Notes on the Knapp-Zuckerman theory

The point of these notes is to redefine some of their concepts in terms of the L-group. I observe, however, that it is best and indeed essential for further applications that their results be formulated for reductive groups rather than just for simply-connected semi-simple groups. I use the notation of $C R R A G$ (On the classification of representations of real algebraic groups) modified sometimes according to Borel's suggestions.

Since we are dealing with tempered representations we start from $\varphi: W_{\mathbf{C} / \mathbf{R}} \rightarrow{ }^{L} G$ with image which is essentially compact. We suppose φ defines an element of $\Phi(G)$. Choose a parabolic ${ }^{L} P$ in ${ }^{L} G$ which is minimal with respect to the property that $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right) \subseteq{ }^{L} P .{ }^{L} P$ defines P and M. Let ρ (with character Θ) be one of the representations of M associated to φ. Thus $\rho \epsilon \Pi_{\varphi}$, if φ is regarded as taking $W_{\mathbf{C} / \mathbf{R}}$ to ${ }^{L} M$. It is

$$
\operatorname{Ind}(G, P, \rho)
$$

that Knapp-Zuckerman study.
They define W on p. 3, formula [2]. We want another definition. For this we observe that $\Omega\left({ }^{L} T^{0},{ }^{L} G^{0}\right)$. Here T is a CSG (Cartan subgroup) of M. We want to regard W as a subgroup of the latter group. We may assume, along the lines of $C R R A G$ that $\varphi\left(\mathbf{C}^{X}\right) \subseteq{ }^{L} T$, that $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$ normalizes ${ }^{L} T$, and that ${ }^{L} T \subseteq{ }^{L} M$, a chosen Levi factor of ${ }^{L} P$.

LEMMA 1. W is the quotient Norm $\left({ }^{L} T\right) \cap$ Cent $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right) /{ }^{L} T^{0} \cap$ Cent $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$, the normalizer and centralizer being taken in ${ }^{L} G^{0}$.

Let $\{1, \sigma\}$ be $\mathfrak{G}(\mathbf{C} / \mathbf{R})$ so that $W_{\mathbf{C} / \mathbf{R}}$ is generated by \mathbf{C}^{\times}and σ with $\sigma^{2}=-1$. As on pages 48 and 49 of $C R R A G$ with M replacing G the homomorphism φ is defined by μ, ν with $\nu=\varphi(\sigma) \mu$ and by λ_{0}. If ω in $\Omega_{\mathbf{R}}(T, G)$ normalizes M then

$$
\omega \epsilon W \Longleftrightarrow \omega \rho \sim \rho \Longleftrightarrow \omega \mu=\omega_{1} \mu, \omega \lambda_{0} \equiv \omega_{1} \lambda_{0} \bmod \left({ }^{L} X_{*}+(1-\varphi(\sigma))\left({ }^{L} X_{*} \otimes \mathbf{C}\right)\right)
$$

with $\omega_{1} \in \Omega_{\mathbf{R}}(T, M)$ and ${ }^{L} X_{*}=\operatorname{Hom}(G L(1)),{ }^{L} T$. Replace ω by $\omega_{1}^{-1} \omega$. Since ω normalizes M,

$$
\varphi(\sigma) \omega=\omega \varphi(\sigma)
$$

on ${ }^{L} X_{*}$ and

$$
\omega \mu=\mu \Longleftrightarrow \omega \mu=\mu, \omega v=v \Longleftrightarrow w \varphi(z) w \text { for } z \epsilon \mathbf{C}^{\times}
$$

if $w \epsilon^{L} G^{0}$ represents ω. We write

$$
{ }^{L} M={ }^{L} M^{0} \times W_{\mathbf{C} / \mathbf{R}}
$$

and let

$$
\varphi(\sigma)=a \times \sigma
$$

with

$$
\lambda^{\vee}(a)=e^{2 \pi i\left\langle\lambda_{0}, \lambda^{\vee}\right\rangle}
$$

By the first paragraph on p. 37 of Problems in the theory of automorphic forms we may choose w so that $w \sigma=\sigma w$. But this is the wrong choice.

$$
\omega(a)=\sigma(b) b^{-1} a
$$

Replace w by $b w$ then

$$
w \varphi(\sigma) w^{-1}=\sigma(b) b^{-1} a b \sigma(b)^{-1} \times \sigma=a \times \sigma=\varphi(\sigma) .
$$

In other words this new choice of w satisfies

$$
w \varphi(v) w^{-1}=\varphi(v) \quad \forall v \epsilon W_{\mathbf{C} / \mathbf{R}}
$$

Since $\omega \epsilon \Omega_{\mathbf{R}}(T, M)$ and $\omega \mu=\mu$ imply that $\omega=1$ we have found

$$
W \hookrightarrow \operatorname{Norm}\left({ }^{L} T^{0}\right) \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right) /{ }^{L} T^{0} \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)
$$

To obtain the full lemma we have only to show that if w lies in $\operatorname{Norm}\left({ }^{L} T^{0}\right) \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$ then the corresponding element of the Weyl group stabilizes M and lies in $\Omega_{\mathbf{R}}(T, G)$. It stabilizes ${ }^{L} M$ because α^{\vee} is a root of ${ }^{L} M$ if and only if $\varphi(\sigma) \alpha^{\vee}=-\alpha^{\vee}$. Hence it stabilizes M. By Lemma 5.2 of Shelstad's thesis

$$
\omega=\omega_{1} \omega_{2}
$$

with $\omega_{1} \in \Omega_{\mathbf{C}}(T, M), \omega_{2} \in \Omega_{\mathbf{R}}(T, G)$. Then

$$
w \varphi=\varphi \Rightarrow \omega_{1}^{-1} \mu=\omega_{2} \mu, \omega_{1}^{-1} v=\omega_{2} v, \omega_{1}^{-1} \lambda_{0} \equiv \omega_{2} \lambda_{0}
$$

Another lemma of Shelstad implies that $\omega_{1} \epsilon \Omega_{\mathbf{R}}(T, M)$. Hence

$$
\omega \in \Omega_{\mathbf{R}}(T, G)
$$

The advantage of introducing the L-group appears immediately when Knapp's R-group is discussed. Let S be the centralizer of $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$ in ${ }^{L} G^{0}$ and S^{0} the connected component.

LEMMA 2. If G is semi-simple and simply-connected then the R-group is S / S^{0}.
Let ${ }^{L} \mathfrak{t}$ be the Lie algebra of ${ }^{L} T$ and set

$$
{ }^{L_{\mathfrak{t}}}={ }^{L^{\mathfrak{t}_{+}}}+{ }^{L_{\mathfrak{t}}}
$$

where ${ }^{L} \mathfrak{t}_{+}$and ${ }^{L_{\mathbf{t}}}$ are the +1 and -1 eigenspaces for $\varphi(\sigma)$. I claim that ${ }^{L} \mathfrak{t}_{+}$which certainly lies in \mathfrak{s}, the Lie algebra of S^{0}, is in fact a Cartan subalgebra of S^{0}. Indeed

$$
\mathfrak{s} \subseteq{ }^{L} \mathfrak{t}_{+}+\Sigma_{\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0} \mathbf{C} X_{\alpha^{\vee}}
$$

If $\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0$ then α^{\vee} cannot be a root of ${ }^{L} T$ in ${ }^{L} M$. Hence

$$
\varphi(\sigma) \alpha^{\vee} \neq-\alpha^{\vee}
$$

and α^{\vee} is not 0 on ${ }^{L^{\prime}}{ }^{\prime}$. The assertion follows.
We may indentify $\operatorname{Hom}\left({ }^{L} \mathfrak{t}, \mathbf{C}\right)$ with $\mathfrak{t} \otimes \mathbf{C}$ as a $\mathfrak{G}(\mathbf{C} / \mathbf{R})$-module if \mathfrak{t} is the Lie algebra of T. If α^{\vee} is a root of ${ }^{L} T^{0}$ in ${ }^{L} G^{0}$ with $\varphi(\sigma) \alpha^{\vee} \neq-\alpha^{\vee}$ set

$$
\mathfrak{a}_{\alpha^{\vee}}=\left({ }^{L^{t_{-}}}+\mathbf{C} \alpha^{\vee}\right)^{\perp}
$$

Then $G_{\alpha^{\vee}}$ the centralizer of $\mathfrak{a}_{\alpha \vee}$ in G is defined over \mathbf{R} and M is the Levi factor of a maximal $P S G$ of $G_{\alpha^{\vee}}$. Let $\mu\left(\rho, \alpha^{\vee}\right)$ be the value of the Plancherel measure for

$$
\operatorname{Ind}\left(G_{\alpha^{\vee}}(\mathbf{R}), M(\mathbf{R}), \rho\right)
$$

Let

$$
\mathfrak{X}_{\alpha^{\vee}}=\left\{\beta^{\vee} \mid \varphi(\sigma) \beta^{\vee} \neq-\beta^{\vee}, G_{\beta^{\vee}}=G_{\alpha^{\vee}}\right\} .
$$

The centralizer of ${ }^{L^{\prime}} \mathfrak{t}_{+}$is

$$
L_{\mathfrak{t}_{+}}+\Sigma_{\varphi(\sigma) \alpha^{\vee}=-\alpha^{\vee}} \mathbf{C} X_{\alpha^{\vee}}
$$

and this is the Lie algebra of ${ }^{L} M$. Moreover

$$
S / S^{0} \simeq \operatorname{Norm}_{S}\left({ }^{L_{+}}\right) / \operatorname{Norm}_{S^{0}}\left({ }^{L} \mathfrak{t}_{+}\right)
$$

If $w \epsilon \operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right)$then w normalizes ${ }^{L} \mathfrak{t}$ and we have

$$
\operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right) /{ }^{L} T_{+} \simeq W
$$

The lemma and indeed more will be established once the following facts are proved. They will be proved for any G.
(i)

$$
\operatorname{dim} \mathfrak{s}_{\alpha^{\vee}}=\operatorname{dim}\left(\left(\Sigma_{\beta^{\vee} \in \mathfrak{X}_{\alpha} \vee} \mathbf{C} X_{\beta^{\vee}}\right) \cap \mathfrak{s}\right) \leq 1
$$

(ii) It is equal to 1 if and only if $\mu\left(\rho, \alpha^{\vee}\right)=0$.
(iii) If it is one then $\mathfrak{s}_{\alpha \vee}$ defines a root space of ${ }^{L^{\prime}} \mathfrak{t}_{+}$in \mathfrak{t}. The corresponding reflection in ${ }^{L} \mathfrak{t}_{+}$is the same as that defined by the real root of T in $G_{\alpha^{\vee}}$.

There are a number of possibilities to consider.
(a) $\mathfrak{X}_{\alpha^{\vee}}$ consists of a single element. Then $\varphi(\sigma) \alpha^{\vee}=\alpha^{\vee}$ and α, the corresponding root of T, is real. Since $\sigma \mu=\nu,\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle$ and $\operatorname{dim} \mathfrak{s}_{\alpha^{\vee}}=1$ if and only if $\left\langle\mu, \alpha^{\vee}\right\rangle=0$ and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=X_{\alpha^{\vee}}
$$

Certainly $T(\mathbf{R})$ is not fundamental. According to the formula on p. 141 of Harish-Chandra's preprint Harmonic analysis III, $\mu\left(\rho, \alpha^{*}\right)$ is 0 if and only if

$$
\nu_{\alpha}=0 \text { and } \frac{(-1)^{\rho_{\alpha}}}{2}\left(\sigma_{a^{*}}(\gamma)+\sigma_{a^{*}}\left(\gamma^{-1}\right)\right) \neq 1
$$

Now

$$
\nu_{\alpha}=\left\langle\mu, \alpha^{\vee}\right\rangle
$$

Also $\mathfrak{s}_{a^{*}}$ is now of dimension one and

$$
\sigma_{a^{*}}(\gamma)=\sigma_{a^{*}}\left(\gamma^{-1}\right)=\chi\left(\alpha^{\vee}(-1)\right)
$$

Here χ is associated to $\varphi: W_{\mathbf{C} / \mathbf{R}} \rightarrow{ }^{L} M$ as on p. 50 of $C R R A G$ and if the definition of a coroot is taken into account

$$
\gamma=\alpha^{\vee}(-1)
$$

Thus (cf. p. 51 of $C R R A G$)

$$
\chi\left(\alpha^{\vee}(-1)\right)=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle}
$$

Apologies are necessary for this phase of the discussion but the transition from Harish-Chandra's notation to that used in $C R R A G$ is clumsy.

On the other hand

$$
\varphi(\sigma)=a \times \sigma
$$

and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle} \varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)
$$

if $\varphi^{\prime}(\sigma)=a^{\prime} \times \sigma, a^{\prime} \epsilon^{L} M_{\text {der }}, a^{-1} a^{\prime} \epsilon^{L} T^{0}$. The assertion (ii) will be verified if we show that

$$
\varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)=-(-1)^{\rho_{\alpha}} X_{\alpha^{\vee}}
$$

Now, by p. 122 of Harmonic Analysis III

$$
\rho_{\alpha}=\left\langle\rho_{\alpha^{\vee}}, \alpha^{\vee}\right\rangle
$$

if $\rho_{\alpha^{\vee}}$ is one-half the sum of the positive roots of $G_{\alpha^{\vee}}$. But in the present circumstances the derived algebra of $\mathfrak{g}_{\alpha^{\vee}}$ is a direct sum because α^{\vee} is perpendicular to all roots of $G_{\alpha^{\vee}}$ except $\pm \alpha^{\vee}$. Thus

$$
\left\langle\rho_{\alpha}, \alpha^{\vee}\right\rangle=\frac{1}{2}\left\langle\alpha, \alpha^{\vee}\right\rangle=1
$$

Moreover α^{\vee} must be a simple root and so by the definition of ${ }^{L} M$

$$
\varphi^{\prime}(\sigma)\left(X_{\alpha \vee} \vee\right)=\sigma\left(X_{\alpha^{\vee}}\right)=1
$$

The assertion (ii) follows. Since the reflections corresponding to α and α^{\vee} are the same, the assertion (iii) does also.
(b) Suppose $\varphi(\sigma) \alpha^{\vee}=\alpha^{\vee}$ and β^{\vee} different from α^{\vee} lies in $\mathfrak{X}_{\alpha^{\vee}}$.
(i) Suppose

$$
\left\langle\mu, \beta^{\vee}\right\rangle=\left\langle\nu, \beta^{\vee}\right\rangle=0
$$

Then

$$
\left\langle\mu, \varphi(\sigma) \beta^{\vee}\right\rangle=\left\langle\nu, \varphi(\sigma) \beta^{\vee}\right\rangle=0
$$

Since $\varphi(\sigma) \beta^{\vee}$ lies in the span of $\left\{\alpha^{\vee}, \beta^{\vee}\right\}$ and is different from β^{\vee}, both μ and ν vanish on this two-dimensional space. As a consequence there are no roots γ^{\vee} on it orthogonal to α^{\vee}. For then $\varphi(\sigma) \gamma^{\vee}$ would be $-\gamma^{\vee}$ and as a consequence

$$
\left\langle\mu, \gamma^{\vee}\right\rangle \neq 0
$$

This leaves only

of type A_{2}.
I claim next that if γ^{\vee} lies in $X_{\alpha^{\vee}}$ and is defferent from $\alpha^{\vee}, \beta^{\vee}$, and $\varphi(\sigma) \beta^{\vee}$ then either $\left\langle\mu, \gamma^{\vee}\right\rangle \neq 0$ or $\left\langle\nu, \gamma^{\vee}\right\rangle \neq 0$. If not, consider all roots in the span of $\left\{\alpha^{\vee}, \beta^{\vee}, \gamma^{\vee}\right\}$. They form a root system of rank 3 on which $\varphi(\sigma)$ acts. If δ^{\vee} lies in this system then $\left\langle\mu, \delta^{\vee}\right\rangle=\left\langle\nu, \delta^{\vee}\right\rangle=0$ so $\varphi(\sigma) \delta^{\vee} \neq-\delta^{\vee}$. As a consequence

$$
\delta^{\vee}+\varphi(\sigma) \delta^{\vee}=a \alpha^{\vee} \quad a \neq 0
$$

and

$$
\left\{\delta^{\vee} \mid\left\langle\alpha, \delta^{\vee}\right\rangle \geq 0\right\}
$$

defines a system of positive roots stable under $\varphi(\sigma)$. Let $\alpha_{1}^{\vee}, \alpha_{2}^{\vee}, \alpha_{3}^{\vee}$ be the simple roots. They are permuted amongst themselves by $\varphi(\sigma)$. Thus by a suitable numbering

$$
a_{1}^{\vee}=\alpha^{\vee} \quad a_{3}^{\vee}=\varphi(\sigma) a_{2}^{\vee} .
$$

Then

$$
a \alpha^{\vee}=\alpha_{2}^{\vee}+a_{3}^{\vee} .
$$

This is a contradiction.
Also we may take

$$
X_{\alpha^{\vee}}=\left[X_{\beta^{\vee}}, \varphi(\sigma) X_{\beta^{\vee}}\right]
$$

and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=-X_{\alpha^{\vee}}
$$

Thus

$$
\mathfrak{s}_{\alpha \vee}=\mathbf{C}\left(X_{\beta^{\vee}}+\varphi(\sigma) X_{\beta^{\vee}}\right)
$$

has dimension 1. Since

$$
\left\langle\mu, \beta^{\prime}\right\rangle=(\lambda+i \nu)\left(H_{\beta}\right),
$$

the right side conforming to Harish-Chandra's notation, the measure $\mu\left(\rho, \alpha^{\vee}\right)$ is certainly zero. The reflection defined by $\mathfrak{s}_{\alpha \vee}$ is clearly correct on $F_{\mathfrak{t}_{+}}$.
(ii) Suppose that for every β^{\vee} different from α^{\vee} in $\mathfrak{X}_{\alpha} \vee$

$$
\left\langle\mu, \beta^{\vee}\right\rangle \neq 0 \text { or }\left\langle\nu, \beta^{\vee}\right\rangle \neq 0
$$

Then $\operatorname{dims}_{\alpha^{\vee}}=1$ if and only if

$$
\left\langle\mu, \alpha^{\vee}\right\rangle=0, \quad \varphi(\sigma) X_{\alpha^{\vee}}=X_{\alpha^{\vee}}
$$

Again the first condition is equivalent to $\nu_{\alpha}=0$. We have to show that when this is so then the second is equivalent to

$$
\frac{(-1)^{\rho_{\alpha}}}{2}\left(\sigma_{a^{*}}(\gamma)+\sigma_{a^{*}}\left(\gamma^{-1}\right)\right) \neq 1 .
$$

Let

$$
\varphi(\sigma) X_{\alpha^{\vee}}=\lambda X_{\alpha^{\vee}}
$$

We show that

$$
\frac{(-1)^{\rho_{\alpha}}}{2}\left(\sigma_{a^{*}}(\gamma)+\sigma_{a^{*}}\left(\gamma^{-1}\right)\right)=-\lambda .
$$

This is enough, for $\lambda= \pm 1$. As before

$$
\sigma_{a^{*}}(\gamma)=\sigma_{a^{*}}\left(\gamma^{-1}\right)=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle}
$$

and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=-(-1)^{\left\langle\rho_{\alpha} \vee, \alpha^{\vee}\right\rangle} X_{\alpha^{\vee}}
$$

if $\varphi^{\prime}(\sigma)$ is defined as before. What we must do is show that

$$
\varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)=-(-1)^{\left\langle\rho_{\alpha} \vee, \alpha^{\vee}\right\rangle} X_{\alpha^{\vee}}
$$

This is a statement about a reductive group $G_{\alpha^{\vee}}$ and a Levi factor M of a maximal parabolic, M and G both having compact $C S G^{\prime} s$. It is not bound to the present situation and may be proved by induction on the rank of $G_{\alpha^{\vee}}$. Let β^{\vee} be the largest root of one of the simple factors of ${ }^{L} M_{\text {der }}$ and introduce a_{2}, a_{1} as on p. 46 of $C R R A G$. We may take $a^{\prime}=a_{2} a_{1}$. If ρ^{\prime} is the analogue of $\rho_{\alpha^{\vee}}$ for the roots perpendicular to β^{\vee} then by induction

$$
a_{1} \times \sigma\left(X_{\alpha^{\vee}}\right)=-(-1)^{\left\langle\rho^{\prime}, \alpha^{\vee}\right\rangle} X_{\alpha^{\vee}}
$$

What we have to do is show that

$$
a_{2}\left(X_{\alpha \vee}\right)=(-1)^{\ell} X_{\alpha^{\vee}}, \quad \ell=\frac{1}{2} \sum_{\substack{\left\langle\gamma, \beta^{\vee}\right\rangle \neq 0 \\ \gamma>0}}\left\langle\gamma, \alpha^{\vee}\right\rangle .
$$

Suppose $\gamma>0,\left\langle\gamma, \beta^{\vee}\right\rangle \neq 0,\left\langle\gamma, \alpha^{\vee}\right\rangle \neq 0$ and γ^{\vee} is not in plane spanned by $\alpha^{\vee}, \beta^{\vee}$. Then:

1) $\gamma^{\vee}=a_{2} \gamma^{\vee} \Rightarrow \gamma=a_{2} \gamma \Rightarrow\left\langle\gamma, \beta^{\vee}\right\rangle=0$ impossible
2) $\gamma^{\vee}=\varphi(\sigma) \gamma^{\vee} \Rightarrow \gamma^{\vee}= \pm \alpha^{\vee}$ impossible
3) $\gamma^{\vee}=a_{2} \varphi(\sigma) \gamma^{\vee} \Rightarrow \gamma^{\vee}$ in plane of $\alpha^{\vee}, \beta^{\vee}$ because $\left(\alpha^{\vee}, \beta^{\vee}\right)=0$. Thus $\gamma, a_{2} \gamma, \varphi(\sigma) \gamma, a_{2} \varphi(\sigma) \gamma$ are distinct and positive. Since

$$
\left\langle\gamma, \alpha^{\vee}\right\rangle=\left\langle a_{2} \gamma, \alpha^{\vee}\right\rangle=\left\langle\varphi(\sigma) \gamma, \alpha^{\vee}\right\rangle=\left\langle a_{2} \varphi(\sigma) \gamma, \alpha^{\vee}\right\rangle
$$

the sum of the four of them even after division by 2 is even and may be dropped from the exponent. So may those $\left\langle\gamma, \alpha^{\vee}\right\rangle$ which are 0 . We confine ourselves to γ with γ^{\vee} in the plane of $\alpha^{\vee}, \beta^{\vee}$.

The possibilities are as follows.
A) No roots except $\pm \alpha^{\vee}, \pm \beta^{\vee}$ in the plane. Then exponent is 0 and

$$
a_{2}\left(X_{\alpha^{\vee}}\right)=X_{\alpha^{\vee}}
$$

B)

$$
\frac{1}{2} \Sigma\left\langle\gamma, \alpha^{\vee}\right\rangle=\frac{1}{2}\left\langle\alpha, \alpha^{\vee}\right\rangle=1, \quad a_{2}\left(X_{\alpha^{\vee}}\right)=-X_{\alpha^{\vee}}
$$

C)

$$
\frac{1}{2} \Sigma\left\langle\gamma, \alpha^{\vee}\right\rangle=\left\langle\alpha, \alpha^{\vee}\right\rangle=2, \quad a_{2}\left(X_{\alpha^{\vee}}\right)=X_{\alpha^{\vee}}
$$

D)

$$
\frac{1}{2} \Sigma\left\langle\gamma, \alpha^{\vee}\right\rangle=2\left\langle\alpha, \alpha^{\vee}\right\rangle=4, \quad a_{2}\left(X_{\alpha^{\vee}}\right)=X_{\alpha^{\vee}}
$$

E) The roles of α, α^{\vee} and β, β^{\vee} are reversed

$$
\frac{1}{2} \Sigma\left\langle\gamma, \alpha^{\vee}\right\rangle=\left\langle\alpha, \alpha^{\vee}\right\rangle=2, \quad a_{2}\left(X_{\alpha \vee}\right)=X_{\alpha^{\vee}}
$$

All that is claimed in A) through E) is easy to check. Finally it is clear that the reflection defined by $\mathfrak{s}_{\alpha \vee}$ is that defined by α or α^{\vee}.
i) Suppose that $\varphi(\sigma) \beta^{\vee} \neq \beta^{\vee}$ for all β^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$. Then $\beta^{\vee}+\varphi(\sigma) \beta^{\vee}$ is not a root, nor is

$$
\frac{\beta^{\vee}+\varphi(\sigma) \beta^{\vee}}{2}
$$

(1) Suppose that $\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0$. Then $\alpha^{\vee}-\varphi(\sigma) \alpha^{\vee}$ is not a root and $\left\langle\alpha^{\vee}, \varphi(\sigma) \alpha^{\vee}\right\rangle=0$. Since α^{\vee} and $\varphi(\sigma) \alpha^{\vee}$ have the same length, the root diagram of the plane spanned by $\alpha^{\vee}, \varphi(\sigma) \alpha^{\vee}$ is

I claim that if β^{\vee} lies in $\mathfrak{X}_{\alpha^{\vee}}$ but not in this plane then either $\left\langle\mu, \beta^{\vee}\right\rangle=0$ or $\left\langle\nu, \beta^{\vee}\right\rangle=0$. Otherwise in the three-dimensional plane spanned by $\alpha^{\vee}, \varphi(\sigma) \alpha^{\vee}, \beta^{\vee}, \varphi(\sigma) \beta^{\vee}$ we have a root system and

$$
\left\{\gamma^{\vee} \mid\left\langle\gamma, \alpha^{\vee}+\varphi(\sigma) \alpha^{\vee}\right\rangle \geq 0\right\}
$$

is a set of positive roots, for

$$
\left\{\gamma, \alpha^{\vee}+\varphi(\sigma) \alpha^{\vee}\right\rangle
$$

is never 0 , because if it were then $\varphi(\sigma) \gamma^{\vee}=-\gamma^{\vee}$. Since $\left\langle\mu, \gamma^{\vee}\right\rangle=\left\langle\nu, \gamma^{\vee}\right\rangle=0$ this is impossible. Then $\varphi(\sigma)$ permutes the three simple roots amongst themselves, and leaves one fixed. This is a contradiction. Thus

$$
\mathfrak{s}_{\alpha}=\mathbf{C}\left(X_{\alpha^{\vee}}+\varphi(\sigma) X_{\alpha^{\vee}}\right)
$$

has dimension one. Since T is fundamental in $G_{\alpha \vee}$, the formula on p. 97 of Harmonic analysis III shows that $\mu\left(\rho, \alpha^{\vee}\right)=0$. The three assertions follow again.
(ii) Suppose that for any β^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$ either $\left\langle\mu, \beta^{\vee}\right\rangle \neq 0$ or $\left\langle\nu, \beta^{\vee}\right\rangle \neq 0$. Then $\mathfrak{s}_{\alpha^{\vee}}=0$. By the same formula in Harmonic analysis III,

$$
\mu\left(\rho, \alpha^{\vee}\right) \neq 0
$$

Lemma 2 is now completely proved. I should observe, for it will remove a confusion that could otherwise arise, that

$$
\overline{-\left\langle\mu, \alpha^{\vee}\right\rangle}=\left\langle\nu, \alpha^{\vee}\right\rangle
$$

for any α^{\vee}.

It is also possible to give Zuckerman's proof that the R-group is a sum of Z_{2} 's in the above context. Let $\operatorname{Norm}_{S}^{+}\left({ }^{L} \mathfrak{t}_{+}\right)$bet the set of elements of $\operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right)$that take positive roots of S_{0} to positive roots. Then

$$
R=S / S^{0} \simeq \operatorname{Norm}_{S}^{+}\left({ }^{L} \mathfrak{t}_{+}\right) /{ }^{L} \mathfrak{t}_{+}
$$

Let

$$
\mathfrak{s}_{1}={ }^{L} \mathfrak{t}+\Sigma_{\langle\mu, \alpha \vee}{ }^{\vee}=\left\langle\nu, \alpha^{\vee}\right\rangle=0 ~ C ~ C ~ X_{\alpha^{\vee}}
$$

The elements of $\operatorname{Norm}_{S}^{+}\left({ }^{L} \mathfrak{t}_{+}\right)$take \mathfrak{s}_{1} to itself. Let Q be the operator

$$
\frac{1}{|R|} \Sigma_{R} r
$$

on $\mathfrak{t} \otimes \mathbf{C}$. Since the centralizer of $\varphi\left(\mathbf{C}^{\times}\right)$is connected, S lies in the connected group S_{1} with Lie algebra \mathfrak{s}_{1}. Thus by Chevalley's theorem R is contained in the group generated by the reflections associated to the roots α^{\vee} of \mathfrak{s}_{1} for which $Q \alpha^{\vee}=0$.

If α^{\vee} is a root of \mathfrak{s}_{1} then $\varphi(\sigma) \alpha^{\vee} \neq-\alpha^{\vee}$. Suppose $\varphi(\sigma) \alpha^{\vee} \neq \alpha^{\vee}$.
Then

$$
X_{\alpha \vee}+\varphi(\sigma) X_{\alpha \vee} \neq 0
$$

and lies in \mathfrak{s}. Thus α^{\vee} restricted to ${ }^{L} \mathfrak{t}_{+}$defines a root of \mathfrak{s}. Since the elements of r stabilize ${ }^{L} \mathfrak{t}_{+}$and each r takes positive roots of ${ }^{L^{\prime}} \mathfrak{t}_{+}$in \mathfrak{s} to positive roots,

$$
Q \alpha^{\vee} \neq 0
$$

Thus if α^{\vee} is a root of \mathfrak{s}_{1} then

$$
Q \alpha^{\vee}=0 \Rightarrow \varphi(\sigma) \alpha^{\vee}=\alpha^{\vee}
$$

Moreover α^{\vee} cannot be a root of \mathfrak{s} and therefore

$$
\varphi(\sigma) X_{\alpha^{\vee}}=-X_{\alpha^{\vee}}
$$

Finally if $Q \alpha^{\vee}=0, Q \beta^{\vee}=0$ then $\alpha^{\vee} \pm \beta^{\vee}$ is not a root because $\varphi(\sigma) X_{\alpha^{\vee}+\beta^{\vee}}=\varphi(\sigma)\left[X_{\alpha^{\vee}}, X_{\beta^{\vee}}\right]=$ $\left[-X_{\alpha^{\vee}},-X_{\beta^{\vee}}\right]=X_{\alpha^{\vee}+\beta^{\vee}}$ and $\alpha^{\vee}+\beta^{\vee}$ would have to be a root of \mathfrak{s}. This is inconsistent with

$$
Q\left(\alpha^{\vee}+\beta^{\vee}\right)=0
$$

The set of positive α^{\vee} for which $\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0$ and $Q \alpha^{\vee}=0$ is the strongly orthogonal system needed for Zuckerman's argument.

