _n n n n n
——(—)%"2 1 ——k 1- —+k)—2(=+k 1 ——k
o (o) Hu+ 145+ 5 —Rutl-s+5+0) -2z +B)u+1+s+5 k)
F(u+1+s+%—k)r(u+1—s+%+k)
2 2

:(u+1+s+g—k)(u+1—s—g—k)9’g(u)

and w208 (u + 2) + 2dxiwdf T (u + 1) is equal to

o ()RR (st g —R) (k1= s+ 3+K) —2(F HR) (ut L § —k)) T RO p Lt mh B
or
(u+1=s+Z+k)(u+1+s— 3+,
Itis not necessary to treat the case m = — 3 because the equations are not changed if 6% is replaced by =%, m by

—m, and w by —.
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Corollary. The quasi-simple irreducible representation 7 is contained in p(§) if and only if 7 is infinite di-

mensional.

Itis enough to show that 7* is contained in p° (¢) ifand only if 7 is infinite dimensional. Suppose H is a finite
dimensional invariant subspace of L°(¢). Let 7 be the restriction of p°(&) to L°(¢) and let 7 be the representation
contragredientto 7. If X, = (3 g) lies in g0 all the eigenvalues of 7(X,) must be zero because 7 is finite
dimensional. On the other hand if  is the element of H, the dual space of H, defined by @(¢) = ¢(1),p € H,
then

(T(X2)@) () = —=3(T(X2)p) = p(X2)p(1) = —izwe(1)
so that —izw is an eigenvalue of X ,. This is a contradiction.

- A . . . . s+m 2_
Suppose 7 is deducible from r,,. Let W be the set of all functions in L°(¢) satisfying p(D)p = %gp, p(D)p :I
(s=m)® =1, and <p(g(’01 fl)) = (=1)2p(g). 10 = {n|W, # {0}} then W = 3, _, W,. Combining the re-
sults of the previous lemma with the arguments used to prove Lemma 5.3 one sees that when 2 = |m| the

2
equations (A) have a solution satisfying the desired growth conditions. Thus W,, is not zero for n = |%|. Al-
though it is not important at present, | observe that if s — m is integral then W), is also not zero. The proof of
Lemma 5.2 shows that WW,, is irreducible under u° the Lie algebra of U°. Consequently every invariant subspace
is of the form W (o) = > . W, where o is a subset of 6. Suppose o 2 oz and W (o) and W (o3) are invariant.
Let ng € og,n0 ¢ os. There is a minimal element in {o|W (o) is invariant, 03 C 0 C 0g,n¢ € 01}; let it be o;.
There is a maximal element in {o|W (o) is invariant, o3 C o C 01, n9 ¢ o}; letit be oa. The representation of 2A°
on W(o1)/W (o2) is irreducible. Thus there is an irreducible representation deducible from the representation
of 2% on W (og)/W (0o3). Suppose W itself is not irreducible and let W (o) be a proper invariant subspace.
If W(o1) were not irreducible there would be a proper invariant subspace W (o3). No two of the irreducible
representations deduced from the representations on W/W(o1), W(o1)/W (02), W (o2) could be equivalent be-
cause the restrictions to uc would not be equivalent. This would contradict Lemma 4.4. For the same reason
the representation on W/W (o) is irreducible. Thus either T is irreducible or W contains a proper invariant
irreducible subspace W, such that W/W is irreducible. Combining Lemma 4.4 with the earlier observations
about finite dimensional representations one sees that if 7 is infinite dimensional the representation of 2A° on W
is equivalent to 70 if W is irreducible and that if 1V is not irreducible the representation of 2° on W is equivalent

to 70.

We return to the study of the functions % ().

Lemma5.5. If (s —m) is not an integer then, near 0,*(t) can be expanded in a series of the form

0o 00
wk’ (t) — t|k’—m\+1+s Z athp + t\k,-{-m\-{-l—s Z bthp.
p=0 p=0
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If s —m is an integer t and |k +m| — s > |k — m| + s then
oo oo
wk(t) _ t\kfmlJrlJrs Z a];tQP + t|k+m|+175 logtz bl;tQp
p=0 p=0
but if |k +m| —s < |k —m| + s then

oo oo
wk (t) — t|k’—m\+1+s logt Z al;tQp + t\k+m\+1—s Z bthp.
p=0 p=0

As before when k = 5 the second equation of (A) is

1.d n » Plwf? (s —m)?

2 2
—5 U 2 2

2l 2 ¥

The indicial equation %[A -5 - 1?2 = % hastheroots \; = 5 +1—s+mand A\ = § +1+s—mand
A1 — Ag = 2(m — s). The series t*i E;‘;O a,t? will satisfy the equation if and only if

n
{hitp—5 =17 = (s =m)’}ep = |wl’eps.

Since |5 + m| = 4 £ m the assertion of the lemma for k& = % follows from an application of the method of

Frobenius.

To prove the lemma for general k& we use induction and the equation

et (6) = oo+ b~ P~ (s )k — PluPyt).

The symbol A(t) will stand for a convergent series of the form Z;O:o a,t?P and B(t) will stand for a convergent
series of the form E;"Zl b,,tQp. The series represented by these symbols will vary but not within a given formula.

One has

zlt{[t% +k— 1]2t\kq:m|+1:|:5A(t) _ (8 + m)Qt\kileJrI:tsA(t) _ t2|w|2A(t)}

— 2_t [(|]€ ¥ ml +k+ 5)2 _ (S + m)Q]aOt\kileJrl:I:s + t‘kq:m|+1isB(t)}.

Ifk > +msothat |k—1Fm| = |kFm|—1thisis of the form t/F=1FmIT1Es A(t) If k < +mthen |kFm| = +m—k
and (|k Fm|+k+s)? — (s+m)? = 0and it is of the form t/*=1FmI+1%s B(¢) because |k — 1 Fm| = [k Fm| + 1.

The first statement of the lemma follows immediately.

If F'(t) is any function

[t% + k — 1]logtF(t) = F(t) + log t[t% +k—1]F(t)

and

d 2 . d d )
[tE +Ek—1]"logtF(t) = z[tdt +E-1]F(t)+ 1Ogt[tdt +k—12F(t).
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Thus

1 -
o [t% + ke — 12RFmIFIES 100 1(A(E) — (s 4+ m)2IFFEFIES 1og 1 A() — £2|w|2tFFmIH1Es 10g £ A1)}

is equal to the sum of a term of the form ¢/*=1¥mI+1%5 Jog t A(t) and

1 ,
Ik F m| £ 5+ k)T 4 B () (B)

Suppose s—m is an integer and the assertions of the lemma are true for agiven k. Let |k Fm|£s > |k+m|Fs
(Either all the top signs or all the bottom signs are taken). If (|k = m| £ s) — (|Jk = m| F s), which is an integer,
is at least two then |k F m| + s > |k — 1 +m| + 1 F s and the expression (B) is of the form ¢/F=1=mI+1Fs gince
|k — 1 F m| £ s will still be greater than or equal to |k — 1 £+ m/| F s the induction goes through.

The remaining possibility is |k Fm| s = |k £ m|Fs. Ifk > Fmthen|k —1+m| =|k£tm|—1s0
that |k — 1 Fm| + s > |k — 1 £ m| F s and the expression (B) is of the form ¢/*=1+mI+1Fs A(t). If k > +m
then |k —1Fm| = |k Fm| —1sothat |k — 1+ m|F s> |k—1Fm| <L sand the expression (B) is of the form
t|k71¢m|+1i5A(t)l

Thuswe haveonly totreatthecasethatk < Fm, k < +mand |kFm|Lts = |kxm|Fs. Then|kFm| = £m—k
and |[ktm|=Fm—ksodtm—-k+ts=Fm—-—kFsorm+s=0and |k Fm|Lts+k==x(m+s)=0.Thus
|k —1Fm| +s=|k— 14 m|F s and the expression (B) is of the form ¢/F—1=mI+1Fs A(#),

Let 1 (t) be the function with components ¥ (¢). If 2 is an integer and z is a fixed complex number set
ot = [ | Teme o, (¢4 0)) e agpeiar
o o 47/, "0 e % :
The integral converges for Re u sufficiently large. The k*® component of §(u, ¢; z) is
[oe) 1 A ] o )
Hk(u,f; Z) _ / {_/ ezt Re (e z)ez(k’—é)dg}wk’ (t)tu_ldt.
o 4mJo

Lemma5.6. For each £ and z the function

0% (u, ¢; 2)
(utlts+[l—m]) p(utl—s+[{+m]|)
1-\ U 92 m 1-\ u 5 m

is an entire function of u. Moreover 0%(u,l,z) is bounded in any region of the form |Reu| < constant,

Imw| > constant > 0.

Let m(t) be an infinitely differentiable function with compact support on the real line which is 1 in a

neighbourhood of 0. Then 6% (u, ¢, z) is the sum of
~ e B N
0" (u, l,2) = / {— / e R 2) i =0) okt gu =1 m (£)dt
o 47 Jo
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and
* 1 ar 6y
/ {_ / eztRe(e z)ez(k’—é)de}wk(t)tu—l(l _ m(t))dt.
o 47 Jo
The second integral defines an entire function of v which is bounded on vertical strips so it will be enough to
prove the lemma with 6% (u, ¢, z) replaced by 6% (u, ¢, z).

The inner integral is equal to

0 . 4
)" 1 , . )
Z (Z ) . 4_/ (6192 + efzez)rez(kfé)Ode.
r=0 TJo

Itis zero if k — ¢ is not integral. If & — ¢ is integral let A be the set of integers r satisfying (i) » > |k — ¢| and (ii)
=k s integral. Then this expression equals

(Zt)r Zr—i—[—k 2r+k—€

2o (R (e

reA

If a real number c is given there is an R such that

oS} (Z't)T ZT-{—K—k’ Er—i-k—f X L
{ - — — PO (1) dt
/0 7%% 2 (r+g k)!(r+12s €)|

r>R

is analytic and bounded for Re u > ¢. We need only study the analytic properties of

/OO PR ()T I (t)dt r€A.
0

The same observation when combined with Lemma 5.5 shows that when s — m is not an integer we need only
study

o0
/ tlkEmIFstrtut2em (dt re A,pe Z,p>0
0

and that when s — m is integral and |k F m| & s > |k £ m| F s we need only study

oo
/ tlREmIFstrtut2p, )t relApeZ,p>0
0

and

[ee]
/ tlRFmIEstrtut2e, (1) og tdt relA,peZ,p>0.
0

The second assertion of the lemma is going to be obvious and only the first will have to be dealt with explicitly.
The first is going to follow from the observation that if s — m is not an integer the denominator in the lemma
has poles of order Lat —1 Fs — |{ Fm| — 2,9 € Z,q > 0 and no zeros and that if s — m is an integer and
|¢ +m| £ s > |¢ £ m| F s it has poles of order at least one at —1 + s — |¢ + m| — 2¢ and poles of order two at

—1Fs—|{Fm|—29,q€Z,q>0.
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It has to be shown that these poles cancel the singularities of the numerator.

oo _1 (o]
/ t U (t)dt = ———— / toTut ! (#)dt
0 at+u+1 /g
o0 _1 o0
t*Tlog tm(t)dt = ————— a+u+ D)t ogt — t2Tu !/ (¢)dt.
| erogtm(at = s [ e e e o 0

Since m’(t) vanishes near 0 the first integral has at most a pole of order one at —(a + 1) and no other singularities

while the second has at most a pole of order two at —(a + 1).

If s —m is not an integer the lemma will follow if it is shown that, forr € A [k = m|+7 = |[{ £ m|+2q,q €
Z,q > 0. This is so because r = |k — £| + 2p,p € Z,p > 0and |k £ m| + |k — £| — |¢ £ m/| is a non-negative
even integer. If s —m is an integer one has to show in addition that if |¢ = m| — [{ £ m| £ 2s > 0 and

|k £ m| — |k F m]| F 2s > 0 (either all upper or all lower signs are taken so there are only two possibilities) then
lktm|Fs+[k—l=0Fm|+s+2¢ q€Zg>0.

The left side is
[kFm| s+ |k—L +{|kLm|—|kFm|F2s}.

The expression in brackets, which is a non-negative integer, is by assumption positive.

If 7 is an infinite-dimensional irreducible quasi-simple representation of 2 let L(&, ) be the unique subspace
of L(€) such that the restriction of p(£) to L(&, ) is equivalent to 7. It follows from the proof of Lemma 4.4 that

“ O),wg(a) zw(((l) Z))fora e C* and

there is an w such that 7 is equivalent to 7,,. As usual let w;(a) = w(( o1

let w;(te®) = t3iei™if for t > 0.

If 5 is any character of Ac then 7 is the character defined by 7( ( o0 )) = 77(( oz 0 )). If  is a character of

0 a2 0 ay
AZ such  that (((3 z))w((z 2)) = 1 and w and ¢ are defined by
1/2 i6/2 .
(t ; rl/22ﬂ'9/2 )) = t“e™? then ( is uniquely determined by u and ¢ and we shall occasionally write
¢ =(u,0).

a0
0 «

@(g,cvm—/ooo{%/:”w«t%w ?)g)<(<t%ie ?>)d9}%

is defined for Reu sufficiently large. Set

Lemma 5.7. Suppose C((z z))w(( )) =1. Ifpe L& m) and ¢ = ((u,l) the function

®(g,¢, )

'(g.¢,9) = :
F(u+1+8;‘z+m‘ )]-—\(’Uri’lfsé‘rl@fm‘ )

Then ®'(g,C(u, ), ) is an entire function of u and ®(g,((u, ), @) is bounded in regions of the form |Reu| <

constant, |Im u| > constant > 0. Moreover

(O g)ace —am 2y e.de

|w|
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if y(€,m) = (1)1 for |€] > |m| and 5(¢,m) = (=1)"™I** for |¢] < |m].

It is enough to prove the lemma for ¢ in L(¢,7),. There is a ® in V,, such that if ¢ = a((l) i)u with
t1et01 0 B te'? 0 te’® 0 .
a= ( ) and v in U then @(( )g)((( ) )) is equal to the product of

0 tgeif2 0 1 0
11 R (H0H01—02)w2) Vit taet0F0:1+02) 0 te’ 0
e t2 w( 0 \/mei(ewﬁ%) )C( 0 1 )
and
t 7:(9+9'1—92)
(o[ ¢ w0, % 0y ) u)®
o 0 e 2
which equals the product of
, 1ty ;0101 =02)
¢ tre’ 0 )ei?—lee(ei(9+91+92>WZ)C( \/t_zlez ’ 0 )
0 tae® 0 Ty i (02=0-03)
we

and

i ;8461 —65)
Y(—)on(( © ’ 4(9199—92> u)®.
to 0 e’ P)

Consequently ®(g, ¢(u, £), ¢) is equal to

101
41(<t1% t2292 >)9(u, —l,wz)o, (u)d.

The first two assertions of the lemma follow immediately.
If p = ! the maps
Y — (I),(ga Cv <)0)a

s0—><1>’((_01 é)g,mo)

are easily seen to be 2-invariant maps of L(£, 7) into L(n). It follows from Lemma 5.1 that one is a multiple of

the other. To see what the multiple is choose g = 1 and ¢ as above with & = §,. Then

: 0% (u)

‘IJ/(LC, 30) = F(—u+1+;+|€—m\)F(—u+1—;+|€+M|)
=) (2 s

if the functions 6*(u) are normalized as in the appendix.

Since o*n(f)1 (1))64 = (=1)3+45_,,

(01 (=1)=*0~"(u)
(5 g)c0=r

Tltst[e+m F1—s+[f—
u @2\ nl\)r(u @2\ m|)

n 2 7w n
= (CDF ) () ()
() ()" ()
Taking & = |m|if |[(| < |m|and § = |¢] if |¢| > m we see that
2 0 1 W _gp, 2 P
(2 “@'(( ) o) =y (lm) ()2 2 a1, )
|w] -1 0 |w] |w]

because as is shown in the Appendix, f+= (u) = 1 and, as is shown in Lemma5.4, fi(u) = 1if § = |m)|.
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Appendix. Unfortunately the preliminary material of this paragraph was not sufficient to give the constant
occurring in the functional equation. A little more information about the functions 8% (u) is necessary. Normalize

them by setting X .
n 2 g utlt+s+5-—m
0% (u) = ()T T

ut+2—s+g5+m
2

)T )-

It is an immediate consequence of the difference equations that none of the functions 6% (u), |k| < 2,2 — k € Z,
can vanish identically.

LemmaA. Let a = min{% — |k|, % — |m|}. Then 6*(u) is of the form

u+1+ s+ |k—m)|
2

ut+1—s+|k+m|
2

2 W

Fr(uw)(7=)*(

AT

)T )

|wl
where fr(u) is a polynomial in u of degree . Its coefficients are polynomials in s which do not depend on

w.

We shall show that if 6% (u) is of this form with a polynomial of degree (3, the same is true of 91 (u)
with a polynomial of degree (B;_; where 5x_1 — Br < arp—1 — ag. This is enough to prove the lemma because
ﬁ% = az =0and if Bk, were less than «y, for some kg then ;. would be less than «y, for all succeeding k. Since
a_z = 0 this isimpossible.

|w|u,+1 i

The first difference equations show that 2c;, So— (%) =k =D gh=1(y + 1) is the product of

[w]
1 1
afk,(u—l—Z)[u—l—l—l—s—l—|k;—m|][u—|—1—s—|-|k;+m|]—Efk(u)[u—k—l—l—i—s—i—m][u—k:—l—l—s—m]
and

u+1—s+|k+m|
2

u+14+s+|k—m|
2

I'( )T )-

If k > |m|then ay—1 = o + 1,|k — 1 £ m| = |k £ m| — 1, the second factor is

(u+1)+s+[k—1—m]|
2

(u+1)+1—-s+|k—1+m|

I( )I( 5 ),

and the first factor is a polynomial in u and s of degree at most 3 + 1 in u.

Suppose |m| > k > —|m|, such that o, = a;—1. Let £m > 0. The first factor is the product of w

and

frlu+2)u+1Fs+|kFm|] — frlw)|u—k+1FsFm)
which is a polynomial of degree at most 3. Moreover |k —1+m| = |k £ m|—1,|k — 1 Fm| = [k Fm|+ 1,
and |k & m| = £m — k; so the product of “HEsEm=F and the second factor is

u+1)+14+s+|k—1—m)|
2

(u+1)+1—s|k—1—|—m|)
5 :

r(! I

If —|m| >k > G then|k—m|=m—k, |m+k| = —m—k, |[k—1-m| = |[k—m|+1,|k—1+m| = |k+m|+1,

and aj,_1 = ay, — 1. Thefirst factor is the product of (45t tetm) ) (u—kils—m) and o( f; (u+2) — fi(u)) which
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is either zero or a polynomial of degree at most 3, — 1. Moreover the product of (4=ktLtstm)(u—ktl=s—m) gng
the second factor is

(u—|—1)+1+s+|/<:—1—m|)r((u+1)+1—s+|k‘—1+m|)
2 2 '

It follows from the corollary to Lemma 5.4 that the equations (A) and thus the difference equations have a solution

I

at least when s — m is not an integer. We could have used the same ideas to show that they had a solution for all
s and m. This also follows from the above lemma. To indicate explicitly the dependence of fi(u) on s and m we

write fi(u) = fx(u, s, m). The function f_ = (u, s, m) is independent of u.
Lemma B.
—a(u,s,m) =

For the proof we observe that the functions

pn_u+1+s+|kk—m u+1l—s+lk+m
DRI e

also satisfy the difference equations. From uniqueness and the relation

B (u) = f_i(u.s, —m><|—;>f’<—i—w

|w|

0% (1) = £ o, —m)(— 120) 0% (1)
we conclude that
o =m) () ™ = o o, ) s, m) (= )~ ()
or
f-k(u,8,—m) = f_n(u,s,—m) fi(u, s, m).
Choosing k = — 5 we see that

f-n(u,s,—m)f-n(u,s,m) =1
Since both terms on the right are polynomials in s they must be independent of s and
f-n(u,s,m) = e(m).
When s = 0the difference equations do not change when m is replaced by —m. Consequently fx(u,0, —m) =
fx(u,0,m) and
f=k(u,0,m) = e(m) fr.(u,0,m).
If m is an integer we can take & = 0 and conclude that e(m) = 1. If m is a half-integer take k = % Thency, = ”T“

We have just seen that if +m > 0

1 1
3 9 3
1
= [y (u2,0,m) = fy (w, 0,m)] [+ 1]+ [fy (w4 2,0,m) + fy (w,0,m)][ma] + 5],
The degree of both sides is Z — |m|. Let a be the coefficient of w# /"l in f1(u,0,m). The coefficient of us=Iml
in the polynomial on the left is (n + 1)e(m)a. The coefficient of w2 =™l in the polynomial on the right is

2(2 — |m[)a +2(Im| + 4)a = (n + 1)a. Thus e(m) = 1.
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6. The local functional equation at a non-archimedean prime. Let K be a non-archimedean local field, let O be the
ring of integersin K, and let 7 be a generator of the prime ideal in 0. Let Gx = GL(2, K)and letGo = GL(2,0).

If A is the group of diagonal matrices and N the group of matrices of the form

(1)

then the Haar measure on GG x may be so normalized that

a1

_ -1
. f(g)dg/AK/Ao |a2| da/NK dn/Go dk f (nak)

= a1 0
o 0 (65) ’
The Hecke algebra H is just the algebra, under convolution, of functions on G i which have compact support

and are bi-invariant under Go. Let H be the algebra, under convolution, of functions with compact support on

Ak /Ao which satisfy

then

Lemma6.l. If f € H and a € Ak set

fla)y =122 [ f(an)dn.

a9 Nk
The map f — f is an isomorphism of H with H.

To show that f lies in H one has to show that f(a) = f(a). This is clear if & = a; S0 suppose a # @. Since a

is conjugate to a in Gk the integrals

/ flg tag)dy
A\Gk

/ flg~ ag)dg
Ar\Gk

and

are equal if they exist. But

[ staagdg= [ dn [ ak( e ank))
Ar\Gk Nk Go
= fla(a™ n"tan))dn.
Nk
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A simple change of variables shows that the last integral equals

22|12
|1O‘1_ a2 f(a)
(o5}
Combining this with the relation
Q222
[e3% _ Q2
=g~ =gl
[e5] (e 5]

one sees that f(a) = f(a).
|ff = f1 * fQ then
Fo =152 [ 1] neeni s

The Haar measure has been so normalized that this equals

Piiis 11
|52| /AK/AO da/NK du . dv{ f1(bvua) fa(a™ u )|a

aq

-1

2
2
Simple manipulation shows that this equals

B

%

2 dal | peodn)( [ e wde) = Fox fale),
Ax /Ao Nk Nk

G is the disjoint union of the double cosets

0o =" -

Go (7T 0 ) Go = Goa(m,n)Go m <n.

The characteristic function of such a double coset will be denoted by f, . If a(m’, n') Ng meets Goa(m,n)Go

thenm +n =m’ +n’ and m < m'; moreover
a(m,n)Ng N Goa(m,n)Go = a(m,n)(Go N Nk).
Thus fo.n(a(m’,n')) = 0 unless m +n = m’ + n’ and m < m! Moreover
fmm,(a(m,n)) =1.

It follows readily that the map f — f is an isomorphism. Consequently every homomorphism of H into C is of

the form

where w is a homomorphism of Ax /Ao into C*.

If 7 is a homomorphism of Ag into C* let 7; and 7, be the functions on K * defined by
a 0 1 0
m@=n(§ ) m@=u(y ).
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Lemma6.2. Let n be a homomorphism of Ak into C* and w a homomorphism of Ak /Ao into C*. There is

up to a scalar factor at most one function ¢ on Gg satisfying

(i) p(ag) = n(a)p(g) for all a in Ak,
(ii)
/G Plgh) f(B)dh = xo (e (9)

for all f in H.

If there is any non-zero solution of this equation then 1,12 = w;jws so that#; and 7, have the same conductor.

Letitbe (7%). o is determined by its restriction to Ng. If y € O then

ey 1=y 1Y)
me(y =5 T h=ao T

Ifz = 7~%and b < athereis an o in O such that o = 1(modz®) and n; («) # 1. Then

(o Ph=e(o TG N=wl(s T)

@(((1) ‘11/))=0-

To prove the lemma we need only show that if

and if o € O* then

so that

then

for b > a. If O is the disjoint union U’_, z; 4+ () then Gpa(0,1)Go is the disjoint union

A 1 0
U;-1=1 (7(1)— ﬁ)GoU(O W)GO'
Thusifb > a

wine((y N =z T Pe(p L))

—mmze(y T T e (y T )

—m@e(y Ty ey Ty )

because 71 (1 + 7’z) = 1.
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Lemma6.3. Let £ be a non-trivial character of K and w a homomorphism of Ax /Ao into C*. Apart from a

scalar factor there is exactly one function @ on G which satisfies
(i)
((,1)9) = €@elg)
(i)
[ etam) = 1t = x.(1)(0)
for all f in H.

Suppose ¢ satisfies these relations. Take an Ax and set ¢/'(g) = p(ag). The function ¢’ satisfies (ii).

Moreover

Ao T)o=el(p )0 = elon x a3 ) la)

thus if ¢'(z) = &(ay x g ') it satisfies (i) with ¢ replaced by ¢/. Assume then for simplicity that O is the largest

ideal on which £ is trivial.

If o is to satisfy (i) it must be of the form
Ay 7)) =

with @ a function on Ax /Ao. The function ¢ is well-defined if and only if £(z)®(a) = ®(a) when ;' x as is

in O. Thus ®(a) = 0 unless a;a; ' isin O. The relations (i) will be satisfied if and only if

w(§ o) o) =@l ()

and

/G (gh) fot (B)dh = xu(fo1)¢(9). (B)

We can satisfy (A) and the previous conditions while specifying in an arbitrary manner the value of & at

a= (’OT (1))04 > 0. (B) will be satisfied for all g if it is satisfied for g = (’T“

0 .
0 1) when it becomes

sl (Mo TP +el(y 2 )=t e (T D))

71'
If @ < —1 all terms on both sides are zero. If a = —1 the right side is 0 and the left side is
T; 1 0}, _
ey 1 )=o

If o > 0 the left side is

w((Ty D P ra@eme (T )
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Some simple algebra then shows that (ii) will be satisfied if and only if

> wrgre( )= Gmntnlmetn (0), ()

n=-—oo

The lemma follows

If (179) is the largest ideal of K on which ¢ is trivial let (g, w, £) be that solution of (i) and (ii) which takes
7‘_5
the value 1 at ( o (1)) If &'(z) = &(Bx) then

el ) =(( 1) o0,

Let ¢ be a character of A such that ;¢ = wy 'wy ', Set (1 (o) = (o(a)|al® where (o(r) = 1. ¢ is uniquely

determined by s and ¢, and we shall sometimes write ¢ = ((s, (o).

Lemma6.4. Let ¢ be a homomorphism of Ak into C* such that (1(s = wflwgl. If { = ((s,¢o) the function

‘I’(g’@wvf)—/szO((g ?)g;w@)C((‘g ?))dxa

is defined for Re s sufficiently large. If (o = 1 then

(g, Gw, &) = (1 - %)(1 - %)‘I’(gvc;w,f)

is, for each g, a polynomial in ¢° and q=° and if (7=%) is the largest ideal on which & is trivial then

0

() §) 068 = G0l ws)

where 5((0(;1 0 )) :C(<a2 0 )) If 6§ =0 then

a2 0 a1
(1, G w, &) = 1.

If the conductor of (o is (7)), > 0, and

o6 = [ dEalaa

S

then ®(g,(;w, &) is a polynomial in ¢° and ¢~° and

A g (0 1)y g = a8 g ¢
g(&,¢) (I)(<—1 0)975’ &) = G(-1) 9E) ®(g,(,w, ).

If ¢ (z) = &(mPx) then

vo.Go.6) = [ o((T)" D )oeoc(y ) ara v)
= ¢ () 2(9,Gw, €)
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and g(¢',¢) = g(&,¢); so itis enough to prove the lemma for § = 0.

Ifg= a((l) T)kwitha: (O;I 0 ) in Ax and k in Go then
as

/Kx s0(((())& 2)9;%5)@((8‘ ?))dxa
S o Lo ) (6 1)l e

1z

Because gp((z (1)) (0 1);w,£) = f(ax)ga((z (1));‘”’5) the function

(s ) (0 1)wa-e(f 1)

has, for a given x, compact support on K *. Since the integral

(S o LG D) wou(s )

exists for Re s sufficiently large so does that of the lemma. Moreover the difference between ®(g, ¢; w, &) and this

is equal to

expression is a polynomial in ¢° and ¢—*. If (;, = 1 the expression equals

_1,{a1 O - n ™ 0 C_1((061 0?2))
¢ (<0 a2>)n;w<1(” )“’(<0 1>)_(1_wl(;fl)/czl(ﬂ))(l_wz(;fl)/cza(ﬂ'))

and if the conductor is (77) and v > 0 it equals zero. All assertions of the lemma except the functional equations

follow.

0 1
-1 0
6.2. Since they both take the value 1 at g = 1 they are equal. If the conductor of ¢y is (77) and v > 0 then

w((y 7))o= [ dar (G 1) wou(G |

The last integral is easily seen to equal g(¢, ¢). Since

(%06 )= )6 ) )

the value of <I>((7 ),C;w,f) is (7 ()T ()¢ (=1)g(€,€). The functional equation again follows from

Letn = (1. If ¢y = 1then <I>’(< > g, Cw, &) and @' (g, C; w, €) both satisfy the assumptions of Lemma

0 1
10
Lemma 6.2.
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7. The Main Theorem. Let k be either the rational number field or the field of rational functions in one variable
over a finite field and let K be a finite separable extension of k. Let S, be the set of archimedean primes of K.
Let AY be the adéle ring of K and let I be the group of idéles.

If R is any commutative ring with unitlet G r be the group of 2 x 2 matrices from R which have a determinant
which is a unit of R. Ar will be the group of diagonal matrices in Gr. If p is a non-archimedean prime let Uy,
be Go,, where O, is the ring of integers in K\, and if p is an archimedean prime let Uk, be the group of unitary

matrices which lie in G, .

Lemma7.1* There is a constant co such that if g belongs to Gy there is a vy in Gg such that max{|c|, |d|} <
. ab
coldet g|*/? if v, = (C d),

Fix a measure on A. This determines a measure on A & A. K & K is a discrete subgroup of A & A and the
quotient A @ A/K @ K has finite measure ¢;. The lattice Lg = (K @ K)g, is discrete and the quotient A® A/Lg
has measure ¢ |det g|. The non-zero elements of Lg are, for all practical purposes, the last rows of the matrices

79,7 € Gg. There is a positive constant c, such that the measure of {(z,y)| max{|z|, |y|} < do} is at least c2d3.

Let co be any number larger than 2, /L. If Lg contained no non-zero (c, d) with max{|c, |d|} < co|det g|'/?
the measure of the projection of { (z, y)| max{|z|, |y|} < <L |det g|'/?} on A®A/Lgwould be greater than c; |det g|.

£ will be the space of functions ¢ on Gk \ G satisfying conditions (i), (ii), and (iii) below
i fU = Hp Uk, then ¢ is U-finite on the right.
(i) If p is an archimedean prime the function ¢(hg), g € G, , is infinitely differentiable.

If p is any such prime let 2l,, be the universal enveloping of Gk, . If, for each p, X, belongs to &, the function
{I1, p(X;)} is defined.
(i) If ¢, is any constant there are constants M, and M, such that!

1 1 |det g|*/?
|det g “max{|c|, |d|}

{mpp(Xp) bp(g)| < Mi[{|det g 3

on the set max{|c|,|d|} < c1|det g|*/2.

If p is a non-archimedean prime the group G'x,, operates on £. If p is a complex prime 2, acts on £. Ifpisa
. 10 .
real prime let o, be the element (0 _1) of Gk, the pair {o,,%, } acts on £.
If p is a non-archimedean prime a representation of G-, on a vector space H, will be called quasi-simple if

the isotropy group of every vector in H,, is an open subgroup of G, . It follows from Lemma 6.1 that the space

of vectors whose isotropy group contains Uy, has dimension at most 1 if the presentation is irreducible.

* (1998) As observed in the comments this lemma is not what is needed. Indeed, neither it nor its proof make
much sense. The correct lemma, which there is at this stage no need to state, would replace max {|¢|, |d|} by
[ ], max{|c|y, [d[, }. See Lemma 5.1 of the following letter.

 See previous footnote.
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Suppose that for every prime p we are given a quasi-simple irreducible representation of either G, ,,, or
{op,2,}, according to the nature of the prime, on a vector space H,. Suppose there is a finite set Sy of primes
which contains S, such that if p is not in Sy there is a non-zero vector in H, which is fixed by U,,. For each p not
in Sy choose such a vector xg. If S contains S let Hs = ®pesHp. If S2 2 51 2 S let dg, s, be the injection of

Hg, into Hg, which sends ®,¢eg, X, to
(®p651Xp) : (®pESQ—S1XS)

and let H be the injective limit of the spaces Hs. Let 2l be the system consisting of all the Gk, p notin Se., Ay, p

complex, and {0y, 2, },p real. The system 2 acts on H.

For our purposes a divisor D is just a function p — m,, from the non-archimedean primes to the non-negative
integers such that m, = 0 for almostall p. p | D means that m, > 0 and p t D means thatm, = 0orp € So. Ifp
. . b\ . . ~
isnotin S let UZ, be the set of (a d) in Uk, for which ¢ = 0(modp™») and let U” = [] UR . LetUR be

¢ PéSe
the set of ( 2) in U2 for whicha = d = 1(modp™») and let U” = 11 UP,. U” is in the normalizer of TP
c p¢Soc

Lemma 7.2. There is a D such that H? = {z | w(uw)x = = for all u in UP} contains a non-zero vector.

Moreover HP is the sum of one-dimensional subspaces invariant under UP.

Although we have not troubled to be explicit it is clear how TI Gk, operates on H.

Given any divisor D let U’I?p be the set of (‘: Z) in Uk, which are congruent to I modulo p™* and let

UP = 11 ﬁl?p. Given z # 0 in H there is a D’ such that U?" is contained in the isotropy group of z. Choose
pESeo
ap 0

for each non-archimedean prime an «;, so that (o) = pm; and set g = Hpesx( 0’“ )

D is the divisor {m,}, gUP g1 is contained in U2’ and UP is contained in the isotropy group of (g 1)z The

). Then, if m,, = 2m;, and

second assertion of the lemma is immediate because UD/I?'D is a finite abelian group.

If ¢ is any homomorphism of U” into C* which sends UP to 1 let HP = {z | w(u)z = €(u)z for all u in

UP}. eis determined by its restriction to the diagonal matrices. Let € be the homomorphism satisfying

(5 )=t )

If g is any matrix in G such that g, = I,ifp € Scorp{ Dand g, = ((fp (1)) with (o) = p™» if p | D then
gUPg t =UP and n(g)HP = HP.

Let $ be a subspace of £ such that the representation of 2l on § is equivalent to that on H. We want to study
some of the Dirichlet series associated to §). Let quD be the subspace of §) corresponding to HED. We suppose that

HP is not {0}.

52



Choose a non-trivial character ¢ of A which is trivial on K. If ¢ belongs to £ set

1 1 =z
@0(9)=m/1{m80((0 1)9)65%

1 1 =z =
e1(g) = m/}(m@((o 1>g)§($)d33-

By the Fourier inversion formula

l9) = olg) + Y @1((3 g)g)-

aceK X

Let GX be the set of all g in ga such that g, € U}?p if p | D. Since G, = GxGP any function in £ is determined

by its restriction to GP.

If p is anon-archimedean prime which does not divide D and ¢ belongs to $2 then  must be an eigenfunction
of the corresponding Hecke operators. Let it be an eigenfunction corresponding to the homomorphism w,.
Varying ¢ in P does not change wy. It follows from Lemmas 3.2, 5.2, and 6.3 that $HP is spanned by functions ¢

for which
a 0 _ Oép 0 Oép 0
wl((o 1)9) a{pelgoo%(( 0 1>gp)}{p¢1:[9m w(( 0 1)gp, o:Ep) e(ap)
ptD

for g in Gf. aq is a constant which depends on o and o, is the image of a in K. gp is the projection of G on
I, pGr,. & is the restriction of £ to K, and ¢p,p € Soo, is a function in L(¢,, m,) determined solely by . Let

IP = {Lel| || =1ifp| D}. If Bliesin KX NI then ans = e((; f))aa.

We shall only consider those ¢ for which the functions ¢4 ( (Z ?)g) are of the above form. ¢(g) is the sum

of ¢o(g) and

0 0 0
> e > {1 m(o‘poﬁp 1)gp>}{ I1 w((apoﬁ" 1)gp,wp,sp>}e<(%’ 1)9D>
p

aeKX /KXnID BeKXNID peSc ZSoo
p{D

if Op is the projection of 3 on leD K,*. In an appendix to this paragraph we shall discuss the form of the
function 1. Lemma E of the appendix will eventually be used to show that ¢ is the sum of a cusp form and a

function which is represented by an Eisenstein series. For the present we consider only the case that ¢y (g) = 0.

Then ¢(g) is a cusp form. Let n be the homomorphism of K *\I into C* defined by

a 0
(5 o) o =nepls,
It is no real restriction to assume that |p(«)| = 1 and we shall do so. It then follows from the general theory of

automorphic forms that ¢ is bounded.

If My, = sup |p(g)| and
ge€GA

My = sup | H ©p(gp)ll H ©(gp, wp, &p)lle(gp)]

9€GP pes.. p&Soe
ptD
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then

|Cla| < %
=

If o £ 0, as we certainly suppose, My is not zero. Of course it is not oo either for then all the a,, would be zero.

In any case a,, is a bounded function.

If the number M, is finite the function (g, wy, &) is bounded. Appealing to the formula* at the top of p.

6.10 we see that the inequalities
wpa ()] < |72 fuwp,a(m)] < Jar| 72 (A)

must be satisfied.

If K is the real or complex field, 7 a quasi-simple irreducible representation of {o, 2} or 2 respectively, and
¢ ahomomorphism of Ak into C* satisfying the condition of Lemma 3.6 or 5.7 let I'(¢, ) be the function defined
by

LG, m)P(9.¢ ) = 2(9.C0), € L& ).
®(g,¢, ) and (g, ¢, ) are the functions introduced in Lemmas 3.6 and 5.7.* T'({, 7) also depends on & but we

do not take this into account explicitly.

Let x be a character of K> N IP\IP. If s is a complex number define ¢ = ((s, x) by

(5 5= @las s
Let C, be the restriction of ( to A, .

Lemma 7.3. The integral
a 1 a 0
/ s0(<0 1>g)<(<0 1>)da
KXNID\ID

converges absolutely for Re s sufficiently large and G in GP. It is equal to zero if

o« Ope( 0

is not identically 1 in 0y . There is a constant M > 0 such that aq = 0 if |ap| > M for some p | D.
Consequently the series

> wllal(y V)

aeKX/K*NIP p|D

* (1998) labeled X in this version in which the pagination differs from that of the manuscript.
* In the digressions to establish notation we allow ourselves to use, in a new sense, symbols whose meaning
has otherwise been fixed for the course of this paragraph.
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converges absolutely for Res sufficiently large. Let R be the set of non-archimedean primes which do not

divide D for which ¢, is not trivial on Ao, . The product

1
11 (1 = wp, 1 (m)Cp,1 () [7[M/2)(1 = wp o (m)Cp 2 () [1/2)

pPEScUR
ptD

also converges absolutely for Re s sufficiently large. The integral is the product of the above two erpressions

with
{ H D(Cp,mp) P’ (gp,Cp 0w ) H H q>,(gp;<pywp7§p)}{l_[ ®(9p:Cp wp ) }e(gn).
PESco pPEScUR PER
ptD

According to Lemma 6.4 only a finite number of terms in the last product are different from 1. The absolute
convergence of the other infinite product follows immediately from the inequalities (A). For each p the character

& isnon-trivial. Ifp | D,z € Op,a € K, ,and g € G?

(s Do=a(y 9oy 1)

this equals

al(y 5) (5 V)o-sCaa(y V)

Thus if a,, is not zero, a must lie in the largest ideal of K, on which ¢, is trivial. The existence of the constant M

follows immediately.

Recalling that, for almost all p, ©(gy, wy, &) equals 1 if g, lies in Uy, we see that
v 0 v 0
(3 1) oG 9 i
KXNIP\IP
is at most the sum over K * /K> N IP of the product of
apyp 0 Y% 0
ol T [ 1ot (57 ) ol (% 9 )
PESso »

and

a 0 0
IT [ e D) amenelo(3 9 Dl
pPESee © T

ptD

Changing variables in the integral and recalling the product formula we see that the sum is the product of

> el ITe(5 1)

Kx/K*xNIP p|D
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and

11 /Kp pr((v(f (1))9;:)(;:((76’ ?))Idw

PESw

11 /K |<P((75’ ?)9;:7%75;:)@((7(;’ ?))myp.

and

The first term is certainly finite for Re s sufficiently large. The convergence of the integrals over pr P € S,
was proved in Lemma 3.6 and 5.7. It remains to show that if Re s is sufficiently large each of the integrals in the
infinite product is finite and the product converges. It was proved in Lemma 6.4 that for a given p the integral is

finite if Re s is sufficiently large. Thus we can, in our considerations, drop any finite set of terms from the product.

The first formula™ on the top of p. 6.10 shows that if g, is a unit and O, is the largest ideal on which ¢, is

/KX |<P((’3J ?)9;:7%@1@)@((’33 ?)”d%

1
(1= [z [*)(1 = [*)

trivial then

is at most

if Re s > 0. The infinite product converges if Re s > 1.

Thus the integral is finite. A simple formal manipulation which is now justified shows that it is the product

of
Z aozHCP((OE)p ?))
acKX/K*xNIP  p|D
and
pll_l[)/opxd(’g ?)9;:)@((’83 g))d%
and
/[ (G 1)ma( )
PESc p
and
I1 [o( D) amenera (T 9w
R

The remaining statements of the lemma are now just a matter of definition.

We shall be able to state the next lemma more succinctly if we first introduce some notation. First let K be

the real or complex field and let 7 be a quasi simple irreducible representation of {o, A} or 2 respectively. Let &

* (1998) Labeled (X) for convenience.
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be a character of K and ¢ a continuous homomorphism of Ag into C* which satisfies the condition of Lemma

3.6 or 5.1. Define (¢, &, 7) by the relation

(b/(<_()1 é)g7§530):6(C5€7ﬂ)¢/(g5€7¢)

The exact form of the factor is given in Lemma 3.6 and 5.7. If K is a non-archimedean field, w a homomorphism
of Ax/Ap into C*, ¢ a continuous homomorphism of Ay into C* which satisfies the condition of Lemma 6.4,

and £ a character of K define €((, &, w) by the relation

(A PRREER e

if C is trivial on Ap and by the relation

#( 5 §)0Cud = 66060

if it is not. The form of this factor is given in Lemma 6.4.

Choose A in K* so that (A,) = p™» ifp | D and set

o) =o6T1 (4 o)

p|D

@ lies in HL. 1f ¢ is the homomorphism of A, into C* introduced in Lemma 7.3, let Z(x, ) be the product of

(Y wIe(y 9 I )

a€eKX/K*NIP p|D PESe

and

1
p¢SlguR (1 = ap1(m)Cpa (m) 7|1 /2) (1 — wy o ()| [1/2
p{D

Given ¢ the functions ¢, are determined only up to a scalar factor. Thus there is an undetermined constant in
the numbers a,, and hence in the function Z(s, x). However we can certainly suppose that, for p archimedean,
©yp, the function associated to {, is the same as ,. This assumption is implicit in the statement and proof of the

following lemma.

Lemma 7.4. Z(s,X) is an entire function of s. It satisfies the functional equation™

=600 =16 7" 9 IT 6ootprmo) TL el Gy E,Cxn) .

p|D PESco ptD

*
11y

(—s, (xn)~1) is the function obtained on replacing ¢ by @.
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The integral in Lemma 7.3 is the sum of

o(( 0 v ac( 0 Ydox (B)
/alzl (0 1) (0 1)
[ oG 9)oa(§ e
The latter integral is equal to
/|a>1@(<g (1)> <31 é)g)nl(a)<1(<‘3 (1)>)da
|a>1@0(1)A(1)9 1(;14“01)@. o
[ (6 ) (5 o)Ir(h 75 (s ) .

If the first integral converges for Re s sufficiently large, as it does, it must converge for all s. The resulting

and

or

. . . . L - 0 0 A"
function of s is entire. Since the substitution of —s for s, (xn)~* for x, @ for ¢, and (A (l))g 11 (1 g ) for g
myp >0
interchanges the integrals (B) and (C), the latter integral is also an entire function.

We conclude that the product of ®(s, x) and

{H D (gp, Gps pp) H H ‘I’/(gpanv%afp)}{H‘I’(gpanvaafp)}e(gD)} (D)
pESes p(;Ei‘FBUR pER

is an entire function of s.

Itis clear that if p is an archimedean prime the function ®(s, ) is not changed if ¢ is replaced by a non-zero
linear combination of functions obtained from ¢ by operations of {0, %, } or &, according to the nature of the
prime. Thus to prove the lemma we can choose the functions ¢, in any way convenient. | claim that these
functions and g in ng can be so chosen that almost all of the factors in (D) are 1 and the rest are of the form ae®®

with a # 0. It will follow that =(s, x) is entire.

gp may as well be taken to be I. If we take g, = I forp ¢ RU S, g 1 D then according to Lemma 6.4 and
the formula* at the top of p. 6.12 each of the functions ®'(g,, {,wy, &) is of this form and all but a finitely number

are identically a. If p € R then, according to the formulae at the top of p. 6.12 and the bottom of p. 6.13

q)(<é WEVP > vvavafp)

will be of this form of a suitable choice of ~,,. For a real prime choose g, = I and ¢, so that the formulae on p.

3.371 can be applied. For a complex prime choose g, = I and ¢, as on pp. 5.28 and 5.19.1

* (1998) Labeled (Y).
(1998) Now p. 33.
1 (1998) At the very end of the chapter, just before the appendix.
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Now let us see what happens to the expression (D) when the substitution mentioned above is performed.
The substitution replaces ¢ by f and e by é. The factor €(go) is not changed. The functions occurring in the other
factors are not changed but some of the variables are g, is replaced by (fp ;)gp and ¢, is replaced by fp. Thus
the expression (D) is multiplied by

L6 (g 0 DM IT eon&mH IT el

p|D PESw Pé¢Seo
ptD

which equals

—A, 0O
01 CU G DI ) EE RN | )]
p|D PESe PES
ptD
The lemma follows
We want to prove a converse to this lemma. Suppose we are given the divisor D and hence U”, a homomor-

phism e of UD/I_'7D into C*, and a non-trivial character £ of A| K. Suppose that we are given bounded functions

w:e((é ?))aa aw:g((g g’))aa

if 3liesin K> N IP. Suppose moreover that a,, = 0 if, for some p dividing D, oy, does not lie in the largest ideal

a and a, on K * such that

of K, on which &, is trivial. We will also have to be given, for each archimedean prime p, an irreducible quasi-
simple representations of {c,,2,} or 2, according to the nature of the prime and, for each non-archimedean

prime which does not divide D, a character wy, of Ax,, /Ao, Which satisfies
wpa(m)] < a2 Jwp2(m)] < '/,

If p is archimedean let 7, be deducible from 7, . We shall also suppose that the homomorphism

n(a)—pgmwp(<08’ jp))pgmm(‘g” fp))L[je((‘)gﬂ )
ptD

of TP into C* is trivial on K> N IP.

Lemma 7.5. Choose for each archimedean prime a function pp in L(&y, ). If g € G the series

> al I enl(G D)ot IT o (9 omen&lictan)

acKx PESes P¢Seo
ptD
converges absolutely. Moreover the convergence is uniform on compact subsets of G Let ¢(g) be its sum. If
x belongs to K and xy lies in Oy forp | D then @(((1) j)g) = ¢(g) and, if a, B lie in K* ﬁID,ga((z Z)g) =
o(g)-
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Choose a compact subset C of GP. According to the discussion* on p. 6.8 there is for each non-archimedean

prime p which does not divide D a number M, such that if g € O

@((aop ?)gpvaafp)zo

if || > M,. Moreover almost all of the numbers A{,, can be taken to be 1. Because of the assumption on the
function {a,} the sum in the lemma can be replaced by a sum over a finite set if K is a function field and by a
sum over a lattice in K if K is a number field. If K is a function field the first two assertions of the lemma are
immediate. Suppose K is a number field.

Combining the formulat at the top of p. 6.10 with our assumptions on the magnitude of the numbers wyp,1(m)
and wy, 2(7) we see that there is a positive constant b and for each non-archimedean prime p which do not divide

D a constant C,, such that
|80((06p (1)) 9o, wp, &p)| < Cp|ap|_b
if g isin C. For all but a finite number of primes C}, can be taken to be 1.
Because of the product formula we are reduced to considering the sum

S IT leslleb((G 7))

PESe

over the non-zero points of a lattice in K. On pages'™ 3.9 and 5.9 we have discussed the behaviour of the functions
Y(t) and % (¢g) as t — oco. The first of the equations (A) on p. 5.8 can be used to determine the asymptotic
behaviour of all the functions ¥*(¢). In Lemma 3.4 and 5.4 we have discussed the behaviour of these functions
as [t| — 0. Putting all the information together we see that these are positive constants ¢ and d and a constant @

such that
ap, 0 —e —
ool (T ) ol < QoI
if g is archimedean and g lies in C. The absolute and uniform convergence of the sum follows.

The last two statements of the lemma can be proved for both types of field simultaneously. If x € K and

xp € Op forp | D and a,, # 0 then, by assumption, &, (apxp) = 1,if p | D. Thus
116 (apap) = 1.
ptD

The product

(TLan(5 1) (0 ) anCIT (% 3) (o % )omemaie(s ) a0

PES pPé¢Seo
ptD

* (1998) Now following Lemma 6.3.
(1998) See previous footnotes.
T Between Lemma 3.2 and its corollary and just before Lemma 5.3.
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is equal to

et IT (G O) o IT (T ) amemsoie(p T ) a0

ptD PESc pPZSe
ptD

Since e(((l) le )gD) = ¢(gp) the relation <p(((1) T)g) = ¢(g) follows.
The relation go((i Z)g) = p(g) for 3 € K* N IP is, essentially, one of the assumptions. To complete the
proof of the lemma we need only show that @((i ?)g) = ¢(g) when §3 lies in K* N IP. After replacing g by

(ﬁ L )g in the sum defining ¢ we can change variables in the summation, replacing o by a3~!. The sum becomes

5 aa L IL (G D)ot IT o(( ) ameneone( (0 9)am)

ace KX PES~ PESco
ptD

The relation ¢( (i ?)g) = ¢(g) is thus a consequence of the assumption

GQQIG((ﬁOD (1))) = Qqu.

With the same choice of functions ¢, the function {d, } determines a function &. Of course e must be replaced by

€.

Let x be a character of K> N TP\ I such that

el )=

forp | Dand a, in O;. If s is acomplex number define { = ((s, x) as before by

(%)= uas rxtan ),

The function Z(s, ) given as the product of

> wlle(( G I )

zEKX/KXNIP  p|D pPESe

and

1
11 (1 = wp,1(m)Cp1 (m)|7/2) (1 = wp 2 (m)€p, G, (m)[7[1/2)

pPESUR
ptD

is defined for Re s sufficiently large. If {a,,} is replaced by {a, } and x by x~'n~! we can define a similar function

E(s,x 'n7h).
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Lemma 7.6. If there is an A in K> with (Ap) = p™ for p | D and if, for all possible choices of x,Z(s, Xx) is

an entire function of s which is bounded in vertical strips and satisfies the functional equation

=600 =16 7" T 6o IT el6ppran)E-sx~7)

p|D PESs PE¢Seo
ptD
then, for all g in G2,
(0 1 0 A'
(5 o)oIL(T 5 )=t

p|D

Let 1 (g) be the function on the left side of this equation and let P be the idéles of norm 1 in I”. We have

sal((g ?)9)=<ﬁ((3 (1))9)

for all o in IP. Since both sides are continuous functions on K* N IP\IP which is compact we just have to

to show that for each g in GP

compare Fourier coefficients. Any character of I” N K>\ IP is obtained by restricting a character x of K* N P

to I, Set

u(x,g)z/meD\Ig @((g ?)Q)X(Oz)da,

i 0) = /meD\zg %((g (1)> a)x{e)do

1u(x,g) and p1(x, g) are both identically zero if X(ap)e((? (1))) # 1 for some p | D and some o, in O;. Thus

we need only consider the x satisfying the conditions of the lemma.

The functions
x(a)p(x (g ?) 9)
x(@)pa(x;, <g ?) 9)

are continuous functions on I\ I'” which is isomorphic to R* if K is a number field and to Z if K is a function

field. As in the proof of Lemma 6.3 the Mellin transform
a 0 s a 0 a 0
| (G P)aaraa= [ w(G F)a(§ )
IP\IP KXNIP\ID
is defined for Re s sufficiently large and the Mellin transform

/ x(a)ul(x,<g ?)g)Iana

PP

(s ) (3 I )i e

KXNIP\IP Pl

which equals
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is defined for Re s sufficiently small.

To prove the lemma in the case of a function field we need only verify that both the Mellin transforms are
entire functions of s and that they are equal. In the case of a number field we must show in addition that they are

bounded in each vertical strip of finite width.*

As in Lemma 7.3 the first integral is the product of Z(s, x) and

{ H (I)/(QP’CP’SOW)}{ H (bl(gp?@va?ep)}{n (b(gPaCPawP"sP)}'s(gD)' (E)
PES p@éEFBUR pER

R is the set of non-archimedean primes which do not divide D such that  is not trivial on Ao, . According to
Lemma 3.6, 5.1, and 6.4 each of the functions occurring in the product is an entire function of s and all but finitely
many are identically 1. Thus the first Mellin transform is an entire function of s. The second is the product of
Z(—s,x 'n~!) and the factors

Tty 5 w5 ) mbeen

PESs

P 1 0 / 0 1 ~
»D

6 (o 9 Dol ) o sonreton)

pER

It is also an entire function of s and, by the definitions of the factors €({p, &y, mp) and €(¢;, &y, wp) together with

the functional equation satisfied by the function Z(s, x), equal to the first Mellin transform.

One of the Mellin transforms is bounded in vertical strips of a right half-plane, the other is bounded in
vertical strips of a left half-plane. Thus to show they are bounded we can apply the Phragmen-Lindelof theorem
for strips. The function m a real, grows no faster than an exponential in vertical strips so it is enough to
show that we can multiply the Mellin transforms by a product of functions of the form I'(as + b), a real, and
obtain a function which is bounded in regions of the form. Re s < constant, |Im s| > 0. By assumption ®(s, x)
is bounded in such regions. The factors in the product (E) corresponding to the non-archimedean primes were
shown in Lemma 6.4 to be bounded in vertical strips of finite width. If p is an archimedean prime I'(¢,, 7, )is a

function of this form and

F(Cm”p)‘bl(gm Cp> @p) = (I)(gm Cp> Sﬁp)

was shown in Lemma 3.6 and 5.7 to be bounded in regions of the form |Re s| < constant, |[Im s| > 0.

* This seems to be the simplest condition which allows the application of an inversion theorem to establish
the identity of the original functions.
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Theorem 7.7. If the assumptions of Lemma 7.6 are satisfied the function ¢ is a function on G N GP\GP.

The set of all ( ) in GpF N GP which satisfy

;
@((i Z) 9) = ¢(9)

is a subgroup of Gx N GY. By Lemma 7.5 it contains all those matrices for which ¢ = 0. If b = 0 then

A Do ) DI )

a0 D) LGS )

my >0

Applying Lemma 7.5 to @ we see that the last expression is equal to

(G o) (T % )=vor

my >0

The theorem is a consequence of the following lemma.

b 0
Lemma7.8. Gk NGY is generated by the matrices in it of the form (Z d) and (a )

cd
a b\ [a 0 1 %
c d) \e¢ d—% 0 1)/

If the matrix on the right is in Gx N G¥ so are both the matrices on the right.

Indeed
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Appendix. Some preliminary remarks are necessary before the nature of the function ¢ (g) can be determined. It

is convenient to treat the various types of fields separately.

We consider the real field first and use the notation of paragraphs 2 and 3. Let L be the space of infinitely

differentiable functions on Ng\G r which are U-finite on the right.

Lemma A. Let 7 be the infinite-dimensional irreducible quasi-simple representation of {o,}. Suppose 7 is

deducible from m,. Let H be a subspace of L which transforms according to .

(i) If s —m is not an odd integer and s # 0 then w # @ and H is contained in L(w) + L(®).

(ii) If s =0 and m = 0 let 'L(w) be the space spanned by the functions

/( 1 =z a; 0 cosf)  sinf )
¥n 0 1 0 o1 —sinf cosf
a « 0 « 5| 1
“111/2 1 1 a1 inf
2 m@)m)wQJ+;ﬁtﬁe,

5 € Z. L'(w) is an invariant irreducible subspace of L and the representation of {o,A} on L'(w) is

defined as

equivalent to w. H is contained in L(w) + L' (w).

(iii) If s —m 1is an odd integer suppose, as we may, that s > 0. Define W' by

’ agq 0 . a1 0
w(( 0 a2))sgn(a2a2)w(< 0 a2>)'
Then H is contained in L(w) + L(w').

w' is of course defined for any w. In Paragraph 2 we saw that if s — m is not an odd integer and s # 0 then 7
is equivalent to the representation of {o, 2} on L(w) and L(®) butis not contained in the representation of {o, A}
on L(w’) or L(@"). We also saw that if s — m is an odd integer and s # 0 the representation = is contained once
in the representation of {o, 2} on L(w) and L(w’) but is not contained in the representation of {o, 2} on L(&) or

L(&"). Thus if s # 0 we need only show that H is contained in L(w) + L(w) + L(w’) + L(&').
Suppose s = 0 and m = 0. Itis clear that

1 0 .
s =l(y e s = (s bt U6 = ing,

On the other hand taking » = 0 in the formulae * on pg. 3.7 and 3.8 we see that

(1 x a; 0 cosf sinf
p(V)gO"((O 1)(0 a2>(—sin9 cos@))

* (1998) See previous footnotes.
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is equal to

3

a1 a; 0 Dlow 1%L 4 1 1 1 i(n+2)©
and that
, 1z a; 0 cosf sinf
p(W)<)0n(<0 1)( 0 QQ)(—sinG COSQ))
is equal to

|5
21/2 a1 0 _ 1)1 ﬂ 1 _ 1 L i(n—2)0
(G DUn+ DIog| 2 1 (0 1) 3 b

Thus p(V)e;, = (n+ 1)y, o and p(W)e;, = (—n + 1)¢;, _,. It follows from Lemma 2.1 that the representation
on L' (w) is equivalent to 7, and hence to 7. The representations of {o, A} on L(w’) and L'(w’) are not equivalent

to 7. Again we need only show that H is contained in L(w) + L'(w) + L(w’) + L' (w').

Suppose ¢ lies in H. There are functions ¢, (a1, a2) on R* x R*, only a finite number of which do not

vanish identically, such that for a.y > 0.

1 =z a; 0 cosf sinf\, in®
4‘0((0 1) (0 ozg) (—Sin@ cose))_zn:son(al’om)e ’
Moreover there are functions v, (L) on R* such that

|a1a2|1/2 0

(,071,(041;(12) :w(( 0 |a1a2|1/2))wn(z_;).

Since @ is in L, p(D)p = A(Z)p + $A(Z2)p and the equation p(D)p = 51 reduces to the equations

dir, d , dy, s2—1

—ot— 4 op— = .
tdt+tdt(t dt) 2 ¥n
or
d 1
At— — =), = s,
(dﬁ 2) 5%

If s # 0 four linearly independent solutions of this are sgnt)“|t|%,a = 0or1landifs = 0 four linearly

(
independent solutions of this are (sgnt)?®|¢t|'/? and (sgnt)®|t|'/?log |t|,a = 0 or 1. The lemma follows for all

representations except the one for which s = 0 and |m| = 1.
If s = 0and |m| = 1 the space H; contains a non-zero vector. If o lies in H; the function ¢,, is zero if n # 1.

According to the first formula on p. 3.8 the equation p(W )¢ = 0 is equivalent to

di B
2t — (1) = 0.

Thus 11 (t) is a linear combination of [t|'/2 and (sgnt)|t|'/2. Thus H meets L(w) 4+ L(w'). Since H is irreducible,
H is contained in L(w) + L(w").
For the complex field we use the notation of paragraphs 4 and 5. Let L be the space of infinitely differentiable

functions on N¢\G¢ which are U-finite on the right.
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Lemma B. Let m be an infinite-dimensional irreducible quasi-simple representation of A. Suppose 7 is de-
ducible from mw,. Let H be a subspace of L which transforms according to .
(i) If s —m is not integral then w # @ and H is contained in L(w) + L(©).

If s — m is integral define W' by

0 sitsa QU o1 | mitmg Qg (mitmy
o aq — |l : m T2 45 5 s
(4 o)) = lanaa 5 LAy ==t 22

7 is deducible from T, 75, T, and .
(ii) If |s| > |m| we can assume with no loss of generality that s > |m]|.
Then H is contained in L(w) + L(w') + L(&').
(iii) If |s| = |m| and s # 0 either w =W’ or w = &'. In this case H is contained in L(w)+ L(©).

(iv) If s =0 and m = 0 define vo and o as on™ p. 4.8 and let ¢, = Zl?zl % if n is a non-negative even

integer. If t > 0 set ¢, (t) =logt + ¢,. Let L'(w) be the space spanned by the functions

a6 ) (B m)o=at(G o P2 o w

with § € Z,~k € Z, and |k| < 5. L'(w) is an irreducible invariant subspace of L and the representation

of A on L'(w) is equivalent to w. The space H must be in L(w) + L'(w).
The most complicated part of the lemma to verify is the assertion that L’ (w) is invariant and irreducible so
we verify that first.

For convenience set ¢, x(9) = 0 if & € Z and |k| > 5. Just as* in Paragraph 4 the existence of the

Clebsch-Gordan series allows us to assert that the function

1 2z ap O
¢i+2,k(<0 1) ( 0 042> u)
which equals

(5 +k+1)(G +Rp(VHBrsir = (5 +k+ DG =k +Dp(V)Ens — (5 = k)G —k+ DoV )niert

*(1998) Just after Lemma 4.2.
* The right hand sides of the formula on p. 4.9 are not correct. They should be

(5 +k+1UG = k+ Dla(mw)enri

and

(5 +k = DG = k= )lb(n,w)en-1
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is of the form
0

+ k1) (——k;+1)'w(( 0w

@ DI 5202 Do)

that the function

n Y —~ n o\~
ok = (5 + RV )Gkt +ko(V)Buk + (5 = K)p(V ) Prkss

’ 2
is of the form

ful(o 1) (5 m)w=GroGg-nw(G o PR nontd.

Qg 2 Qg

and that the function

w;—27k = p(V+)S/0\n,k71 + P(V)San,k - p(v_)an,kJrl

is of the form

(&) Q2 (D)

eoail(p D) (0 a) =G, =00 = k=0t § 0 I a2 D0 a(w

In these three formulae &}, is respectively xz 71 +ky3+2=k g5+ky 53—k and x2T*~1y 2 —*k=1 and v lies in the dual
of V42, Vi, and V,,_o respectively.

To show that L'(w) is invariant we need only verify that w:;rg is a multiple of v, 2, that /¥ is a multiple of
1/2

¥, and that ¢, _, is a multiple of ¢,,_5. If n. = 0 only 7/’n+2 is defined. Evaluating go:+270 at ( 1/ ) we see

0
that* [(2 + 1)1t} ,(¢) is equal to the sum of three terms,

(E

n 0 -1
L D)(Dtlogt + a0 (0 ; ) 5o,

n d
—2(54—1) dt(tlogt—l—cn)
n.n 0
~(3)G + Dttogt-+ e (] 0 )
a sum that equals (cf. p. 4.2)
n n 1 n

—2(=+1)*(= 4+ 1)tQ — ) =-2(=+1)p? .
5+ + )t(ogt+cn+%+1) (5 + 1) tns2(t)

In the same way we see that (2!)%¢y)0 () is equal to

[—(g)voon (8 é)é 1+( Y00 (g 0)51](t10gt+cn)

* The formula at the top of p. 4.10 is not correct. It should be

W w.
VT = (X4 ) +ilXe - ).
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which equals

)G + D+ (GG + Di(tlogt +cut) = 0.

3

Finally [(2 — 1)!]%ty,,_,(t) is equal to

0 1 0 0 d
[—Y00n (0 0) 0_1 — Y90n (1 0) 5](tlogt + cnt) + ZtE(tlogt + cnt)

which equals

~+

—n(tlogt + cut — 57) = —nthp_a(t).
2
If the functions ¢,, ;. are defined as on p. 4.9 then, as we have seen, whens =0and m =0

(5 +R)G +k+Do(VHpnir = (5 +k+ DG = k+Dp(V)gn—r = (5 = k)G =k + DoV )pnr

2 2 2 2
is equal to
Z4+E4+1)(2-Kk+1D)! n
_2(2n |) (2n | ) (_+1)350n+2,k
(5+D! 241 2
and
PV eni—1+p(V)onk — p(V)en ks
is equal to

(Z2+k—1)(2—k-1)
2(% —1)! Q(n —1)! (—n)Pn—2.k-

2

Moreover one shows readily that

n

(5 + K)oV s + hp(V Yo + (5

5 E)p(V™)on k1

is equal to zero. It follows immediately that the representation on L’ is equivalent to the representation on L(w).

The remarks of the lemma can now be verified rather easily. Choose n so that H,, # 0. There is a function
U(g) on G¢ with values in 17” such that H,, is the set of functions of the form ¥(g)®,® € V,,. Moreover
U(gu) = (g)on(u) ifu € U and xp((j 2)g) - w((j 2))\1/(9). Let ) (t) = q/((tl(:z . )); ¥ is determined
by 1. According to the formulae* on p. 5.8 the equations p(D)¥ = %\If and p(D)¥ = %\If reduce

to
[t% + k= 112" = (s +m)*y"
d 20k _ (o N2k
[t — k= 1%% = (s —m)"y".

If either (s +m) # 0 or (s —m) # 0 these equations imply that each ¥ is a power of t. Thus H,,, and hence

H, is contained in a space of the form X7_, L(w;) for some w1, ... ,w,. Parts (i), (ii) and (iii) of the lemma follow

f According to a remark in a previous footnote the left hand sides of the equation on p. 4.10 should be
(5 +m+1DI(5 —m+1)la(n,w)and (5 +m — (5 —m —1)Ib(n,w).
* (1998) Between Lemmas 5.2 and 5.3.
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from Lemma 4.2 and the proof of Lemma4.4. If s+m =0and s —m = Othens =m = 0. Theny* = 0ifk # 0

and v°(t) is a linear combination of ¢ and ¢ log ¢. Part (iv) of the lemma above follows.

For a non-archimedean local field we use the notation of paragraph 6. If w is a homomorphism of Ax /Ao

into C* define the function ¢, by

1 =z a; 0 _ %11/ a; 0
eol(o ) (4 m)o=rZrea( ) ueo.
If w # wthen g, # @z Ifw = o define ¢/, by
, 1 =x a; 0 _ %11 a; 0 ay
o D) (G m o= (G sl

Lemma C. Suppose ¢ is a function on Ng\Gg which satisfies p(gu) = ¢(g) for u in Go and suppose that
for all f in H

=

/G o(gh) f()dh = xu(Fo(9)-

If w # ©, ¢ is a linear combination of v, and ¢, and, if w =0, ¢ is a linear combination of ¢, and ¢.,.

Choosing f to be the characteristic function of a(1,1)G o we obtain the relations

Ao o = (o 1))

({0  Pret (e D= (O Dy e (o )

It is easy to see that these relations are satisfied by pw, pw and, if w = ©, by ¢,,. If w # & then gaw(((l) (1))) =

@@((; (1))) # 0 but @w((g (1))) # @@((g (1))). Subtracting from ¢ a suitable linear combination of ¢, and

. . . . g . . 10 0
o We obtain a function ¥ which satisfies these relations and vanishes at (O 1) and (g 1). If w = W’ then

10 10 . T 0 . . .
@w((o 1)) # w but 4,9;((0 1) = 0 while @;((O 1)) # 0. We can again subtract from ¢ a suitable linear
. . . . . . . . 10
combination of ¢, and ¢/, and obtain a function ¢ which satisfies these relations and vanishes at (O 1) and

(g L ) To prove that, in either case, ¥ vanishes identically we need only show that it vanishes at the matrices

™t . L . . . . ar 0 ™0 S

( 0 ) The first relation implies this is so if n = 0 or 1. Taking ( 0 ) = ( 0 ) and substituting in
™ 2 s

the second relation we see that if this is so if for all m and n = ng and ng + 1 itis true forallmand n =ng — 1

and that if this is so for all m and n = ng and ng — 1 is for all m and n = ng + 1. The lemma follows by induction.

Let S be a finite set of primes containing the archimedean primes and the primes which divide D. Let

I, = {t | tpisaunitifp ¢ S}. We suppose S is so large that IP(K* N IP)IP if ID = Is N IP. Let
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Gs = [] Gk, x [] Go, and let G§ = GE N Gs. According to the previous three lemmas the restriction of ¢
peS p¢sS

to GX is a linear combination of functions of the form*

slL(5 ) (% 4) mHm,mh =

pes ¢
0 @
Q%P (5 5 el v TT voel 52
By Be
peS peS peESL
Here ((1) zl” ) (ao” ; )up liesin U}?p if p | D, n is ahomomorphism of the group of diagonal matrices with entries
p
from I2 into C* such that n((ao" ; )) =1ifp ¢ Sand ap, [, liein O, , and S is a subset of S. If v and &
P

belong to K* N IZ then <p0(<g g)g) = o(g). Moreover ¥, ¢ log || = 0 is the only linear relation satisfied by
all the matrices {log |, | | p € S} as y varies over K* N IY. A simple argument then shows that the restriction

of ¢p to GE is of the form

ol (o 7) (% 4 )wh-

pes
o «
[0S (G Dt [+ 6 (L) S osl 21
peS peS peS peS peS
The homomorphisms 1) ..., (™) are to be distinct and for each i either ¢\” or ¢{” is to be different from zero.
If a and g lie in K% N 12 then @ ( [] (“0” ; )) =1
p

pes
Each 7(*) determines a homomorphism of the diagonal matrices with entries from I” into C*. This homo-

morphism, which will be 1 on the matrices with entries from K * N I” we again call (*). The value of ¢ at

Hp((l) . ) (aop ;p )up is the same as its value at { [ ( - )up}{ H ( )}Whlch is

peS By

@5 oL 5 )i L+ & ) >t 31
p P i=1 P

peS peS

Car(y e di( )

LemmanD. Ifi # j then n\¥) = 7(®

005 g ) =teliorn(5 5 )

i (5§ ) =tern(§ 5))

* In this formula and the similar ones following the absolute value at the complex primes is the square of the
usual absolute value.

Define 7(*) by

Let

o Q
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fora, 3in IP. Herea, b, c, d are real numbers and y and x’ are characters in the usual sense. Lemma C implies that
ifp ¢ S the restriction of either ("5 or 7)™ (@) to { ( (t)” ;p ) la, By € K, }istrivial. This can only happen
ifa=b=00rc=d=0. Suppose thata # 0or b # 0. Thenc¢ = d = 0 and 7)) is an ordinary character.
It is known that the values 77V 7(9) takes on the matrices (ao” ,;,, ),ap, By € K5, p ¢ S are dense in the set of
values which 79~ (@) takes on. It follows that n®) = /(. In the same way we show that if ¢ # 0 or d # 0 then
n() = nU) Thisis of course excluded. It remains to treat thecase « = b = ¢ = d = 0. In this case the values taken
by the vector-valued function (@ "5 7® ™" y()) on the matrices (? ,;,, ),ap, By, € K, p ¢ S are dense in
the set of all values it assumes. It follows from Lemma C that (1 — @~ n@)(1 — 5" () vanishes identically.
If 79 £ 1) there is an (z ;) such that ﬁ(i)fln(j)((z ;)) # 1. Thus, necessarily n(i)fln(ﬁ((z ;)) = 1. Since
n@ £ n?) thereis a (g 2) such that n(“*ln(j)((g g)) # 1. Then ﬁ(“*ln(ﬁ((g (;)) = 1. One sees immediately

that (1 — 7@ @) (1 — 7O 5@) will not vanish at (ao7 55). This is a contradiction.
LemmaE. There are two possible forms for the function pq.

(i) There is a homomorphism w of the diagonal matrices with entries from IP into C*, which is 1 on the

matrices with entries from K> NI, such that w # @ and two functions ¢ and ¢’ on [] Uk, such that
pes

. 1x ap 0 . .
if g = Hp (0 1" ) ( Op 5, )up lies in G then ¢o(g) equals

11 (TN (IS0 ) SRR | (I8 § )3
b PP v ’ pes P ’ pes

(ii) There is a homomorphism w of the diagonal matrices with entries from I” into C*, which is 1 on the

matrices with entries from K> NIP, such that w = & and two functions ¢ and ¢’ on [] Uk, such that
peS

i 1z ap 0 . .
if g= 1;[(0 1? ) ( OP 5, )Up lies in GP then vo(g) equals

(0% ap 0 , (0%
{1;[|ﬁ—:|1/2}{w<1;[( s o, )HET o)+ ¢ (T ) D101 21

pesS pesS pes
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