Dear Harish-Chandra,

I am very pleased that you are willing to come here to speak. I have decided to come to Princeton on Monday, October 7 and to stay over till Tuesday. However I don't want to give a lecture then because Weil and Jacquet are familiar with anything conclusive I did before January and I have not yet finished the things I have been doing since. I have already given you an idea what these things are but I can perhaps be more precise now.

If F is a local field let C_{F} be the multiplicative group of F and if F is a global field let C_{F} be the idèle class group of F. As I said before if $K \backslash F$ is normal the Weil group $G_{K \mid F}$ is an extension of C_{F} by the Galois group of $K \backslash F$. If one likes one can take projective limits and get an object called the Weil group of F. If, F is global, and $F_{\mathfrak{p}}$ is a completion of F, and $K_{\mathfrak{P}}$ is a completion of K over \mathfrak{p} then there is a map of $G_{K_{\mathfrak{P}}} \backslash F_{\mathfrak{P}}$ into $G_{K_{\mathfrak{P}}} \backslash F_{\mathfrak{p}}$. A representation ρ is a finite-dimensional representation over \mathbb{C} such that $\rho(g)$ is semi-simple for all g.

For a non-archimedean local field I can attach to every equivalence class ω of representations a function $L(s, \omega)$ in just one way so that the following conditions are satisfied.
(i) If $\omega \sim \chi_{F}$ is one dimensional

$$
\begin{aligned}
L(s, \omega) & =\frac{1}{1-\chi_{F}\left(\pi_{F}\right)\left|\pi_{F}\right|^{s}} & & \text { if } \chi_{F} \text { is trivial on units } \\
& =1 & & \text { if } \chi_{F} \text { is not trivial on units. }
\end{aligned}
$$

(ii) $L\left(s, \omega_{1} \oplus \omega_{1}\right)=L\left(s, \omega_{1}\right) L\left(s, \omega_{2}\right)$.
(iii) If $\omega_{1} \simeq \operatorname{Ind}\left(G_{K \backslash F}, G_{K \backslash E}, \omega_{2}\right)$ then

$$
L\left(s, \omega_{1}\right)=L\left(s, \omega_{2}\right)
$$

For archimedean fields $L(s, \omega)$ is defined by the following conditions
(i) If $F=\mathbb{R}$ and $\omega \sim \chi_{\mathbb{R}}$ with $\chi_{\mathbb{R}}(x)=(\operatorname{sgn} x)^{m}|x|^{r}, m=0$ or 1 , then

$$
L(s, \omega)=\pi^{-\frac{1}{2}(s+r+m)} \Gamma\left(\frac{s+r+m}{2}\right) .
$$

(ii) If $F=\mathbb{C}$ and $\omega \sim \chi_{\mathbb{C}}$ with $\chi_{\mathbb{C}}(z)=|z|^{2 r} \frac{z^{n} \bar{z}^{n}}{|z|^{m+n}}, m+n \geq 0, m n=0$ then

$$
L(s, \omega)=2(2 \pi)^{-\left(s+r+\frac{m+n}{2}\right)} \Gamma\left(s+r+\frac{m+n}{2}\right)
$$

(iii) $L\left(s, \omega_{1} \oplus \omega_{2}\right)=L\left(s, \omega_{1}\right) L\left(s, \omega_{2}\right)$
(iv) If $\omega_{1} \simeq \operatorname{Ind}\left(G_{K \backslash F}, G_{K \backslash E}, \omega_{2}\right)$ then

$$
L\left(s, \omega_{1}\right)=L\left(s, \omega_{2}\right)
$$

If K is a global field, ω is an equivalence class of representations of the Weil group and ω_{p} the induced equivalence class of the Weil group of $F_{\mathfrak{p}}$ the Artin L-function is

$$
L(s, \omega)=\Pi_{\mathfrak{p}} L\left(s, \omega_{\mathfrak{p}}\right)
$$

Let me state the theorem which I have been working on since last January and then comment on its relation to the functional equations of the L-functions. By the way, as soon as I understand a lemma of Dwork I should be able to write out the proof of this theorem. I think I have all the parts of the proof except for some easily managed details. If $F=\mathbb{R}$ and $\chi_{\mathbb{R}}(x)=(\operatorname{sgn} x)^{m}|x|^{r}$ with $m=0$ or 1 and $\psi_{\mathbb{R}}$ is the additive character $\psi_{\mathbb{R}}(x)=e^{2 \pi i u x} \mathrm{I}$ set

$$
\Delta\left(\chi_{\mathbb{R}}, \psi_{\mathbb{R}}\right)=(i \operatorname{sgn} u)^{m}|u|^{r} .
$$

If $F=\mathbb{C}$ and $\chi_{\mathbb{C}}(z)=|z|^{2 r} \frac{z^{m \tilde{z}^{n}}}{|z|^{m+n}}, m+n \geq 0, m n=0$ and $\psi_{\mathbb{C}}$ is the additive character $\psi_{\mathbb{C}}(z)=e^{4 \pi i \Re(w z)}$. I set

$$
\Delta\left(\chi_{\mathbb{C}}, \psi_{\mathbb{C}}\right)=i^{m+n} \chi_{\mathbb{C}}(w) .
$$

If F is non-archimedean, if χ_{F} is a generalized character of C_{F} with conductor \mathfrak{P}_{F}^{m}, if ψ_{F} is a non-trivial additive character of F and \mathfrak{P}_{F}^{-n} is the largest ideal on which it vanishes and $O_{F} \gamma=\mathfrak{P}_{F}^{m+n}$ I set

$$
\Delta\left(\chi_{F}, \psi_{F}\right)=\chi_{F}(\gamma) \frac{\int_{U_{F}} \psi_{F}\left(\frac{\alpha}{\gamma}\right) \chi_{F}^{-1}(\alpha) d \alpha}{\left|\int_{U_{F}} \psi_{F}\left(\frac{\alpha}{\gamma}\right) \chi_{F}^{-1}(\alpha) d \alpha\right|} .
$$

U_{F} is the group of units. The right side is independent of γ.
If E is a separable extension of F and ψ_{F} is given then

$$
\psi_{E \backslash F}(X)=\psi_{F}\left(T_{r_{E \backslash F}} X\right) .
$$

Theorem. Suppose F is a given local field and ψ_{F} a given non-trivial additive character of F. It is possible in exactly one way to assign to each separable extensions E of F a complex number $\rho\left(E \mid F, \psi_{\gamma}\right)$ and to each equivalence classic of representations of the Weil group of E a complex number $\epsilon\left(\omega, \psi_{E \mid F}\right)$ so that
(i) If $\omega \simeq \chi_{E}$ then $\epsilon\left(\omega, \psi_{E \mid F}\right)=\Delta\left(\chi_{E}, \psi_{E \mid F}\right)$
(ii) $\epsilon\left(\omega_{1} \oplus \omega_{1}, \psi_{E \mid F}\right)=\epsilon\left(\omega_{1}, \psi_{E \mid F}\right) \epsilon\left(\omega_{2}, \psi_{E \mid F}\right)$
(iii) If $\omega_{1} \simeq \operatorname{Ind}\left(G_{K \backslash F}, G_{K \backslash E}, \omega_{2}\right)$ then

$$
\epsilon\left(\omega_{1}, \psi_{F}\right)=\rho\left(E \mid F, \psi_{F}\right)^{\operatorname{dim} \omega_{2}} \epsilon\left(\omega_{2}, \psi_{E \mid F}\right) .
$$

If A_{F}^{s} is the generalized character $\alpha \rightarrow|\alpha|_{F}^{s}$ set $\epsilon\left(s, \omega, \psi_{F}\right)=\epsilon\left(A_{F}^{s-1 / 2} \otimes \omega, \psi_{F}\right)$. If F is a global field and ψ_{F} a non-trivial character of \mathbb{A}_{F} / F let $\psi_{F_{\mathfrak{p}}}$ be the restriction of ψ_{F} to $F_{\mathfrak{p}}$. If ω is an equivalence class of representations of the Weil group of F and

$$
\epsilon(s, \omega)=\Pi_{\mathfrak{p}} \epsilon\left(s, \omega_{\mathfrak{p}}, \psi_{F_{\mathfrak{p}}}\right)
$$

the functional equation of the L-function can, on the basis of the previous theorem, be shown to be

$$
L(s, \omega)=\epsilon(s, \omega) L(1-s, \tilde{\omega})
$$

if $\tilde{\omega}$ is contragredient to ω.
Once I have this theorem I should very quickly be able to derive a consequence of interest for group representations. However I have not yet carried out the computations. After some preliminaries I shall state the consequence.

If F is a non-archimedean local field a two-dimensional equivalence class ω of representations of the Weil group of F will be called special if ω is the direct sum of two one-dimensional representations μ_{F} and ν_{F} and $\mu_{F} \nu_{F}^{-1}=A_{F}^{1}$ or A_{F}^{-1}. If $F=\mathbb{R}$ a two-dimensional equivalence class ω is special if $\omega \simeq \mu_{F} \oplus \nu_{F}$, and $\mu_{F}(x)=|x|^{s_{1}}\left(\frac{x}{|x|}\right)^{m_{1}}, \nu_{F}(x)=|x|^{s_{1}}\left(\frac{x}{|x|}\right)^{m_{2}}$ and $\left(s_{1}-s_{2}\right)-\left(m_{1}-m_{2}\right)$ is an odd integer. If $F=\mathbb{C}, \omega$ is special if $\omega \simeq \mu_{F} \oplus \nu_{F}$

$$
\begin{aligned}
& \mu_{F}(z)=|z|^{2 s_{1}}\left(\frac{z}{|z|}\right)^{m_{1}} \\
& \nu_{F}(z)=|z|^{2 s_{2}}\left(\frac{z}{|z|}\right)^{m_{2}}
\end{aligned}
$$

and one of $\frac{s_{1}-s_{2}}{2}-\left(1+\frac{\left|m_{1}-m_{2}\right|}{2}\right)$ and $\frac{s_{2}-s_{1}}{2}-\left(1+\frac{\left|m_{1}-m_{2}\right|}{2}\right)$ is a non-negative integer. $L\left(\psi_{F}\right)$ is the space of functions on $G L(2, F)$ satisfying

$$
\varphi\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) \equiv \psi_{F}(x) \varphi(g)
$$

together with certain conditions on smoothness and rate of growth. Here is the consequence I mentioned.

Theorem. Suppose that for every global field F and every two-dimensional irreducible equivalence class of representations of the local group of F the function $L(s, \omega)$ is entire and bounded in vertical strips. Then if F is a local field, ω a two-dimensional equivalence class of representations of the Weil group of F which is not special, and ψ_{F} a non-trivial additive character of F there is a unique simple representation π_{ω} of $G L(2, F)$ satisfying
(i) π_{ω} acts on $L \subseteq L\left(\psi_{F}\right)$
(ii) If φ belongs to L and χ_{F} is a generalized character of C_{F} the integral

$$
\int_{C_{F}} \varphi\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) g\right) \chi_{F}(\alpha)|\alpha|_{F}^{s} d \alpha
$$

converges for Res sufficiently large. Denote its value by $\Phi\left(g, s, \varphi, \chi_{F}\right)$ and set

$$
\Phi\left(g, s, \varphi, \chi_{F}\right)=L\left(s+\frac{1}{2}, \omega \otimes \chi_{F}\right) \Phi^{\prime}\left(g, s, \varphi, \chi_{F}\right)
$$

$\Phi^{\prime}\left(g, s, \varphi, \chi_{F}\right)$ is an entire function of s bounded in vertical strips. Moreover

$$
\Phi^{\prime}\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) g ;-s, \varphi\left(\operatorname{det} \omega \chi_{F}\right)^{-1}\right)=\epsilon\left(\chi_{F} A_{F}^{s} \otimes \omega, \psi_{F}\right) \Phi^{\prime}\left(g, s, \varphi, \chi_{F}\right)
$$

if $\operatorname{det} \omega$ is the 1-dimensional representation obtained from ω by taking determinants.

It will follow that $\pi_{\omega_{1}}$ equivalent to $\pi_{\omega_{2}}$ implies $\omega_{1}=\omega_{2}$. This theorem makes the existence of the representations I mentioned to you earlier pretty much certain. If they do not exist the L-series behave in an entirely unexpected manner.

Yours truly,

Bob Langlands

