Dear Harish-Chandra,

I am very pleased that you are willing to come here to speak. I have decided to come to Princeton on Monday, October 7 and to stay over till Tuesday. However I don't want to give a lecture then because Weil and Jacquet are familiar with anything conclusive I did before January and I have not yet finished the things I have been doing since. I have already given you an idea what these things are but I can perhaps be more precise now.

If *F* is a local field let C_F be the multiplicative group of *F* and if *F* is a global field let C_F be the idèle class group of *F*. As I said before if $K \setminus F$ is normal the Weil group $G_{K|F}$ is an extension of C_F by the Galois group of $K \setminus F$. If one likes one can take projective limits and get an object called the Weil group of *F*. If, *F* is global, and $F_{\mathfrak{p}}$ is a completion of *F*, and $K_{\mathfrak{P}}$ is a completion of *K* over \mathfrak{p} then there is a map of $G_{K_{\mathfrak{P}}} \setminus F_{\mathfrak{P}}$ into $G_{K_{\mathfrak{P}}} \setminus F_{\mathfrak{P}}$. A representation ρ is a finite-dimensional representation over \mathbb{C} such that $\rho(g)$ is semi-simple for all *g*.

For a non-archimedean local field I can attach to every equivalence class ω of representations a function $L(s, \omega)$ in just one way so that the following conditions are satisfied.

(i) If $\omega \sim \chi_F$ is one dimensional

$$L(s,\omega) = \frac{1}{1-\chi_F(\pi_F)|\pi_F|^s} \quad \text{if } \chi_F \text{ is trivial on units} \\ = 1 \qquad \qquad \text{if } \chi_F \text{ is not trivial on units}.$$

(ii) $L(s, \omega_1 \oplus \omega_1) = L(s, \omega_1)L(s, \omega_2).$

(iii) If $\omega_1 \simeq$ Ind $(G_{K \setminus F}, G_{K \setminus E}, \omega_2)$ then

$$L(s,\omega_1) = L(s,\omega_2).$$

For archimedean fields $L(s, \omega)$ is defined by the following conditions

(i) If $F = \mathbb{R}$ and $\omega \sim \chi_{\mathbb{R}}$ with $\chi_{\mathbb{R}}(x) = (\operatorname{sgn} x)^m |x|^r$, m = 0 or 1, then

$$L(s,\omega) = \pi^{-\frac{1}{2}(s+r+m)} \Gamma\left(\frac{s+r+m}{2}\right).$$

(ii) If $F = \mathbb{C}$ and $\omega \sim \chi_{\mathbb{C}}$ with $\chi_{\mathbb{C}}(z) = |z|^{2r} \frac{z^n \bar{z}^n}{|z|^{m+n}}, m+n \ge 0, mn = 0$ then

$$L(s,\omega) = 2(2\pi)^{-(s+r+\frac{m+n}{2})}\Gamma(s+r+\frac{m+n}{2})$$

(iii) $L(s,\omega_1\oplus\omega_2)=L(s,\omega_1)L(s,\omega_2)$

(iv) If $\omega_1 \simeq \text{Ind} (G_{K \setminus F}, G_{K \setminus E}, \omega_2)$ then

$$L(s,\omega_1) = L(s,\omega_2)$$

If *K* is a global field, ω is an equivalence class of representations of the Weil group and ω_p the induced equivalence class of the Weil group of F_p the Artin *L*-function is

$$L(s,\omega) = \Pi_{\mathfrak{p}} L(s,\omega_{\mathfrak{p}})$$

Let me state the theorem which I have been working on since last January and then comment on its relation to the functional equations of the *L*-functions. By the way, as soon as I understand a lemma of Dwork I should be able to write out the proof of this theorem. I think I have all the parts of the proof except for some easily managed details. If $F = \mathbb{R}$ and $\chi_{\mathbb{R}}(x) = (\operatorname{sgn} x)^m |x|^r$ with m = 0 or 1 and $\psi_{\mathbb{R}}$ is the additive character $\psi_{\mathbb{R}}(x) = e^{2\pi i u x}$ I set

$$\Delta(\chi_{\mathbb{R}}, \psi_{\mathbb{R}}) = (i \operatorname{sgn} u)^m |u|^r.$$

If $F = \mathbb{C}$ and $\chi_{\mathbb{C}}(z) = |z|^{2r} \frac{z^m \bar{z}^n}{|z|^{m+n}}, m+n \ge 0, mn = 0$ and $\psi_{\mathbb{C}}$ is the additive character $\psi_{\mathbb{C}}(z) = e^{4\pi i \Re(wz)}$. I set

$$\Delta(\chi_{\mathbb{C}},\psi_{\mathbb{C}}) = i^{m+n}\chi_{\mathbb{C}}(w).$$

If *F* is non-archimedean, if χ_F is a generalized character of C_F with conductor \mathfrak{P}_F^m , if ψ_F is a non-trivial additive character of *F* and \mathfrak{P}_F^{-n} is the largest ideal on which it vanishes and $O_F \gamma = \mathfrak{P}_F^{m+n}$ I set

$$\Delta(\chi_F, \psi_F) = \chi_F(\gamma) \frac{\int_{U_F} \psi_F(\frac{\alpha}{\gamma}) \chi_F^{-1}(\alpha) d\alpha}{\left| \int_{U_F} \psi_F(\frac{\alpha}{\gamma}) \chi_F^{-1}(\alpha) d\alpha \right|}.$$

 U_F is the group of units. The right side is independent of γ .

If *E* is a separable extension of *F* and ψ_F is given then

$$\psi_{E\setminus F}(X) = \psi_F(T_{r_{E\setminus F}}X).$$

Theorem. Suppose *F* is a given local field and ψ_F a given non-trivial additive character of *F*. It is possible in exactly one way to assign to each separable extensions *E* of *F* a complex number $\rho(E \mid F, \psi_{\gamma})$ and to each equivalence classic of representations of the Weil group of *E* a complex number $\epsilon(\omega, \psi_{E|F})$ so that

(i) If
$$\omega \simeq \chi_E$$
 then $\epsilon(\omega, \psi_{E|F}) = \Delta(\chi_E, \psi_{E|F})$

- (ii) $\epsilon(\omega_1 \oplus \omega_1, \psi_{E|F}) = \epsilon(\omega_1, \psi_{E|F})\epsilon(\omega_2, \psi_{E|F})$
- (iii) If $\omega_1 \simeq \operatorname{Ind} (G_{K \setminus F}, G_{K \setminus E}, \omega_2)$ then

$$\epsilon(\omega_1, \psi_F) = \rho(E \mid F, \psi_F)^{\dim \omega_2} \epsilon(\omega_2, \psi_{E|F}).$$

If A_F^s is the generalized character $\alpha \to |\alpha|_F^s$ set $\epsilon(s, \omega, \psi_F) = \epsilon(A_F^{s-1/2} \otimes \omega, \psi_F)$. If *F* is a global field and ψ_F a non-trivial character of \mathbb{A}_F/F let ψ_{F_p} be the restriction of ψ_F to F_p . If ω is an equivalence class of representations of the Weil group of *F* and

$$\epsilon(s,\omega) = \prod_{\mathfrak{p}} \epsilon(s,\omega_{\mathfrak{p}},\psi_{F_{\mathfrak{p}}})$$

the functional equation of the L-function can, on the basis of the previous theorem, be shown to be

$$L(s,\omega) = \epsilon(s,\omega)L(1-s,\tilde{\omega})$$

if $\tilde{\omega}$ is contragredient to ω .

Once I have this theorem I should very quickly be able to derive a consequence of interest for group representations. However I have not yet carried out the computations. After some preliminaries I shall state the consequence.

If *F* is a non-archimedean local field a two-dimensional equivalence class ω of representations of the Weil group of *F* will be called special if ω is the direct sum of two one-dimensional representations μ_F and ν_F and $\mu_F \nu_F^{-1} = A_F^1$ or A_F^{-1} . If $F = \mathbb{R}$ a two-dimensional equivalence class ω is special if $\omega \simeq \mu_F \oplus \nu_F$, and $\mu_F(x) = |x|^{s_1} \left(\frac{x}{|x|}\right)^{m_1}, \nu_F(x) = |x|^{s_1} \left(\frac{x}{|x|}\right)^{m_2}$ and $(s_1 - s_2) - (m_1 - m_2)$ is an odd integer. If $F = \mathbb{C}$, ω is special if $\omega \simeq \mu_F \oplus \nu_F$

$$\mu_F(z) = |z|^{2s_1} \left(\frac{z}{|z|}\right)^{m_1}$$
$$\nu_F(z) = |z|^{2s_2} \left(\frac{z}{|z|}\right)^{m_2}$$

and one of $\frac{s_1-s_2}{2} - \left(1 + \frac{|m_1-m_2|}{2}\right)$ and $\frac{s_2-s_1}{2} - \left(1 + \frac{|m_1-m_2|}{2}\right)$ is a non-negative integer. $L(\psi_F)$ is the space of functions on GL(2, F) satisfying

$$\varphi\left(\begin{pmatrix}1 & x\\ 0 & 1\end{pmatrix}g\right) \equiv \psi_F(x)\varphi(g)$$

together with certain conditions on smoothness and rate of growth. Here is the consequence I mentioned.

Theorem. Suppose that for every global field F and every two-dimensional irreducible equivalence class of representations of the local group of F the function $L(s, \omega)$ is entire and bounded in vertical strips. Then if F is a local field, ω a two-dimensional equivalence class of representations of the Weil group of F which is not special, and ψ_F a non-trivial additive character of F there is a unique simple representation π_ω of GL(2, F) satisfying

- (i) π_{ω} acts on $L \subseteq L(\psi_F)$
- (ii) If φ belongs to *L* and χ_F is a generalized character of C_F the integral

$$\int_{C_F} \varphi\left(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} g \right) \chi_F(\alpha) |\alpha|_F^s d\alpha$$

converges for Re s sufficiently large. Denote its value by $\Phi(g, s, \varphi, \chi_F)$ and set

$$\Phi(g, s, \varphi, \chi_F) = L(s + \frac{1}{2}, \omega \otimes \chi_F) \Phi'(g, s, \varphi, \chi_F)$$

 $\Phi'(g,s,\varphi,\chi_F)$ is an entire function of s bounded in vertical strips. Moreover

$$\Phi'\left(\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}g; -s, \varphi(\det\omega\chi_F)^{-1}\right) = \epsilon(\chi_F A_F^s \otimes \omega, \psi_F)\Phi'(g, s, \varphi, \chi_F)$$

if det ω is the 1-dimensional representation obtained from ω by taking determinants.

It will follow that π_{ω_1} equivalent to π_{ω_2} implies $\omega_1 = \omega_2$. This theorem makes the existence of the representations I mentioned to you earlier pretty much certain. If they do not exist the *L*-series behave in an entirely unexpected manner.

Yours truly,

Bob Langlands