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Hervé  Jacquet and Robert P. Langlands

Formerly appeared as volume #114 in the Springer Lecture Notes in Mathematics, 1970, pp. 1-548



Chapter 1 i

Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Chapter I: Local Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§ 1. Weil representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
§ 2. Representations of GL(2, F ) in the non­archimedean case . . . . . . . . . . . 12

§ 3. The principal series for non­archimedean fields . . . . . . . . . . . . . . . . 46
§ 4. Examples of absolutely cuspidal representations . . . . . . . . . . . . . . . . 62

§ 5. Representations of GL(2,R) . . . . . . . . . . . . . . . . . . . . . . . . 77
§ 6. Representation of GL(2,C) . . . . . . . . . . . . . . . . . . . . . . . . . 111

§ 7. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

§ 8. Odds and ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter II: Global Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
§ 9. The global Hecke algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 152

§10. Automorphic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

§11. Hecke theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
§12. Some extraordinary representations . . . . . . . . . . . . . . . . . . . . . 203

Chapter III: Quaternion Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 216

§13. Zeta­functions for M(2, F ) . . . . . . . . . . . . . . . . . . . . . . . . . 216

§14. Automorphic forms and quaternion algebras . . . . . . . . . . . . . . . . . 239
§15. Some orthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . 247

§16. An application of the Selberg trace formula . . . . . . . . . . . . . . . . . . 260



Chapter 1 ii

Introduction

Two of the best known of Hecke’s achievements are his theory of L­functions with grössen­
charakter, which are Dirichlet series which can be represented by Euler products, and his theory of the

Euler products, associated to automorphic forms onGL(2). Since a grössencharakter is an automorphic

form on GL(1) one is tempted to ask if the Euler products associated to automorphic forms on GL(2)
play a role in the theory of numbers similar to that played by the L­functions with grössencharakter.

In particular do they bear the same relation to the Artin L­functions associated to two­dimensional
representations of a Galois group as the Hecke L­functions bear to the Artin L­functions associated

to one­dimensional representations? Although we cannot answer the question definitively one of the
principal purposes of these notes is to provide some evidence that the answer is affirmative.

The evidence is presented in §12. It come from reexamining, along lines suggested by a recent

paper of Weil, the original work of Hecke. Anything novel in our reexamination comes from our point
of view which is the theory of group representations. Unfortunately the facts which we need from the

representation theory of GL(2) do not seem to be in the literature so we have to review, in Chapter I,
the representation theory of GL(2, F ) when F is a local field. §7 is an exceptional paragraph. It is not

used in the Hecke theory but in the chapter on automorphic forms and quaternion algebras.

Chapter I is long and tedious but there is nothing hard in it. Nonetheless it is necessary and
anyone who really wants to understand L­functions should take at least the results seriously for they

are very suggestive.
§9 and §10 are preparatory to the Hecke theory which is finally taken up in §11. We would like to

stress, since it may not be apparent, that our method is that of Hecke. In particular the principal tool is

the Mellin transform. The success of this method forGL(2) is related to the equality of the dimensions
of a Cartan subgroup and the unipotent radical of a Borel subgroup of PGL(2). The implication is that

our methods do not generalize. The results, with the exception of the converse theorem in the Hecke
theory, may.

The right way to establish the functional equation for the Dirichlet series associated to the
automorphic forms is probably that of Tate. In §13 we verify, essentially, that this method leads to the

same local factors as that of Hecke and in §14 we use the method of Tate to prove the functional equation

for the L­functions associated to automorphic forms on the multiplicative group of a quaternion
algebra. The results of §13 suggest a relation between the characters of representations of GL(2) and

the characters of representations of the multiplicative group of a quaternion algebra which is verified,
using the results of §13, in §15. This relation was well­known for archimedean fields but its significance

had not been stressed. Although our proof leaves something to be desired the result itself seems to us

to be one of the more striking facts brought out in these notes.
Both §15 and §16 are after thoughts; we did not discover the results in them until the rest of the

notes were almost complete. The arguments of §16 are only sketched and we ourselves have not verified
all the details. However the theorem of §16 is important and its proof is such a beautiful illustration

of the power and ultimate simplicity of the Selberg trace formula and the theory of harmonic analysis

on semi­simple groups that we could not resist adding it. Although we are very dissatisfied with the
methods of the first fifteen paragraphs we see no way to improve on those of §16. They are perhaps

the methods with which to attack the question left unsettled in §12.
We hope to publish a sequel to these notes which will include, among other things, a detailed

proof of the theorem of §16 as well as a discussion of its implications for number theory. The theorem
has, as these things go, a fairly long history. As far as we know the first forms of it were assertions about

the representability of automorphic forms by theta series associated to quaternary quadratic forms.
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As we said before nothing in these notes is really new. We have, in the list of references at
the end of each chapter, tried to indicate our indebtedness to other authors. We could not however
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Chapter I: Local Theory

§1 Weil representations. Before beginning the study of automorphic forms we must review the repre­
sentation theory of the general linear group in two variables over a local field. In particular we have to

prove the existence of various series of representations. One of the quickest methods of doing this is
to make use of the representations constructed by Weil in [1]. We begin by reviewing his construction

adding, at appropriate places, some remarks which will be needed later.

In this paragraph F will be a local field and K will be an algebra over F of one of the following
types:

(i) The direct sum F ⊕ F .

(ii) A separable quadratic extension of F .

(iii) The unique quaternion algebra over F . K is then a division algebra with centre F .

(iv) The algebra M(2, F ) of 2 × 2 matrices over F .

In all cases we identify F with the subfield of K consisting of scalar multiples of the identity. In
particular ifK = F ⊕F we identify F with the set of elements of the form (x, x). We can introduce an

involution ι of K , which will send x to xι, with the following properties:

(i) It satisfies the identities (x+ y)ι = xι + yι and (xy)ι = yιxι.

(ii) If x belongs to F then x = xι.

(iii) For any x in K both τ(x) = x+ xι and ν(x) = xxι = xιx belong to F .
If K = F ⊕ F and x = (a, b) we set xι = (b, a). If K is a separable quadratic extension of F the

involution ι is the unique non­trivial automorphism of K over F . In this case τ(x) is the trace of x and

ν(x) is the norm of x. If K is a quaternion algebra a unique ι with the required properties is known to
exist. τ and ν are the reduced trace and reduced norm respectively. If K is M(2, F ) we take ι to be the

involution sending

x =

(
a b
c d

)

to

x =

(
d −b
−c a

)

Then τ(x) and ν(x) are the trace and determinant of x.
Ifψ = ψF is a given non­trivial additive character of F then ψK = ψF ◦τ is a non­trivial additive

character of K . By means of the pairing

〈x, y〉 = ψK(xy)

we can identify K with its Pontrjagin dual. The function ν is of course a quadratic form on K which is

a vector space over F and f = ψF ◦ ν is a character of second order in the sense of [1]. Since

ν(x+ y) − ν(x) − ν(y) = τ(xyι)

and

f(x+ y)f−1(x)f−1(y) = 〈x, yι〉

the isomorphism of K with itself associated to f is just ι. In particular ν and f are nondegenerate.



Chapter 1 2

Let S(K) be the space of Schwartz­Bruhat functions on K . There is a unique Haar measure dx
on K such that if Φ belongs to S(K) and

Φ′(x) =

∫

K

Φ(y)ψK(xy) dy

then

Φ(0) =

∫

K

Φ′(x) dx.

The measure dx, which is the measure onK that we shall use, is said to be self­dual with respect to ψK .

Since the involution ι is measure preserving the corollary to Weil’s Theorem 2 can in the present
case be formulated as follows.

Lemma 1.1. There is a constant γ which depends on the ψF and K, such that for every function Φ
in S(K) ∫

K

(Φ ∗ f)(y)ψK(yx) dy = γf−1(xι)Φ′(x)

Φ ∗ f is the convolution of Φ and f . The values of γ are listed in the next lemma.

Lemma 1.2 (i) If K = F ⊕ F or M(2, F ) then γ = 1.

(ii) If K is the quaternion algebra over F then γ = −1.

(iii) If F = R, K = C, and
ψF (x) = e2πiax,

then
γ =

a

|a|
i

(iv) If F is non-archimedean and K is a separable quadratic extension of F let ω be the quadratic
character of F ∗ associated to K by local class-field theory. If UF is the group of units of F ∗

let m = m(ω) be the smallest non-negative integer such that ω is trivial on

UmF = {a ∈ UF |α ≡ 1 (mod pmF )}

and let n = n(ψF ) be the largest integer such that ψF is trivial on the ideal p−nF . If a is any
generator on the ideal pm+n

F then

γ = ω(a)

∫
UF

ω−1(α)ψF (αa−1) dα∣∣∣
∫
UF

ω−1(α)ψF (αa−1) dα
∣∣∣
.

The first two assertions are proved by Weil. To obtain the third apply the previous lemma to the
function

Φ(z) = e−2πzzι

.

We prove the last. It is shown by Weil that |γ| = 1 and that if ` is sufficiently large γ differs from

∫

p
−`
K

ψF (xxι) dx
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by a positive factor. This equals

∫

p
−`
K

ψF (xxι) |x|K d
×x =

∫

p
−`
K

ψF (xxι)|xxι|F d
×x

if d×x is a suitable multiplicative Haar measure. Since the kernel of the homomorphism ν is compact

the integral on the right is a positive multiple of

∫

ν(p−`
K

)

ψF (x) |x|F d
×x.

Set k = 2` if K/F is unramified and set k = ` if K/F is ramified. Then ν(p−`K ) = p−kF ∩ ν(K).

Since 1 + ω is twice the characteristic function of ν(K×) the factor γ is the positive multiple of

∫

p
−k
F

ψF (x) dx+

∫

p
−k
F

ψF (x)ω(x) dx.

For ` and therefore k sufficiently large the first integral is 0. If K/F is ramified well­known properties
of Gaussian sums allow us to infer that the second integral is equal to

∫

UF

ψF

(α
a

)
ω
(α
a

)
dα.

Since ω = ω−1 we obtain the desired expression for γ by dividing this integral by its absolute value. If

K/F is unramified we write the second integral as

∞∑

j=0

(−1)j−k

{∫

p
−k+j
F

ψF (x) dx−

∫

p
−k+j+1
F

ψF (x) dx

}

In this case m = 0 and ∫

p
−k+j
F

ψF (x) dx

is 0 if k − j > n but equals qk−j if k − j ≤ n, where q is the number of elements in the residue class

field. Since ω(a) = (−1)n the sum equals

ω(a)



q

m +

∞∑

j=0

(−1)jqm−j

(
1 −

1

q

)


A little algebra shows that this equals
2ω(a)qm+1

q+1
so that γ = ω(a), which upon careful inspection is

seen to equal the expression given in the lemma.

In the notation of [19] the third and fourth assertions could be formulated as an equality

γ = λ(K/F,ψF ).

It is probably best at the moment to take this as the definition of λ(K/F,ψF ).
If K is not a separable quadratic extension of F we take ω to be the trivial character.
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Proposition 1.3 There is a unique representation r of SL(2, F ) on S(K) such that

(i) r

((
α 0
0 α−1

))
Φ(x) = ω(α) |α|

1/2
K Φ(αx)

(ii) r

((
1 z
0 1

))
Φ(x) = ψF (zν(x))Φ(x)

(iii) r

((
0 1

−1 0

))
Φ(x) = γΦ′(xι).

If S(K) is given its usual topology, r is continuous. It can be extended to a unitary representation
of SL(2, F ) on L2(K), the space of square integrable functions on K. If F is archimedean and Φ
belongs to S(K) then the function r(g)Φ is an indefinitely differentiable function on SL(2, F ) with
values in S(K).

This may be deduced from the results of Weil. We sketch a proof. SL(2, F ) is the group generated

by the elements

(
α 0
0 α−1

)
,

(
1 z
0 1

)
, and w =

(
0 1

−1 0

)
with α in F× and z in F subject to the

relations

(a) w

(
α 0
0 α−1

)
=

(
α−1 0
0 α

)
w

(b) w2 =

(
−1 0
0 −1

)

(c) w

(
1 a
0 1

)
w =

(
−a−1 0

0 −a

)(
1 −a
0 1

)
w

(
1 −a−1

0 1

)

together with the obvious relations among the elements of the form

(
α 0
0 α−1

)
and

(
1 z
0 1

)
. Thus

the uniqueness of r is clear. To prove the existence one has to verify that the mapping specified by
(i), (ii), (iii) preserves all relations between the generators. For all relations except (a), (b), and (c) this

can be seen by inspection. (a) translates into an easily verifiable property of the Fourier transform. (b)

translates into the equality γ2 = ω(−1) which follows readily from Lemma 1.2.
If a = 1 the relation (c) becomes

∫

K

Φ′(yι)ψF (ν(y))〈y, xι〉 dy = γψF (−ν(x))

∫

K

Φ(y)ψF (−ν(y))〈y,−xι〉 dy (1.3.1)

which can be obtained from the formula of Lemma 1.1 by replacing Φ(y) by Φ′(−yι) and taking the

inverse Fourier transform of the right side. If a is not 1 the relation (c) can again be reduced to (1.3.1)
provided ψF is replaced by the character x→ ψF (ax) and γ and dx are modifed accordingly. We refer

to Weil’s paper for the proof that r is continuous and may be extended to a unitary representation of
SL(2, F ) in L2(K).

Now take F archimedean. It is enough to show that all of the functions r(g)Φ are indefinitely
differentiable in some neighborhood of the identity. Let

NF =

{(
1 x
0 1

) ∣∣∣∣x ∈ F

}
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and let

AF =

{(
α 0
0 α−1

) ∣∣∣∣α ∈ F×

}

Then NFwAFNF is a neighborhood of the identity which is diffeomorphic to NF × AF × NF . It is

enough to show that
φ(n, a, n1) = r(nwan)Φ

is infinitely differentiable as a function of n, as a function of a, and as a function of n1 and that

the derivations are continuous on the product space. For this it is enough to show that for all Φ all
derivatives of r(n)Φ and r(a)Φ are continuous as functions of n and Φ or a and Φ. This is easily done.

The representation r depends on the choice of ψF . If a belongs to F× and ψ′
F (x) = ψF (ax) let

r′ be the corresponding representation. The constant γ′ = ω(a)γ.

Lemma 1.4 (i) The representation r′ is given by

r′(g) = r

((
a 0
0 1

)
g

(
a−1 0
0 1

))

(ii) If b belongs to K∗ let λ(b)Φ(x) = Φ(b−1x) and let ρ(b)Φ(x) = Φ(xb). If a = ν(b) then

r′(g)λ(b−1) = λ(b−1)r(g)

and
r′(g)ρ(b) = ρ(b)r(g).

In particular if ν(b) = 1 both λ(b) and ρ(b) commute with r.

We leave the verification of this lemma to the reader. TakeK to be a separable quadratic extension

of F or a quaternion algebra of centre F . In the first case ν(K×) is of index 2 in F×. In the second case
ν(K×) is F× if F is non­archimedean and ν(K×) has index 2 in F× if F is R.

LetK ′ be the compact subgroup ofK× consisting of all xwith ν(x) = xxι = 1 and letG+ be the

subgroup ofGL(2, F ) consisting of all g with determinant in ν(K×). G+ has index 2 or 1 in GL(2, F ).
Using the lemma we shall decompose r with respect to K′ and extend r to a representation of G+.

Let Ω be a finite­dimensional irreducible representation ofK× in a vector spaceU over C. Taking
the tensor product of r with the trivial representation of SL(2, F ) on U we obtain a representation on

S(K)⊗C U = S(K,U)

which we still call r and which will now be the centre of attention.

Proposition 1.5 (i) If S(K,Ω) is the space of functions Φ in S(K,U) satisfying

Φ(xh) = Ω−1(h)Φ(x)

for all h in K ′ then S(K,Ω) is invariant under r(g) for all g in SL(2, F ).

(ii) The representation r of SL(2, F ) on S(K,Ω) can be extended to a representation rΩ of G+

satisfying

rΩ

((
a 0
0 1

))
Φ(x) = |h|

1/2
K Ω(h)Φ(xh)

if a = ν(h) belongs to ν(K×).
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(iii) If η is the quasi-character of F× such that

Ω(a) = η(a)I

for a in F× then

rΩ

((
a 0
0 a

))
= ω(a) η(a)I

(iv) The representation rΩ is continuous and if F is archimedean all factors in S(K,Ω) are
infinitely differentiable.

(v) If U is a Hilbert space and Ω is unitary let L2(K,U) be the space of square integrable functions
from K to U with the norm

‖Φ‖2 =

∫
‖Φ(x)‖2 dx

If L2(K,Ω) is the closure of S(K,Ω) in L2(K,U) then rΩ can be extended to a unitary
representation of G+ in L2(K,Ω).

The first part of the proposition is a consequence of the previous lemma. Let H be the group of

matrices of the form (
a 0
0 1

)

with a in ν(K×). It is clear that the formula of part (ii) defines a continuous representation of H on

S(K,Ω). Moreover G+ is the semi­direct ofH and SL(2, F ) so that to prove (ii) we have only to show
that

rΩ

((
a 0
0 1

)
g

(
a−1 0
0 1

))
= rΩ

((
a 0
0 1

))
rΩ(g) rΩ

((
a−1 0
0 1

))

Let a = ν(h) and let r′ be the representation associated ψ′
F (x) = ψF (ax). By the first part of the

previous lemma this relation reduces to

r′Ω(g) = ρ(h) rΩ(g) ρ−1(h),

which is a consequence of the last part of the previous lemma.

To prove (iii) observe that

(
a 0
0 a

)
=

(
a2 0
0 1

)(
a−1 0
0 1

)

and that a2 = ν(a) belongs to ν(K×). The last two assertions are easily proved.
We now insert some remarks whose significance will not be clear until we begin to discuss the

local functional equations. We associate to every Φ in S(K,Ω) a function

WΦ(g) = rΩ(g)Φ(1) (1.5.1)

on G+ and a function

ϕΦ(a) = WΦ

((
a 0
0 1

))
(1.5.2)

on ν(K×). The both take values in U .
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It is easily verified that

WΦ

((
1 x
0 1

)
g

)
= ψF (x)WΦ(g)

If g ∈ G+ and F is a function on G+ let ρ(g)F be the function h→ F (hg). Then

ρ(g)WΦ = WrΩ(g)Φ

Let B+ be the group of matrices of the form

(
a x
0 1

)

with a in ν(K×). Let ξ be the representation of B+ on the space of functions on ν(K×) with values in

U defined by

ξ

((
a 0
0 1

))
ϕ(b) = ϕ(ba)

and

ξ

((
1 x
0 1

))
ϕ(b) = ψF (bx)ϕ(b).

Then for all b in B+

ξ(b)ϕΦ = ϕrΩ(b)Φ. (1.5.3)

The application Φ → ϕΦ, and therefore the application Φ → WΦ, is injective because

ϕΦ(ν(h)) = |h|
1/2
K Ω(h)Φ(h). (1.5.4)

Thus we may regard rΩ as acting on the space V of functions ϕΦ, Φ ∈ S(K,Ω). The effect of a

matrix in B+ is given by (1.5.3). The matrix

(
a 0
0 a

)
corresponds to the operator ω(a) η(a)I . Since

G+ is generated by B+, the set of scalar matrices, and w =

(
0 1
−1 0

)
the representation rΩ on V is

determined by the action of w. To specify this we introduce, formally at first, the Mellin transform of

ϕ = ϕΦ.
If µ is a quasi­character of F× let

ϕ̂(µ) =

∫

ν(K×)

ϕ(α)µ(α) d×α. (1.5.5)

Appealing to (1.5.4) we may write this as

ϕ̂Φ(µ) = ϕ̂(µ) =

∫

K×

|h|
1/2
K µ(ν(h))Ω(h)Φ(h) d×h. (1.5.6)

If λ is a quasi­character of F× we sometimes write λ for the associated quasi­character λ ◦ ν of K×.
The tensor product λ⊗ Ω of λ and Ω is defined by

(λ⊗ Ω)(h) = λ(h)Ω(h).
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If αK : h→ |h|K is the module of K then

α
1/2
K µ⊗ Ω(h) = |h|

1/2
K µ(ν(h))Ω(h).

We also introduce, again in a purely formal manner, the integrals

Z(Ω,Φ) =

∫

K×

Ω(h)Φ(h) d×h

and

Z(Ω−1,Φ) =

∫

K×

Ω−1(h)Φ(h) d×h

so that
ϕ̂(µ) = Z(µα

1/2
K ⊗ Ω,Φ). (1.5.7)

Now let ϕ′ = ϕrΩ(w)Φ and let Φ′ be the Fourier transform of Φ so that rΩ(w)Φ(x) = γΦ′(xι). If

µ0 = ωη

ϕ̂′
(
µ−1µ−1

0

)
= Z

(
µ−1µ−1

0 α
1/2
K ⊗ Ω, rΩ(w)Φ

)

which equals

γ

∫

K

µ−1µ−1
0 (ν(h))Ω(h)Φ′(hι) d×h.

Since µ0(ν(h)) = η(ν(h)) = Ω(hιh) = Ω(hι)Ω(h) this expression equals

γ

∫

K

µ−1(ν(h))Ω−1(hι)Φ′(hι) d×h = γ

∫

K

µ−1(ν(h))Ω−1(h)Φ′(h) d×h

so that

ϕ̂′(µ−1µ−1
0 ) = γZ

(
µ−1α

1/2
K ⊗ Ω−1,Φ′

)
. (1.5.8)

Take µ = µ1α
s
F where µ1 is a fixed quasi­character and s is complex number. IfK is a separable

quadratic extension of F the representation Ω is one­dimensional and therefore a quasi­character. The
integral defining the function

Z(µα
1/2
K ⊗ Ω,Φ)

is known to converge for Re s sufficiently large and the function itself is essentially a local zeta­function

in the sense of Tate. The integral defining

Z(µ−1α
1/2
K ⊗ Ω−1,Φ′)

converges for Re s sufficiently small, that is, large and negative. Both functions can be analytically
continued to the whole s­plane as meromorphic functions. There is a scalar C(µ) which depends

analytically on s such that

Z(µα
1/2
K ⊗ Ω,Φ) = C(µ)Z(µ−1α

1/2
K ⊗ Ω−1,Φ′).

All these assertions are also known to be valid for quaternion algebras. We shall return to the verification

later. The relation
ϕ̂(µ) = γ−1C(µ)ϕ̂′(µ−1µ−1

0 )
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determines ϕ′ in terms of ϕ.
If λ is a quasi­character of F× and Ω1 = λ⊗ Ω then S(K,Ω1) = S(K,Ω) and

rΩ1
(g) = λ(detg)rΩ(g)

so that we may write
rΩ1

= λ⊗ rΩ

However the space V1 of functions on ν(K×) associated to rΩ1
is not necessarily V . In fact

V1 = {λϕ |ϕ ∈ V }

and rΩ1
(g) applied to λϕ is the product of λ(detg) with the function λ ·rΩ(g)ϕ. Given Ω one can always

find a λ such that λ⊗ Ω is equivalent to a unitary representation.
If Ω is unitary the map Φ → ϕΦ is an isometry because

∫

ν(K×)

‖ϕΦ(a)‖2 d×a =

∫

K×

‖Ω(h)Φ(h)‖2|h|K d
×h =

∫

K

‖Φ(h)‖2 dh

if the measures are suitably normalized.

We want to extend some of these results to the case K = F ⊕ F . We regard the element of K
as defining a row vector so that K becomes a right module for M(2, F ). If Φ belongs to S(K) and g
belongs to GL(2, F ), we set

ρ(g)Φ(x) = Φ(xg).

Proposition 1.6 (i) If K = F ⊕ F then r can be extended to a representation r of GL(2, F ) such
that

r

((
a 0
0 1

))
Φ = ρ

((
a 0
0 1

))
Φ

for a in F×.

(ii) If Φ̃ is the partial Fourier transform

Φ̃(a, b) =

∫

F

Φ(a, y)ψF (by) dy

and the Haar measure dy is self-dual with repsect to ψF then

[r(g)Φ̃] = ρ(g)Φ̃

for all Φ in S(K) and all g in GF .

It is easy to prove part (ii) for g in SL(2, F ). In fact one has just to check it for the standard
generators and for these it is a consequence of the definitions of Proposition 1.3. The formula of part (ii)

therefore defines an extension of r to GL(2, F ) which is easily seen to satisfy the condition of part (i).

Let Ω be a quasi­character ofK×. SinceK× = F× ×F× we may identify Ω with a pair (ω1, ω2)
of quasi­characters of F×. Then rΩ will be the representation defined by

rΩ(g) = |detg|
1/2
F ω1(detg)r(g).
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If x belongs to K× and ν(x) = 1 then x is of the form (t, t−1) with t in F×. If Φ belongs to S(K)
set

θ(Ω,Φ) =

∫

F×

Ω((t, t−1))Φ((t, t−1)) d×t.

Since the integrand has compact support on F× the integral converges. We now associate to Φ the

function

WΦ(g) = θ(Ω, rΩ(g)Φ) (1.6.1)

on GL(2, F ) and the function

ϕΦ(a) = WΦ

((
a 0
0 1

))
(1.6.2)

on F×. We still have
ρ(g)WΦ = WrΩ(g)Φ.

If

BF =

{(
a x
0 1

)
| a ∈ F×, x ∈ F

}

and if the representations ξ of BF on the space of functions on F× is defined in the same manner as

the representation ξ of B+ then
ξ(b)ϕΦ = ϕrΩ(b)Φ

for b in BF . The applications Φ →WΦ and Φ → ϕΦ are no longer injective.

If µ0 is the quasi­character defined by

µ0(a) = Ω((a, a)) = ω1(a)ω2(a)

then

WΦ

((
a 0
0 a

)
g

)
= µ0(a)WΦ(g).

It is enough to verify this for g = e.

WΦ

((
a 0
0 a

))
= θ

(
Ω, rΩ

((
a 0
0 a

))
Φ

)

and (
a 0
0 a

)
=

(
a2 0
0 1

)(
a−1 0
0 a

)

so that

rΩ

((
a 0
0 a

))
Φ(x, y) = |a2|

1/2
F ω1(a

2)|a|
−1/2
K Φ(ax, a−1y).

Consequently

WΦ

((
a 0
0 a

))
=

∫

F×

ω1(a
2)ω1(x)ω

−1
2 (x)Φ(ax, a−1x−1) d×x

= ω1(a)ω2(a)

∫

F×

ω1(x)ω
−1
2 (x)Φ(x, x−1) d×x

which is the required result.
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Again we introduce in a purely formal manner the distribution

Z(Ω,Φ) = Z(ω1, ω2Φ) =

∫
Φ(x1, x2)ω1(x2)ω2(x2) d

×x2 d
×x2.

If µ is a quasi­character of F× and ϕ = ϕΦ we set

ϕ̂(µ) =

∫

F×

ϕ(α)µ(α) d×α.

The integral is

∫

F×

µ(α)θ

(
Ω, rΩ

((
α 0
0 1

))
Φ

)
d×α

=

∫

F×

µ(α)

{∫

F×

rΩ

((
α 0
0 1

))
Φ(x, x−1)ω1(x)ω

−1
2 (x) d×x

}
d×α

which in turn equals

∫

F×

µ(α)ω1(α)|α|
1/2
F

{∫

F×

Φ(αx, x−1)ω1(x)ω
−1
2 (x) d×x

}
d×α.

Writing this as a double integral and then changing variables we obtain

∫

F×

∫

F×

Φ(α, x)µω1(α)µω2(x)|αx|
1/2
F d×α d×x

so that

ϕ̂(µ) = Z
(
µω1α

1/2
F , µω2α

1/2
F ,Φ

)
. (1.6.3)

Let ϕ′ = ϕrΩ(w)Φ. Then

ϕ̂′(µ−1µ−1
0 ) = Z

(
µ−1ω−1

2 α
1/2
F , µ−1ω−1

1 α
1/2
F , rΩ(w)Φ

)

which equals ∫ ∫
Φ′(y, x)µ−1ω−1

2 (x)µ−1ω−1
1 (y)|xy|

1/2
F d×x d×y

so that
ϕ̂′(µ−1µ−1

0 ) = Z(µ−1ω−1
1 α

1/2
F , µ−1ω−1

2 α
1/2
F ,Φ′). (1.6.4)

Suppose µ = µ1α
s
F where µ1 is a fixed quasi­character and s is a complex number. We shall see that

the integral defining the right side of (1.6.3) converges for Re s sufficiently large and that the integral

defining the right side of (1.6.4) converges for Re s sufficiently small. Both can be analytically continued
to the whole complex plane as meromorphic functions and there is a meromorphic functionC(µ) which

is independent of Φ such that

Z(µω1α
1/2
F , µω2α

1/2
F ) = C(µ)Z(µ−1ω−1

1 α
1/2
F , µ−1ω−1

2 α
1/2
F ,Φ′).

Thus
ϕ̂(µ) = C(µ)ϕ̂′(µ−1µ−1

0 )

The analogy with the earlier results is quite clear.
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§2 Representations of GL(2, F ) in the non-archimedean case. In this and the next two paragraphs
the ground field F is a non­ archimedean local field. We shall be interested in representations π of

GF = GL(2, F ) on a vector space V over C which satisfy the following condition.

(2.1) For every vector v in V the stabilizer of v in GF is an open subgroup of GF .

Those who are familiar with such things can verify that this is tantamount to demanding that the
map (g, v) → π(g)v of GF × V into V is continuous if V is given the trivial locally convex topology in

which every semi­norm is continuous. A representation ofGF satisfying (2.1) will be called admissible
if it also satisfies the following condition

(2.2) For every open subgroup G′ of GL(2, OF ) the space of vectors v in V stablizied by G′ is
finite-dimensional.

OF is the ring of integers of F .
Let HF be the space of functions on GF which are locally constant and compactly supported.

Let dg be that Haar measure on GF which assigns the measure 1 to GL(2, OF ). Every f in HF may be
identified with the measure f(g) dg. The convolution product

f1 ∗ f2(h) =

∫

GF

f1(g) f2(g
−1h) dg

turns HF into an algebra which we refer to as the Hecke algebra. Any locally constant function

on GL(2, OF ) may be extended to GF by being set equal to 0 outside of GL(2, OF ) and therefore
may be regarded as an element of HF . In particular if πi, 1 ≤ i ≤ r, is a family of inequivalent

finite­dimensional irreducible representations of GL(2, OF ) and

ξi(g) = dim(πi) trπi(g
−1)

for g in GL(2, OF ) we regard ξi as an element of HF . The function

ξ =
r∑

i=1

ξi

is an idempotent of HF . Such an idempotent will be called elementary.

Let π be a representation satisfying (2.1). If f belongs to HF and v belongs to V then f(g)π(g)v
takes on only finitely many values and the integral

∫

GF

f(g)π(g)v dg = π(f)v

may be defined as a finite sum. Alternatively we may give V the trivial locally convex topology and use
some abstract definition of the integral. The result will be the same and f → π(f) is the representation

of HF on V . If g belongs to GF then λ(g)f is the function whose value at h is f(g−1h). It is clear that

π(λ(g)f) = π(g)π(f).

Moreover
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(2.3) For every v in V there is an f in HF such that πf(v) = v.

In fact f can be taken to be a multiple of the characteristic function of some open and closed
neighborhood of the identity. If π is admissible the associated representation of HF satisfies

(2.4) For every elementary idempotent ξ of HF the operator π(ξ) has a finite-dimensional range.

We now verify that from a representation π of HF satisfying (2.3) we can construct a represen­

tation π of GF satisfying (2.1) such that

π(f) =

∫

GF

f(g)π(g) dg.

By (2.3) every vector v in V is of the form

v =

r∑

i=1

π(fi) vi

with vi in V and fi in HF . If we can show that

r∑

i=1

π(fi) vi = 0 (2.3.1)

implies that

w =
r∑

i=1

π
(
λ(g)fi

)
vi

is 0 we can define π(g)v to be
r∑

i=1

π
(
λ(g)fi

)
vi

π will clearly be a representation of GF satisfying (2.1).
Suppose that (2.3.1) is satisifed and choose f in HF so that π(f)w = w. Then

w =
r∑

i=1

π
(
f ∗ λ(g)fi

)
vi.

If ρ(g)f(h) = f(hg) then
f ∗ λ(g)fi = ρ(g−1)f ∗ fi

so that

w =
r∑

i=1

π
(
ρ(g−1)f ∗ fi

)
vi = π

(
ρ(g−1)f

)
{

r∑

i=1

π(fi)vi

}
= 0.

It is easy to see that the representation of GF satisfies (2.2) if the representation of HF satisfies
(2.4). A representation of HF satisfying (2.3) and (2.4) will be called admissible. There is a complete

correspondence between admissible representations of GF and of HF . For example a subspace is

invariant under GF if and only if it is invariant under HF and an operator commutes with the action
of GF if and only if it commutes with the action of HF .
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>From now on, unless the contrary is explicitly stated, an irreducible representation ofGF or HF

is to be assumed admissible. If π is irreducible and acts on the space V then any linear transformation

of V commuting with HF is a scalar. In fact if V is assumed, as it always will be, to be different
from 0 there is an elementary idempotent ξ such that π(ξ) 6= 0. Its range is a finite­dimensional space

invariant underA. Thus A has at least one eigenvector and is consequently a scalar. In particular there

is a homomorphism ω of F× into C such that

π

((
a 0
0 a

))
= ω(a)I

for all a in F×. By (2.1) the function ω is 1 near the identity and is therefore continuous. We shall

refer to a continuous homomorphism of a topological group into the multiplicative group of complex
numbers as a quasi­character.

If χ is a quasi­character of F× then g → χ(detg) is a quasi­character of GF . It determines a
one­dimensional representation of GF which is admissible. It will be convenient to use the letter χ to

denote this associated representation. If π is an admissible reprentation of GF on V then χ⊗ π will be
the reprenentation of GF on V defined by

(χ⊗ π)(g) = χ(detg)π(g).

It is admissible and irreducible if π is.
Let π be an admissible representation of GF on V and let V ∗ be the space of all linear forms on

V . We define a representation π∗ of HF on V ∗ by the relation

〈v, π∗(f)v∗〉 = 〈π(f̌)v, v∗〉

where f̌ν(g) = f(g−1). Since π∗ will not usually be admissible, we replace V ∗ by Ṽ = π∗(HF )V ∗.

The space Ṽ is invariant under HF . For each f in HF there is an elementary idempotent ξ such that

ξ∗f = f and therefore the restriction π̃ of π∗ to Ṽ satisfies (2.3). It is easily seen that if ξ is an elementary
idempotent so is ξ̌. To show that π̃ is admissible we have to verify that

Ṽ (ξ) = π̃(ξ)Ṽ = π∗(ξ)V ∗

is finite­dimensional. Let V (ξ̌) = π(ξ̌)V and let Vc =
(
1− π(ξ̌)

)
V . V is clearly the direct sum of V (ξ̌),

which is finite­dimensional, and Vc. Moreover Ṽ (ξ) is orthogonal to Vc because

〈v − π(ξ̌)v, π̃(ξ)ṽ〉 = 〈π(ξ̌)v − π(ξ̌)v, ṽ〉 = 0.

It follows immediately that Ṽ (ξ) is isomorphic to a subspace of the dual of V (ξ̌) and is therefore

finite­dimensional. It is in fact isomorphic to the dual of V (ξ̌) because if v∗ annihilates Vc then, for all
v in V ,

〈v, π∗(ξ)v∗〉 − 〈v, v∗〉 = −〈v − π(ξ̌)v, v∗〉 = 0

so that π∗(ξ)v∗ = v∗.

π̃ will be called the representation contragradient to π. It is easily seen that the natural map of

V into Ṽ ∗ is an isomorphism and that the image of this map is π̃∗(HF )Ṽ ∗ so that π may be identified
with the contragredient of π̃.

If V1 is an invariant subspace of V and V2 = V1 \V we may associate to π representations π1 and
π2 on V1 and V2. They are easily seen to be admissible. It is also clear that there is a natural embedding

of Ṽ2 in Ṽ . Moreover any element ṽ1 of Ṽ1 lies in Ṽ1(ξ) for some ξ and therefore is determined by its

effect on V1(ξ̌). It annihilates
(
I−π(ξ̌)

)
V1. There is certainly a linear function ṽ on V which annihilates(

I−π(ξ̌)
)
V and agrees with Ṽ1 on V1(ξ̌). ṽ is necessarily in Ṽ so that Ṽ1 may be identified with Ṽ2 \ Ṽ .

Since every representation is the contragredient of its contragredient we easily deduce the following
lemma.
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Lemma 2.5 (a). Suppose V1 is an invariant subspace of V . If Ṽ2 is the annihilator of V1 in Ṽ then

V1 is the annihilator of Ṽ2 in V .
(b) π is irreducible if and only if π̃ is.

Observe that for all g in GF

〈π(g)v, ṽ〉 = 〈v, π̃(g−1)ṽ〉.

If π is the one­dimensional representation associated to the quasi­character χ then π̃ = χ−1. Moreover
ifχ is a quasi­character and π any admissible representation then the contragredient ofχ⊗π isχ−1⊗ π̃.

Let V be a separable complete locally convex space and π a continuous representation of GF
on V . The space V0 = π(HF )V is invariant under GF and the restriction π0 of π to V0 satisfies (2.1).
Suppose that it also satisfies (2.2). Then if π is irreducible in the topological sense π0 is algebraically

irreducible. To see this take any two vectors v and w in V0 and choose an elementary idempotent ξ so
that π(ξ)v = v. v is in the closure of π(HF )w and therefore in the closure of π(HF )w ∩ π(ξ)V . Since,

by assumption, π(ξ)V is finite dimensional, v must actually lie in π(HF )w.

The equivalence class of π is not in general determined by that of π0. It is, however, when
π is unitary. To see this one has only to show that, up to a scalar factor, an irreducible admissible

representation admits at most one invariant hermitian form.

Lemma 2.6 Suppose π1 and π2 are irreducible admissible representations of GF on V1 and V2

respectively. Suppose A(v1, v2) and B(v1, v2) are non-degenerate forms on V1 ×V2 which are linear
in the first variable and either both linear or both conjugate linear in the second variable. Suppose
moreover that, for all g in GF

A
(
π1(g)v1, π2(g)v2

)
= A(v1, v2)

and
B
(
π1(g)v1, π2(g)v2

)
= B(v1, v2)

Then there is a complex scalar λ such that

B(v1, v2) = λA(v1, v2)

Define two mappings S and T of V2 into Ṽ1 by the relations

A(v1, v2) = 〈v1, Sv2〉

and
B(v1, v2) = 〈v1, T v2〉,

Since S and T are both linear or conjugate linear with kernel 0 they are both embeddings. Both take

V2 onto an invariant subspace of Ṽ1. Since Ṽ1 has no non­trivial invariant subspaces they are both

isomorphisms. Thus S−1T is a linear map of V2 which commutes with GF and is therefore a scalar λI .

The lemma follows.
An admissible representation will be called unitary if it admits an invariant positive definite

hermitian form.
We now begin in earnest the study of irreducible admissible representations of GF . The basic

ideas are due to Kirillov.
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Proposition 2.7. Let π be an irreducible admissible representation of GF on the vector space V .
(a) If V is finite-dimensional then V is one-dimensional and there is a quasi-character χ of F×

such that
π(g) = χ(detg)

(b) If V is infinite dimensional there is no nonzero vector invariant by all the matrices
(

1
0
x
1

)
,

x ∈ F .

If π is finite­dimensional its kernel H is an open subgroup. In particular there is a positive
number ε such that (

1 x
0 1

)

belongs to H if |x| < ε. If x is any element of F there is an a in F× such that |ax| < ε. Since

(
a−1 0
0 a

)(
1 ax
0 1

)(
a 0
0 1

)
=

(
1 x
0 1

)

the matrix (
1 x
0 1

)

belongs to H for all x in F . For similar reasons the matrices

(
1 0
y 1

)

do also. Since the matrices generate SL(2, F ) the group H contains SL(2, F ). Thus π(g1)π(g2) =
π(g2)π(g1) for all g1 and g2 in GF . Consequently each π(g) is a scalar matrix and π(g) is one­
dimensional. In fact

π(g) = χ(detg)I

where χ is a homorphism of F× into C×. To see that χ is continuous we need only observe that

π

((
a 0
0 1

))
= χ(a)I.

Suppose V contains a nonzero vector v fixed by all the operators

π

((
1 x
0 1

))
.

LetH be the stabilizer of the space Cv. To prove the second part of the proposition we need only verify

that H is of finite index in GF . Since it contains the scalar matrices and an open subgroup ofGF it will

be enough to show that it contains SL(2, F ). In fact we shall show that H0, the stabilizer of v, contains
SL(2, F ). H0 is open and therefore contains a matrix

(
a b
c d

)
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with c 6= 0. It also contains
(

1 −ac−1

0 1

)(
a b
c d

)(
1 −dc−1

0 1

)
=

(
0 b0
c 0

)
= w0.

If x = b0
c
y then (

1 0
y 1

)
= w0

(
1 x
0 1

)
w−1

0

also belongs to H0. As before we see that H0 contains SL(2, F ).
Because of this lemma we can confine our attention to infinite­dimensional representations. Let

ψ = ψF be a nontrivial additive character of F . Let BF be the group of matrices of the form

b =

(
a x
0 1

)

with a in F× and x in F . If X is a complex vector space we define a representation ξψ of BF on the

space of all functions of F× with values in X by setting
(
ξψ(b)ϕ

)
(α) = ψ(αx)ϕ(αa).

ξψ leaves the invariant space S(F×,X) of locally constant compactly supported functions. ξψ is

continuous with respect to the trivial topology on S(F×,X).

Proposition 2.8. Let π be an infinite dimensional irreducible representation of GF on the space V .
Let p = pF be the maximal ideal in the ring of integers of F , and let V ′ be the set of all vectors v
in V such that ∫

p−n

ψF (−x)π

((
1 x
0 1

))
v dx = 0

for some integer n. Then
(i) The set V ′ is a subspace of V .

(ii) Let X = V ′ \ V and let A be the natural map of V onto X. If v belongs to V let ϕv be the
function defined by

ϕv(a) = A

(
π

((
a 0
0 1

))
v

)
.

The map v → ϕv is an injection of V into the space of locally constant functions on F× with
value in X.

(iii) If b belongs to BF and v belongs to V then

ϕπ(b)v = ξψ(b)ϕv.

If m ≥ n so that p−m contains p−n then
∫

p−m

ψ(−x)π

((
1 x
0 1

))
v dx

is equal to
∑

y∈p−m/p−n

ψ(−y)π

((
1 y
0 1

))∫

p−n

ψ(−x)π

((
1 x
0 1

))
v dx.

Thus if the integral of the lemma vanishes for some integer n it vanishes for all larger integers. The

first assertion of the proposition follows immediately.
To prove the second we shall use the following lemma.
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Lemma 2.8.1 Let p−m be the largest ideal on which ψ is trivial and let f be a locally constant
function on p−` with values in some finite dimensional complex vector space. For any integer
n ≤ ` the following two conditions are equivalent

(i) f is constant on the cosets of p−n in p−`

(ii) The integral ∫

p−`

ψ(−ax) f(x) dx

is zero for all a outside of p−m+n.

Assume (i) and let a be an element of F× which is not in p−m+n. Then x → ψ(−ax) is a

non­trivial character of p−n and

∫

p−`

ψ(−ax) f(x) dx =
∑

y∈p−`/p−n

ψ(−ay)

{∫

p−n

ψ(−ax) dx

}
f(y) = 0.

f may be regarded as a locally constant function on F with support in p−`. Assuming (ii) is

tantamount to assuming that the Fourier transform F′ of f has its support in p−m+n. By the Fourier
inversion formula

f(x) =

∫

p−m+n

ψ(−xy) f ′(y) dy.

If y belongs to p−m+n the function x → ψ(−xy) is constant on cosets of p−n. It follows immediately

that the second condition of the lemma implies the first.
To prove the second assertion of the proposition we show that if ϕv vanishes identically then v

is fixed by the operator π
((

1
0
x
1

))
for all x in F and then appeal to Proposition 2.7.

Take

f(x) = π

((
1 x
0 1

))
v.

The restriction of f to an ideal in F takes values in a finite­dimensional subspace of V . To show that
f is constant on the cosets of some ideal p−n it is enough to show that its restriction to some ideal p−`

containing p−n has this property.
By assumption there exists an n0 such that f is constant on the cosets of p−n0 . We shall now

show that if f is constant on the cosets of p−n+1 it is also constant on the cosets of p−n. Take any ideal

p−` containing p−n. By the previous lemma

∫

p−`

ψ(−ax) f(x) dx = 0

if a is not in p−m+n−1. We have to show that the integral on the left vanishes if a is a generator of
p−m+n−1.

If UF is the group of units of OF the ring of integers of F there is an open subgroup U1 of UF
such that

π

((
b 0
0 1

))
v = v

for b in U1. For such b

π

((
b 0
0 1

))

p−`

ψ(−ax) f(x) dx =

∫

p−`

ψ(−ax)π

((
b 0
0 1

))
π

((
1 x
0 1

))
v dx
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is equal to
∫

p−`

ψ(−ax)π

((
1 bx
0 1

))
π

((
b 0
0 1

))
v dx =

∫

p−`

ψ
(
−
a

b
x
)
f(x) dx.

Thus it will be enough to show that for some sufficiently large ` the integral vanishes when a is taken
to be one of a fixed set of representatives of the cosets of U1 in the set of generators of p−m+n−1. Since

there are only finitely many such cosets it is enough to show that for each a there is at least one ` for
which the integral vanishes.

By assumption there is an ideal a(a) such that
∫

a(a)

ψ(−x)π

((
1 x
0 1

)(
a 0
0 1

))
v dx = 0

But this integral equals

|a|π

((
a 0
0 1

))∫

a−1a(a)

ψ(−ax)π

((
1 x
0 1

))
v dx

so that ` = `(a) could be chosen to make

p−` = a−1a(a).

To prove the third assertion we verify that

A

(
π

((
1 y
0 1

))
v

)
= ψ(y)A(v) (2.8.2)

for all v in V and all y in F . The third assertion follows from this by inspection. We have to show that

π

((
1 y
0 1

))
v − ψ(y)v

is in V ′ or that, for some n,
∫

p−n

ψ(−x)π

((
1 x
0 1

))
π

((
1 y
0 1

))
v dx−

∫

p−n

ψ(−x)ψ(y)π

((
1 x
0 1

))
v dx

is zero. The expression equals
∫

p−n

ψ(−x)π

((
1 x+ y
0 1

))
v dx−

∫

p−n

ψ(−x+ y)π

((
1 x
0 1

))
v dx.

If p−n contains y we may change the variables in the first integral to see that it equals the second.

It will be convenient now to identify v with ϕv so that V becomes a space of functions on F×

with values in X . The map A is replaced by the map ϕ→ ϕ(1). The representation π now satisfies

π(b)ϕ = ξψ(b)ϕ

if b is in BF . There is a quasi­character ω0 of F× such that

π

((
a 0
0 a

))
= ω0(a) I.

If

w =

((
0 1
−1 0

))

the representation is determined by ω0 and π(w).
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Proposition 2.9 (i) The space V contains

V0 = S(F×,X)

(ii) The space V is spanned by V0 and π(w)V0.

For every ϕ in V there is a positive integer n such that

π

((
a x
0 1

))
ϕ = ϕ

if x and a − 1 belong to pn. In particular ϕ(αa) = ϕ(a) if α belongs to F× and a − 1 belongs to pn.

The relation
ψ(αx)ϕ(α) = ϕ(α)

for all x in pn implies that ϕ(α) = 0 if the restriction of ψ to αpn is not trivial. Let p−m be the largest
ideal on which ψ is trivial. Then ϕ(α) = 0 unless |α| ≤ |$|−m−n if $ is a generator of p.

Let V0 be the space of all $ in V such that, for some integer ` depending on ϕ, ϕ(α) = 0 unless

|α| > |$|`. To prove (i) we have to show that V0 = S(F×,X). It is at least clear that S(F×,X) contains
V0. Moreover for every ϕ in V and every x in F the difference

ϕ′ = ϕ− π

((
1 x
0 1

))
ϕ

is in V0. To see this observe that

ϕ′(α) =
(
1 − ψ(αx)

)
ϕ(α)

is identically zero for x = 0 and otherwise vanishes at least on x−1p−m. Since there is no function in

V invariant under all the operators

π

((
1 x
0 1

))

the space V0 is not 0.

Before continuing with the proof of the proposition we verify a lemma we shall need.

Lemma 2.9.1 The representation ξψ of BF in the space S(F×) of locally constant, compactly sup-
ported, complex-valued functions on F× is irreducible.

For every character µ of UF let ϕµ be the function on F× which equals µ on UF and vanishes off

UF . Since these functions and their translates span S(F×) it will be enough to show that any non­trivial

invariant subspace contains all of them. Such a space must certainly contain some non­zero function ϕ
which satisfies, for some character ν of UF , the relation

ϕ(aε) = ν(ε)ϕ(a)

for all a in F× and all ε in UF . Replacing ϕ by a translate if necessary we may assume that ϕ(1) 6= 0.

We are going to show that the space contains ϕµ if µ is different from ν. Since UF has at least two

characters we can then replace ϕ by some ϕµ with µ different from ν, and replace ν by µ and µ by ν to
see it also contains ϕν .
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Set

ϕ′ =

∫

UF

µ−1(ε)ξψ

((
ε 0
0 1

))
ξψ

((
1 x
0 1

))
ϕdε

where x is still to be determined. µ is to be different form ν. ϕ′ belongs to the invariant subspace and

ϕ′(aε) = µ(ε)ϕ′(a)

for all a in F× and all ε in UF . We have

ϕ′(a) = ϕ(a)

∫

UF

µ−1(ε)ν(ε)ψ(axε) dε

The character µ−1ν has a conductor pn with n positive. Take x to be of order −n −m. The integral,

which can be rewritten as a Gaussian sum, is then, as is well­known, zero if a is not in UF but different
from zero if a is in UF . Since ϕ(1) is not zero ϕ′ must be a nonzero multiple of ϕµ.

To prove the first assertion of the proposition we need only verify that if u belongs to X then V0
contains all functions of the form α → η(α)u with η in S(F×). There is a ϕ in V such that ϕ(1) = u.

Take x such that ψ(x) 6= 1. Then

ϕ′ = ϕ− π

((
1 x
0 1

))
ϕ

is in V0 and ϕ′(1) =
(
1 − ψ(x)

)
u. Consequently every u is of the form ϕ(1) for some ϕ in V0.

If µ is a character of UF let V0(µ) be the space of functions ϕ in V0 satisfying

ϕ(aε) = µ(ε)ϕ(a)

for all a in F× and all ε in UF . V0 is clearly the direct sum of the space V0(µ). In particular every vector

u in X can be written as a finite sum

u =
∑

ϕi(1)

where ϕi belongs to some V0(µi).
If we make use of the lemma we need only show that if u can be written as u = ϕ(1) where ϕ is

in V0(ν) for some ν then there is at least one function in V0 of the form α→ η(α)uwhere η is a nonzero

function in S(F×). Choose µ different from ν and let pn be the conductor of µ−1ν. We again consider

ϕ′ =

∫

UF

µ−1(ε)ξψ

((
ε 0
0 1

)(
1 x
0 1

))
ϕdε

where x is of order −n−m. Then

ϕ′(a) = ϕ(a)

∫

UF

µ−1(ε)ν(ε)ψF (axε) dε

The properties of Gaussian sums used before show that ϕ′ is a function of the required kind.

The second part of the proposition is easier to verify. Let PF be the group of upper­triangular
matrices in GF . Since V0 is invariant under PF and V is irreducible under GF the space V is spanned

by V0 and the vectors

ϕ′ = π

((
1 x
0 1

))
π(w)ϕ
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with ϕ in V0. But
ϕ′ = {ϕ′ − π(w)ϕ} + π(w)ϕ

and as we saw, ϕ′ − π(w)ϕ is in V0. The proposition is proved.
To study the effect of w we introduce a formal Mellin transform. Let $ be a generator of p. If ϕ

is a locally constant function on F× with values inX then for every integer n the function ε→ ϕ(ε$n)
on UF takes its values in a finite­dimensional subspace of X so that the integral

∫

UF

ϕ(ε$n)ν(ε) = ϕ̂n(ν)

is defined. In this integral we take the total measure of UF to be 1. It is a vector in X . ϕ̂(ν, t) will be

the Formal Laurent series ∑

t

tnϕ̂n(ν)

If ϕ is in V the series has only a finite number of terms with negative exponent. Moreover the series

ϕ̂(ν, t) is different from zero for only finitely many ν. If ϕ belongs to V0 these series have only finitely
many terms. It is clear that if ϕ is locally constant and all the formal series ϕ̂(ν, t) vanish then ϕ = 0.

Suppose ϕ takes values in a finite­dimensional subspace of X , ω is a quasi­character of F×, and
the integral ∫

F×

ω(a)ϕ(a) d×a (2.10.1)

is absolutely convergent. If ω′ is the restriction of ω to UF this integral equals

∑

n

zn
∫

UF

ϕ($nε)ω′(ε) dε =
∑

n

zn ϕ̂n(ω
′)

if z = ω($). Consequently the formal series ϕ̂(ω′, t) converges absolutely for t = z and the sum is
equal to (2.10.1). We shall see that X is one dimensional and that there is a constant c0 = c0(ϕ) such

that if |ω($)| = |$|c with c > c0 then the integral (2.10.1) is absolutely convergent. Consequently all
the series ϕ̂(ν, t) have positive radii of convergence.

Ifψ = ψF is a given non­trivial additive character ofF , µ any character ofUF , and x any element

of F we set

η(µ, x) =

∫

UF

µ(ε)ψ(εx) dε

The integral is taken with respect to the normalized Haar measure on UF . If g belongs toGF , ϕ belongs
to V , and ϕ′ = π(g)ϕ we shall set

π(g) ϕ̂(ν, t) = ϕ̂′(ν, t).

Proposition 2.10 (i) If δ belongs to UF and ` belongs to Z then

π

((
δ$` 0
0 1

))
ϕ̂(ν, t) = t−`ν−1(δ) ϕ̂(ν, t)

(ii) If x belongs to F then

π

((
1 x
0 1

))
ϕ̂(ν, t) =

∑

n

tn

{
∑

µ

η(µ−1ν,$nx)ϕ̂n(µ)

}
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where the inner sum is taken over all characters of UF
(iii) Let ω0 be the quasi-character defined by

π

((
a 0
0 a

))
= ω0(a) I

for a in F×. Let ν0 be its restriction to UF and let z0 = ω0($). For each character ν of UF
there is a formal series C(ν, t) with coefficients in the space of linear operators on X such
that for every ϕ in V0

π

((
0 1
−1 0

))
ϕ̂(ν, t) = C(ν, t) ϕ̂(ν−1ν−1

0 , t−1z−1
0 ).

Set

ϕ′ = π

((
δ$` 0
0 1

))
ϕ.

Then

ϕ̂′(ν, t) =
∑

n

tn
∫

UF

ν(ε)ϕ($n+` δε) dε.

Changing variables in the integration and in the summation we obtain the first formula of the propo­
sition.

Now set

ϕ′ = π

((
1 x
0 1

))
ϕ.

Then

ϕ̂′(ν, t) =
∑

n

tn
∫

UF

ψ($nεx) ν(ε)ϕ($nε) dε.

By Fourier inversion

ϕ($nε) =
∑

µ

ϕ̂n(µ)µ−1(ε).

The sum on the right is in reality finite. Substituting we obtain

ϕ̂′(ν, t) =
∑

n

tn

{
∑

µ

∫

UF

µ−1ν(ε)ψ(ε$nx) dε ϕ̂n(µ)

}

as asserted.

Suppose ν is a character of UF and ϕ in V0 is such that ϕ̂(µ, t) = 0 unless µ = ν−1ν−1
0 . This

means that

ϕ(aε) ≡ νν0(ε)ϕ(a)

or that

π

((
ε 0
0 1

))
ϕ = νν0(ε)ϕ
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for all ε in UF . If ϕ′ = π(w)ϕ then

π

((
ε 0
0 1

))
ϕ′ = π

((
ε 0
0 1

))
π(w)ϕ = π(w)π

((
1 0
0 ε

))
ϕ.

Since ((
1 0
0 ε

))
=

((
ε 0
0 ε

))((
ε−1 0
0 1

))

the expression on the right is equal to

ν−1(ε)π(w)ϕ = ν−1(ε)ϕ′,

so that ϕ̂′(µ, t) = 0 unless µ = ν.

Now take a vector u in X and a character ν of UF and let ϕ be the function in V0 which is zero

outside of UF and on UF is given by
ϕ(ε) = ν(ε) ν0(ε)u. (2.10.2)

If ϕ′ = π(w)ϕ then ϕ̂′
n is a function of n, ν, and u which depends linearly on u and we may write

ϕ̂′
n(ν) = Cn(ν)u

where Cn(ν) is a linear operator on X .
We introduce the formal series

C(ν, t) =
∑

tnCn(ν).

We have now to verify the third formula of the proposition. Since ϕ is in V0 the product on the right

is defined. Since both sides are linear in ϕ we need only verify it for a set of generators of V0. This

set can be taken to be the functions defined by (2.10.2) together with their translates of power $. For
functions of the form (2.10.2) the formula is valid because of the way the various series C(ν, t) were

defined. Thus all we have to do is show that if the formula is valid for a given function ϕ it remains
valid when ϕ is replaced by

π

((
$` 0
0 1

))
ϕ.

By part (i) the right side is replaced by

z`0t
`C(ν, t) ϕ̃(ν−1ν−1

0 , t−1z−1
0 ).

Since

π(w)π

((
$` 0
0 1

))
ϕ = π

((
1 0
0 $`

))
π(w)ϕ

and π(w)ϕ̂(ν, t) is known we can use part (i) and the relation
(

1 0
0 $`

)
=

(
$` 0
0 $`

)(
$−` 0

0 1

)

to see that the left side is replaced by

z`0t
`π(w)ϕ̂(ν, t) = z`0t

`C(ν, t)ϕ̂(ν−1ν−1
0 , t−1z−1

0 ).

For a given u in X and a given character ν of UF there must exist a ϕ in V such that

ϕ̂(ν, t) =
∑

tnCn(ν)u

Consequently there is an n0 such that Cn(ν)u = 0 for n < n0. Of course n0 may depend on u and

ν. This observation together with standard properties of Gaussian sums shows that the infinite sums

occurring in the following proposition are meaningful, for when each term is multiplied on the right
by a fixed vector in X all but finitely many disappear.



Chapter 1 25

Proposition 2.11 Let p−` be the largest ideal on which ψ is trivial.
(i) Let ν and ρ be two characters of UF such that νρν0 is not 1. Let pm be its conductor. Then

∑

σ

η(σ−1ν,$n)η(σ−1ρ,$p)Cp+n(σ)

is equal to
η(ν−1ρ−1ν−1

0 ,$−m−`)zm+`
0 νρν0(−1)Cn−m−`(ν)Cp−m−`(ρ)

for all integers n and p.
(ii) Let ν be any character of UF and let ν̃ = ν−1ν−1

0 . Then

∑

σ

η(σ−1ν,$n)η(σ−1ν̃, $p)Cp+n(σ)

is equal to

zp0ν0(−1)δn,p + (|$| − 1)−1z`+1
0 Cn−1−`(ν)Cp−1−`(ν̃)−

−∞∑

−2−`

z−rCn+r(ν)Cp+r(ν̃)

for all integers n and p.

The left hand sums are taken over all characters σ of UF and δn,p is Kronecker’s delta. The
relation (

0 1
−1 0

)(
1 1
0 1

)(
0 1
−1 0

)
= −

(
1 −1
0 1

)(
0 1
−1 0

)(
1 −1
0 1

)

implies that

π(w)π

((
1 1
0 1

))
π(w)ϕ = ν0(−1)π

((
1 −1
0 1

))
π(w)π

((
1 −1
0 1

))
ϕ

for all ϕ in V0. Since π(w)ϕ is not necessarily in V0 we write this relation as

π(w)

{
π

((
1 1
0 1

))
π(w)ϕ− π(w)ϕ

}
+ π2(w)ϕ = ν0(−1)π

((
1 −1
0 1

))
π(w)π

((
1 −1
0 1

))
ϕ.

The term π2(w)ϕ is equal to ν0(−1)ϕ.

We compute the Mellin transforms of both sides

π

((
1 −1
0 1

))
ϕ̂(ν, t) =

∑

n

tn

{
∑

ρ

η(ρ−1ν,−$n)ϕ̂n(ρ)

}

and

π(w)π

((
1 −1
0 1

))
ϕ̂(ν, t) =

∑

n

tn
∑

p,ρ

η(ρ−1ν−1ν−1
0 ,−$p)z−P0 Cp+n(ν)ϕ̂p(ρ)

so that the Mellin transform of the right side is

ν0(−1)
∑

n

tn
∑

p,ρ,σ

η(σ−1ν,−$n)η(ρ−1σ−1ν−1
0 ,−$p)z−p0 Cp+n(σ)ϕ̂p(ρ). (2.11.1)
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On the other hand
π(w)ϕ̂(ν, t) =

∑

n

tn
∑

p

z−p0 Cp+n(ν)ϕ̂p(ν
−1ν−1

0 )

and

π

((
1 1
0 1

))
π(w)ϕ̂(ν, t) =

∑

n

tn
∑

p,ρ

z−p0 η(ρ−1ν,$n)Cp+n(ρ)ϕ̂p(ρ
−1ν−1

0 )

so that

π

((
1 1
0 1

))
π(w)ϕ̂(ν, t) − π(w)ϕ̂(ν, t)

is equal to ∑

n

tn
∑

p,ρ

z−p0 [η(ρνν0,$
n) − δ(ρνν0)]Cp+n(ρ−1ν−1

0 )ϕ̂p(ρ).

Here δ(ρνν0) is 1 if ρνν0 is the trivial character and 0 otherwise. The Mellin transform of the left hand
side is therefore
∑

tn
∑

p,r,ρ

z−p−r0 [η(ρν−1,$r)−δ(ρν−1)]Cn+r(ν)Cp+r(ρ
−1ν−1

0 )ϕ̂p(ρ)+ν0(−1)
∑

tnϕ̂n(ν). (2.11.2)

The coefficient of tnϕ̂p(ρ) in (2.11.1) is

ν0(−1)
∑

σ

η(σ−1ν,−$n) η(ρ−1σ−1ν−1
0 ,−$p)z−1

0 Cp+n(σ) (2.11.3)

and in (2.11.2) it is
∑

r

[η(ρν−1,$r) − δ(ρν−1)]z−p−r0 Cn+r(ν)Cp+r(ρ
−1ν−1

0 ) + ν0(−1)δn,ρδ(ρν
−1)I (2.11.4)

These two expressions are equal for all choice of n, p, ρ, and ν.

If ρ 6= ν and the conductor of νρ−1 is pm the gaussian sum η(ρν−1,$r) is zero unless r = −m−`.
Thus (2.11.4) reduces to

η(ρν−1,$−m−`)z−p−m−`
0 Cn−m−`(ν)Cp−m−`(ρ

−1ν−1
0 ).

Since

η(µ,−x) = µ(−1) η(µ, x)

the expression (2.11.3) is equal to

ρ−1ν(−1)
∑

σ

η(σ−1ν,$n) η(ρ−1σ−1ν−1
0 $p)z−p0 Cp+n(σ).

Replacing ρ by ρ−1ν−1
0 we obtain the first part of the proposition.

If ρ = ν then δ(ρν−1) = 1. Moreover, as is well­known and easily verified, η(ρν−1,$r) = 1 if

r ≥ −`,
η(ρν−1,$−`−1) = |$|(|$| − 1)−1

and η(ρν−1,$r) = 0 if r ≤ −`− 2. Thus (2.11.4) is equal to

ν0(−1)δn,pI+(|$|−1)−1z−p+`+1
0 Cn−`−1(ν)Cn−`−1(ν

−1ν−1
0 )−

−∞∑

r=−`−2

z−p−r0 Cn+r(ν)Cn+r(ν
−1ν−1

0 ).

The second part of the proposition follows.
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Proposition(2.12) (i) For every n, p, ν and ρ

Cn(ν)Cp(ρ) = Cp(ρ)Cn(ν)

(ii) There is no non-trivial subspace of X invariant under all the operators Cn(ν).
(iii) The space X is one-dimensional.

Suppose ρνν0 6= 1. The left side of the first identity in the previous proposition is symmetric in

the two pairs (n, ν) and (p, ρ). Since (η−1ρ−1ν−1
0 ,$−m−`) is not zero we conclude that

Cn−m−`(ν)Cp−m−`(ρ) = Cp−m−`(ρ)Cn−m−`(ν)

for all choices of n and p. The first part of the proposition is therefore valid in ρ 6= ν̃.

Now suppose ρ = ν̃. We are going to that if (p, n) is a given pair of integers and u belongs to X
then

Cn+r(ν)Cp+r(ν̃)u = Cp+r(ν̃)Cn+r(ν)u

for all r in Z. If r � 0 both sides are 0 and the relation is valid so the proof can proceed by induction

on r. For the induction one uses the second relation of Proposition 2.11 in the same way as the first was
used above.

Suppose X1 is a non­trivial subspace of X invariant under all the operators Cn(ν). Let V1 be
the space of all functions in V0 which take values in X1 and let V ′

1 be the invariant subspace generated

by V1. We shall show that all functions in V ′
1 take values in X1 so that V ′

1 is a non­trivial invariant

subspace of V . This will be a contradiction. If ϕ in V takes value inX1 and g belongs to PF then π(g)ϕ
also takes values in X1. Therefore all we need to do is show that if ϕ is in V1 then π(w)ϕ takes values

in X1. This follows immediately from the assumption and Proposition 2.10.
To prove (iii) we show that the operators Cn(ν) are all scalar multiples of the identity. Because

of (i) we need only show that every linear transformation of X which commutes with all the operators

Cn(ν) is a scalar. Suppose T is such an operator. If ϕ belongs to V let Tϕ be the function from F× to
X defined by

Tϕ(a) = T
(
ϕ(a)

)
.

Observe that Tϕ is still in V . This is clear if ϕ belongs to V0 and if ϕ = π(w)ϕ0 we see on examining

the Mellin transforms of both sides that

Tϕ = π(w)Tϕ0.

Since V = V0 +π(w)V0 the observation follows. T therefore defines a linear transformation of V which

clearly commutes with the action of any g in PF . If we can show that it commutes with the action of w
it will follow that it and, therefore, the original operator on X are scalars. We have to verify that

π(w)Tϕ = Tπ(w)ϕ

at least for ϕ on V0 and for ϕ = π(w)ϕ0 with ϕ0 in V0. We have already seen that the identity holds for
ϕ in V0. Thus if ϕ = π(w)ϕ0 the left side is

π(w)Tπ(w)ϕ0 = π2(w)Tϕ0 = ν0(−1)Tϕ0

and the right side is
Tπ2(w)ϕ0 = ν0(−1)Tϕ0.

Because of this proposition we can identifyX with C and regard the operatorsCn(ν) as complex
numbers. For each r the formal Laurent series C(ν, t) has only finitely many negative terms. We now

want to show that the realization of π on a space of functions on F× is, when certain simple conditions

are imposed, unique so that the series C(ν, t) are determined by the class of π and that conversely the
series C(ν, t) determine the class of π.
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Theorem 2.13 Suppose an equivalence class of infinite-dimensional irreducible admissible represen-
tations of GF is given. Then there exists exactly one space V of complex-valued functions on F×

and exactly one representation π of GF on V which is in this class and which is such that

π(b)ϕ = ξψ(b)ϕ

if b is in BF and ϕ is in V .

We have proved the existence of one such V and π. SupposeV ′ is another such space of functions

and π′ a representation of GF on V ′ which is equivalent to π. We suppose of course that

π′(b)ϕ = ξψ(b)ϕ

if b is in BF and ϕ is in V ′. Let A be an isomorphism of V with V ′ such that Aπ(g) = π′(g)A for all g.

Let L be the linear functional
L(ϕ) = Aϕ(1)

on V . Then

L

(
π

((
a 0
0 1

))
ϕ

)
= Aϕ(a)

so that A is determined by L. If we could prove the existence of a scalar λ such that L(ϕ) = λϕ(1) it
would follow that

Aϕ(a) = λϕ(a)

for all a such that Aϕ = λϕ. This equality of course implies the theorem.

Observe that

L

(
π

((
1 x
0 1

))
ϕ

)
= π′

((
1 x
0 1

))
Aϕ(1) = ψ(x)L(ϕ). (2.13.1)

Thus we need the following lemma.

Lemma 2.13.2 If L is a linear functional on V satisfying (2.13.1) there is a scalar λ such that

L(ϕ) = λϕ(1).

This is a consequence of a slightly different lemma.

Lemma 2.13.3 Suppose L is a linear functional on the space S(F×) of locally constant compactly
supported functions on F× such that

L

(
ξψ

((
1 x
0 1

))
ϕ

)
= ψ(x)L(ϕ)

for all ϕ in S(F×) and all x in F . Then there is a scalar λ such that L(ϕ) = λϕ(1).

Suppose for a moment that the second lemma is true. Then given a linear functional L on V
satisfying (2.13.1) there is a λ such that L(ϕ) = λϕ(1) for all ϕ in V0 = S(F×). Take x in F such that

ψ(x) 6= 1 and ϕ in V . Then

L(ϕ) = L

(
ϕ− π

((
1 x
0 1

))
ϕ

)
+ L

(
π

((
1 x
0 1

))
ϕ

)
.
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Since

ϕ− π

((
1 x
0 1

))
ϕ

is in V0 the right side is equal to

λϕ(1)− λψ(x)ϕ(1) + ψ(x)L(ϕ)

so that (
1 − ψ(x)

)
L(ϕ) = λ

(
1 − ψ(x)

)
ϕ(1)

which implies that L(ϕ) = λϕ(1).
To prove the second lemma we have only to show that ϕ(1) = 0 implies L(ϕ) = 0. If we set

ϕ(0) = 0 then ϕ becomes a locally constant function with compact support in F . Let ϕ′ be its Fourier
transform so that

ϕ(a) =

∫

F

ψ(ba)ϕ′(−b) db.

Let Ω be an open compact subset of F× containing 1 and the support of ϕ. There is an ideal a in F
so that for all a in Ω the function ϕ′(−b)ψ(ba) is constant on the cosets of a in F . Choose an ideal b

containing a and the support of ϕ′. If S is a set of representatives of b/a and if c is the measure of a

then

ϕ(a) = c
∑

b∈S

ψ(ba)ϕ′(−b).

If ϕ0 is the characteristic function of Ω this relation may be written

ϕ =
∑

b∈S

λbξψ

((
1 b
0 1

))
ϕ0

with λb = cϕ′(−b). If ϕ(1) = 0 then ∑

b∈S

λbψ(b) = 0

so that

ϕ =
∑

λb

{
ξψ

((
1 b
0 1

))
ϕ0 − ψ(b)ϕ0

}

It is clear that L(ϕ) = 0.
The representation of the theorem will be called the Kirillov model. There is another model

which will be used extensively. It is called the Whittaker model. Its properties are described in the next

theorem.
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Theorem 2.14 (i) For any ϕ in V set

Wϕ(g) =
(
π(g)ϕ

)
(1)

so that Wϕ is a function in GF . Let W (π, ψ) be the space of such functions. The map ϕ→Wϕ is
an isomorphism of V with W (π, ψ). Moreover

Wπ(g)ϕ = ρ(g)Wϕ

(ii) Let W (ψ) be the space of all functions W on GF such that

W

((
1 x
0 1

))
g = ψ(x)W (g)

for all x in F and g in G. Then W (π, ψ) is contained in W (ψ) and is the only invariant
subspace which transforms according to π under right translations.

Since

Wϕ

((
a 0
0 1

))
=

(
π

((
a 0
0 1

))
ϕ

)
(1) = ϕ(a)

the function Wϕ is 0 only if ϕ is. Since

ρ(g)W (h) = W (hg)

the relation
Wπ(g)ϕ = ρ(g)Wϕ

is clear. Then W (π, ψ) is invariant under right translation and transforms according to π.

Since

Wϕ

((
1 x
0 1

)
g

)
=

(
π

((
1 x
0 1

))
π(g)ϕ

)
(1) = ψ(x){π(g)ϕ(1)}

the space W (π, ψ) is contained in W (ψ). Suppose W is an invariant subspace of W (ψ) which trans­

forms according to π. There is an isomorphism A of V with W such that

A
(
π(g)ϕ

)
= ρ(g)(Aϕ).

Let

L(ϕ) = Aϕ(1).

Since

L
(
π(g)ϕ

)
= Aπ(g)ϕ(1) = ρ(g)Aϕ(1) = Aϕ(g)

the map A is determined by L. Also

L

(
π

((
1 x
0 1

))
ϕ

)
= Aϕ

((
1 x
0 1

))
= ψ(x)Aϕ(1) = ψ(x)L(ϕ)

so that by Lemma 2.13.2 there is a scalar λ such that

L(ϕ) = λϕ(1).
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Consequently Aϕ = λWϕ and W = W (π, ψ).
The realization of π on W (π, ψ) will be called the Whittaker model. Observe that the repre­

sentation of GF on W (ψ) contains no irreducible finite­dimensional representations. In fact any such
representation is of the form

π(g) = χ(detg).

If π were contained in the representation on W (ψ) there would be a nonzero function W on GF such

that

W

((
1 x
0 1

)
g

)
= ψ(x)χ(detg)W (e)

In particular taking g = e we find that

W

((
1 x
0 1

))
= ψ(x)W (e)

However it is also clear that

W

((
1 x
0 1

))
= χ

(
det

(
1 x
0 1

))
W (e) = W (e)

so that ψ(x) = 1 for all x. This is a contradiction. We shall see however that π is a constituent of the

representation on W (ψ). That is, there are two invariant subspaces W1 and W2 of W (ψ) such that W1

contains W2 and the representation of the quotient space W1/W2 is equivalent to π.

Proposition 2.15 Let π and π′ be two infinite-dimensional irreducible representations of GF realized
in the Kirillov form on spaces V and V ′. Assume that the two quasi-characters defined by

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω′(a)I

are the same. Let {C(ν, t)} and {C ′(ν, t)} be the families of formal series associated to the two
representations. If

C(ν, t) = C ′(ν, t)

for all ν then π = π′.

If ϕ belongs to S(F×) then, by hypothesis,

π(w)ϕ̂(ν, t) = π′(w)ϕ̂(ν, t)

so that π(w)ϕ = π′(w)ϕ. Since V is spanned by S(F×) and π(w)S(F×) and V ′ is spanned by S(F×)
and π′(w)S(F×) the spaces V and V ′ are the same. We have to show that

π(g)ϕ = π′(g)ϕ

for all ϕ in V and all g in GF . This is clear if g is in PF so it is enough to verify it for g = w.
We have already observed that π(w)ϕ0 = π′(w)ϕ0 if ϕ0 is in S(F×) so we need only show that

π(w)ϕ = π′(w)ϕ if ϕ is of the form π(w)ϕ0 with ϕ0 in S(F×). But π(w)ϕ = π2(w)ϕ0 = ω(−1)ϕ0 and,

since π(w)ϕ0 = π′(w)ϕ0, π′(w)ϕ = ω′(−1)ϕ0.
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Let NF be the group of matrices of the form

(
1 x
0 1

)

with x in F and let B be the space of functions on GF invariant under left translations by elements
of NF . B is invariant under right translations and the question of whether or not a given irreducible

representation π is contained in B arises. The answer is obviously positive when π = χ is one­

dimensional for then the function g → χ(detg) is itself contained in B.
Assume that the representation π which is given in the Kirillov form acts on B. Then there is a

map A of V into B such that
Aπ(g)ϕ = ρ(g)Aϕ

If L(ϕ) = Aϕ(1) then

L

(
ξψ

((
1 x
0 1

))
ϕ

)
= L(ϕ) (2.15.1)

for all ϕ in V and all x in F . Conversely given such a linear form the map ϕ→ Aϕ defined by

Aϕ(g) = L
(
π(g)ϕ

)

satisfies the relation Aπ(g) = ρ(g)A and takes V into B. Thus π is contained in B if an only if there is

a non­trivial linear form L on V which satisfies (2.15.1).

Lemma 2.15.2 If L is a linear form on S(F×) which satisfies (2.15.1) for all x in F and for all ϕ
in S(F×) then L is zero.

We are assuming that L annihilates all functions of the form

ξψ

((
1 x
0 1

))
ϕ− ϕ

so it will be enough to show that they span S(F×). If ϕ belongs to S(F×) we may set ϕ(0) = 0 and

regard ϕ as an element of S(F ). Let ϕ′ be its Fourier transform so that

ϕ(x) =

∫

F

ϕ′(−b)ψ(bx) db.

Let Ω be an open compact subset of F× containing the support of ϕ and let p−n be an ideal containing
Ω. There is an ideal a of F such that ϕ′(−b)ψ(bx) is, as a function of b, constant on cosets of a for all x
in p−n. Let b be an ideal containing both a and the support of ϕ′. If S is a set of representatives for the

cosets of a in b, if c is the measure of a, and if ϕ0 is the characteristic function of Ω then

ϕ(x) =
∑

b∈S

λbψ(bx)ϕ0(x)

if λb = cϕ′(−b). Thus

ϕ =
∑

b

λbξψ

((
1 b
0 1

))
ϕ0.



Chapter 1 33

Since ϕ(0) = 0 we have ∑

b

λb = 0

so that

ϕ =
∑

b

λb

{
ξψ

((
1 b
0 1

))
ϕ0 − ϕ0

}

as required.

Thus any linear form on V verifying (2.15.1) annihilates S(F×). Conversely any linear form on
V annihilating S(F×) satisfies (2.15.1) because

ξψ

((
1 x
0 1

))
ϕ− ϕ

is in S(F×) if ϕ is in V . We have therefore proved

Proposition 2.16 For any infinite-dimensional irreducible representation π the following two prop-
erties are equivalent:

(i) π is not contained in B.

(ii) The Kirillov model of π is realized in the space S(F×).

A representation satisfying these two conditions will be called absolutely cuspidal.

Lemma 2.16.1 Let π be an infinite-dimensional irreducible representation realized in the Kirillov
form on the space V . Then V0 = S(F×) is of finite codimension in V .

We recall that V = V0 + π(w)V0. Let V1 be the space of all ϕ in V0 with support in UF . An
element of π(w)V0 may always be written as a linear combination of functions of the form

π

((
$p 0
0 1

))
π(w)ϕ

with ϕ in V1 and p in Z. For each character µ of UF let ϕµ be the function in V1 such that ϕµ(ε) =
µ(ε)ν0(ε) for ε in UF . Then

ϕ̂µ(ν, t) = δ(νµν0)

and
π(w)ϕ̂µ(ν, t) = δ(νµ−1)C(ν, t).

Let ηµ = π(w)ϕµ. The space V is spanned by V0 and the functions

π

((
$p 0
0 1

))
ηµ

For the moment we take the following two lemmas for granted.
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Lemma 2.16.2 For any character µ of ÛF there is an integer n0 and a family of constants λi,
1 ≤ i ≤ p, such that

Cn(µ) =

p∑

i=1

λiCn−i(µ)

for n ≥ n0.

Lemma 2.16.3 There is a finite set S of characters of UF such that for ν not in S the numbers
Cn(ν) are 0 for all but finitely many n.

If µ is not in S the function ηµ is in V0. Choose µ in S and let Vµ be the space spanned by the
functions

π

((
$p 0
0 1

))
ηµ

and the functions ϕ in V0 satisfying ϕ(aε) = ϕ(a)µ−1(ε) for all a in F× and all ε in UF . It will be
enough to show that Vµ/Vµ ∩ V0 is finite­dimensional.

If ϕ is in Vµ then ϕ̂(ν, t) = 0 unless ν = µ and we may identify ϕ with the sequence {ϕ̂n(µ)}.
The elements of Vµ ∩ V0 are the elements corresponding to sequences with only finitely many nonzero

terms. Referring to Proposition 2.10 we see that all of the sequences satisfying the recursion relation

ϕ̂n(µ) =

p∑

i=1

λaϕ̂n−i(µ)

for n ≥ n1. The integer n1 depends on ϕ.
Lemma 2.16.1 is therefore a consequence of the following elementary lemma whose proof we

postpone to Paragraph 8.

Lemma 2.16.4 Let λi, 1 ≤ i ≤ p, be p complex numbers. Let A be the space of all sequences {an},
n ∈ Z for which there exist two integers n1 and n2 such that

an =
∑

1≤i≤p

λian−i

for n ≥ n1 and such that an = 0 for n ≤ n2. Let A0 be the space of all sequences with only a finite
number of nonzero terms. Then A/A0 is finite-dimensional.

We now prove Lemma 2.16.2. According to Proposition 2.11

∑

σ

η(σ−1ν,$n)η(σ−1ν̃, $p)Cp+n(σ)

is equal to

zp0ν0(−1)δn,p + (|$| − 1)−1z`+1
0 Cn−1−`(ν)Cp−1−`(ν̃)−

−∞∑

−2−`

z−r0 Cn+r(ν)Cp+r(ν̃).

Remember that p−` is the largest ideal on which ψ is trivial. Suppose first that ν̃ = ν.
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Take p = −` and n > −`. Then δ(n− p) = 0 and

η(σ−1ν,$n)η(σ−1ν,$p) = 0

unless σ = ν. Hence

Cn−`(ν) = (|$| − 1)−1z`+1
0 Cn−1−`(ν)C−2`−1(ν) −

−∞∑

−2−`

z−r0 Cn+r(ν)C−`+r(ν)

which, since almost all of the coefficients C−`+r(ν) in the sum are zero, is the relation required.
If ν 6= ν̃ take p ≥ −` and n > p. Then η(σ−1ν,$n) = 0 unless σ = ν and η(σ−1ν,$p) = 0

unless σ = ν̃. Thus

(|$| − 1)−1z`+1
0 Cn−1−`(ν)Cp−1−`(ν̃) −

−∞∑

2−`

z−r0 Cn+r(ν)Cp+r(ν̃) = 0. (2.16.5)

There is certainly at least one i for which Ci(ν̃) 6= 0. Take p− 1− ` ≥ i. Then from (2.16.5) we deduce
a relation of the form

Cn+r(ν) =

q∑

i=1

λiCn+r−i(ν)

where r is a fixed integer and n is any integer greater than p.
Lemma 2.16.3 is a consequence of the following more precise lemma. If pm is the conductor of a

character ρ we refer to m as the order of ρ.

Lemma 2.16.6 Let m0 be of the order ν0 and let m1 be an integer greater than m0. Write ν0 in any
manner in the form ν0 = ν−1

1 ν−1
2 where the orders of ν1 and ν2 are strictly less than m1. If the

order m of ρ is large enough

C−2m−2`(ρ) = ν−1
2 ρ(−1)z−m−`

0

η(ν−1
1 ρ,$−m−`)

η(ν2ρ−1,$−m−`)

and Cp(ρ) = 0 if p 6= −2m− 2`.

Suppose the order of ρ is at least m1. Then ρν1ν0 = ρν−1
2 is still of order m. Applying

Proposition 2.11 we see that

∑

σ

η(σ−1ν1,$
n+m+`)η(σ−1ρ,$p+m+`)Cp+n+2m+2`(σ)

is equal to

η(ν−1
1 ρ−1ν−1

0 ,$−m−`)zm+`
0 ν1ρν0(−1)Cn−m−`(ν)Cp−m−`(ρ)

for all integers n and p. Choose n such that Cn(ν1) 6= 0. Assume also that m + n + ` ≥ −` or that

m ≥ −2`− n. Then η(σ−1ν1,$
n+m+`) = 0 unless σ = ν1 so that

η(ν−1
1 ρ,$p+m+`)Cp+n+2m+2`(ν1) = η(ν2ρ

−1,$−m−`zm+`
0 ν1ρν0(−1)Cn(ν1)Cp(ρ).



Chapter 1 36

Since ν−1
1 ρ is still of order m the left side is zero unless p = −2m− 2`. The only term on the right side

that can vanish isCp(ρ). On the other hand if p = −2m− 2`we can cancel the termsCn(ν1) from both

side to obtain the relation of the lemma.
Apart from Lemma 2.16.4 the proof of Lemma 2.16.1 is complete. We have now to discuss its

consequences. If ω1 and ω2 are two quasi­characters of F× let B(ω1, ω2) be the space of all functions

ϕ on GF which satisfy

(i) For all g in GF , a1, a2 in F×, and x in F

ϕ

((
a1 x
0 a

)
g

)
= ω1(a1)ω2(a2)

∣∣∣∣
a1

a2

∣∣∣∣
1/2

ϕ(g).

(ii) There is an open subgroup U of GL(2, OF ) such that ϕ(gu) ≡ ϕ(g) for all u in U .
Since

GF = NF AF GL(2, OF )

where AF is the group of diagonal matrices the elements of B(ω1, ω2) are determined by their restric­
tions to GL(2, OF ) and the second condition is tantamount to the condition that ϕ be locally constant.

B(ω1, ω2) is invariant under right translations by elements of GF so that we have a representation
ρ(ω1, ω2) of GF on B(ω1, ω2). It is admissible.

Proposition 2.17 If π is an infinite-dimensional irreducible representation of GF which is not ab-
solutely cuspidal then for some choice of µ1 and µ2 it is contained in ρ(µ1, µ2).

We take π in the Kirillov form. Since V0 is invariant under the group PF the representation π
defines a representation σ of PF on the finite­dimensional space V/V0. It is clear that σ is trivial on

NF and that the kernel of σ is open. The contragredient representation has the same properties. Since
PF/NF is abelian there is a nonzero linear form L on V/V0 such that

σ̃

((
a1 x
0 a2

))
L = µ−1

1 (a1)µ
−1
1 (a2)L

for all a1, a2, and x. µ1 and µ2 are homomorphisms of F× into C× which are necessarily continuous.
L may be regarded as a linear form on V . Then

L

(
π

((
a1 x
0 a2

))
ϕ

)
= µ1(a1)µ2(a2)L(ϕ).

If ϕ is in V let Aϕ be the function

Aϕ(g) = L
(
π(g)ϕ

)

on GF . A is clearly an injection of V into B(µ1, µ2) which commutes with the action of GF .

Before passing to the next theorem we make a few simple remarks. Suppose π is an infinite­
dimensional irreducible representation of GF and ω is a quasi­character of F×. It is clear that W (ω ⊗
π, ψ) consists of the functions

g → W (g)ω(detg)

withW onW (π, ψ). If V is the space of the Kirillov model of π the space of the Kirillov model of ω⊗π
consists of the functions a→ ϕ(a)ω(a) with ϕ in V . To see this take π in the Kirillov form and observe
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first of all that the map A : ϕ → ϕω is an isomorphism of V with another space V ′ on which GF acts
by means of the representation π′ = A(ω ⊗ π)A−1. If

b

(
α x
0 1

)

belongs to BF and ϕ′ = ϕω then

π′(b)ϕ′(a) = ω(a){ω(α)ψ(ax)ϕ(αa)} = ψ(ax)ϕ′(αa)

so that π′(b)ϕ′ = ξψ(b)ϕ′. By definition then π′ is the Kirillov model of ω⊗ π. Let ω1 be the restriction

of ω to UF and let z1 = ω($). If ϕ′ = ϕω then

ϕ̂′(ν, t) = ϕ̂(νω1, z1t).

Thus

π′(w)ϕ′(ν, t) = π(w)ϕ̂(νω1, z1t) = C(νω1, z1t)ϕ̂(v−1ω−1
1 ν−1

0 , z−1
0 z−1

1 t−1).

The right side is equal to

C(νω1, z1t)ϕ̂
′(ν−1ν−1

0 ω−1
1 , z−1

0 z−2
1 t−1)

so that when we replace π by ω ⊗ π we replace C(ν, t) by C(νω1, z1t).

Suppose ψ′(x) = ψ(bx) with b in F× is another non­trivial additive character. Then W (π, ψ′)
consists of the functions

W ′(g) = W

((
b 0
0 1

)
g

)

with W in W (π, ψ).
The last identity of the following theorem is referred to as the local functional equation. It is the

starting point of our approach to the Hecke theory.

Theorem 2.18 Let π be an irreducible infinite-dimensional admissible representation of GF .

(i) If ω is the quasi-character of GF defined by

π

((
a 0
0 a

))
= ω(a)I

then the contragredient representation π̃ is equivalent to ω−1 ⊗ π.

(ii) There is a real number s0 such that for all g in GF and all W in W (π, ψ) the integrals

∫

F×

W

((
a 0
0 1

)
g

)
|a|s−1/2 d×a = Ψ(g, s,W )

∫

F×

W

((
a 0
0 1

)
g

)
|a|s−1/2ω−1(a) d×a = Ψ̃(g, s,W )

converge absolutely for Re s > s0.

(iii) There is a unique Euler factor L(s, π) with the following property: if

Ψ(g, s,W ) = L(s, π)Φ(g, s,W )
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then Φ(g, s,W ) is a holomorphic function of s for all g and all W and there is at least one
W in W (π, ψ) such that

Φ(e, s,W ) = as

where a is a positive constant.

(iv) If
Ψ̃(g, s,W ) = L(s, π̃)Φ̃(g, s,W )

there is a unique factor ε(s, π, ψ) which, as a function of s, is an exponential such that

Φ̃

((
0 1
−1 0

)
g, 1 − s,W

)
= ε(s, π, ψ)Φ(g, s,W )

for all g in GF and all W in W (π, ψ).

To say that L(s, π) is an Euler product is to say that L(s, π) = P−1(q−s) where P is a polynomial
with constant term 1 and q = |$|−1 is the number of elements in the residue field. If L(s, π) and

L′(s, π) were two Euler factors satisfying the conditions of the lemma their quotient would be an entire
function with no zero. This clearly implies uniqueness.

If ψ is replaced by ψ′ where ψ′(x) = ψ(bx) the functions W are replaced by the functions W ′

with

W ′(g) = W

((
b 0
0 1

)
g

)

and

Ψ(g, s,W ′) = |b|1/2−sΨ(g, s,W )

while
Ψ(g, s,W ′) = |b|1/2−sω(b)Ψ̃(g, s,W ).

Thus L(s, π) will not depend on ψ. However

ε(s, π, ψ′) = ω(b) |b|2s−1ε(s, π, ψ).

According to the first part of the theorem if W belongs to W (π, ψ) the function

W̃ (g) = W (g)ω−1(detg)

is in W (π̃, ψ). It is clear that

Ψ̃(g, s,W ) = ω(detg)Ψ(g, s, W̃ )

so that if the third part of the theorem is valid when π is replaced by π̃ the function Φ̃(g, s,W ) is a

holomorphic function of s. Combining the functional equation for π and for π̃ one sees that

ε(s, π, ψ)ε(1 − s, π̃, ψ) = ω(−1).

Let V be the space on which the Kirillov model of π acts. For every W in W (π, ψ) there is a

unique ϕ in V such that

W

((
a 0
0 1

))
= ϕ(a).
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If π is itself the canonical model

π(w)ϕ(a) = W

((
a 0
0 1

)
w

)

where

w =

(
0 1
−1 0

)
.

If χ is any quasi­character of F× we set

ϕ̂(χ) =

∫

F×

ϕ(a)χ(a) d×a

if the integral converges. If χ0 is the restriction of χ to UF then

ϕ̂(χ) = ϕ̂
(
χ0, χ($)

)
.

Thus if αF is the quasi­character αF (x) = |x| and the appropriate integrals converge

Ψ(e, s,W ) = ϕ̂(α
s−1/2
F ) = ϕ̂(1, q1/2−s)

Ψ(e, s,W ) = ϕ̂(α
s−1/2
F ω−1) = ϕ̂(ν−1

0 , z−1
0 q1/2−s)

if ν0 is the restriction of ω to UF and z0 = ω(ϕ). Thus if the theorem is valid the series ϕ̂(1, t) and

ϕ̂(ν−1
0 , t) have positive radii of convergence and define functions which are meromorphic in the whole

t­plane.
It is also clear that

Ψ(w, 1 − s,W ) = π(w)ϕ̂(ν−1
0 , z−1

0 qs−1/2).

If ϕ belongs to V0 then

π(w)ϕ̂(ν−1
0 , z−1

0 q−1/2t) = C(ν−1
0 , z

−1/2
0 q−1/2t)ϕ̂(1, q1/2t−1).

Choosing ϕ in V0 such that ϕ̂(1, t) ≡ 1 we see that C(ν−1
0 , t) is convergent in some disc and has an

analytic continuation to a function meromorphic in the whole plane.

Comparing the relation

π(w)ϕ̂(ν−1
0 z−1

0 q−1/2qs) = C(ν−1
0 , z

−1/2
0 q−1/2qs)ϕ̂(1, q1/2q−s)

with the functional equation we see that

C(ν−1
0 , z−1

0 q−1/2qs) =
L(1 − s, π̃)ε(s, π, ψ)

L(s, π)
. (2.18.1)

Replacing π by χ⊗ π we obtain the formula

C(ν−1
0 χ−1

0 , z−1
0 z−1

1 q−1/2qs) =
L(1− s, χ−1 ⊗ π̃)ε(s, χ⊗ π, ψ)

L(s, χ⊗ π)
.

Appealing to Proposition 2.15 we obtain the following corollary.
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Corollary 2.19 Let π and π′ be two irreducible infinite-dimensional representations of GF . Assume
that the quasi-characters ω and ω′ defined by

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω′(a)I

are equal. Then π and π′ are equivalent if and only if

L(1− s, χ−1 ⊗ π̃)ε(s, χ⊗ π, ψ)

L(s, χ⊗ π)
=
L(1 − s, χ−1 ⊗ π̃′)ε(s, χ⊗ π′, ψ)

L(s, χ⊗ π′)

for all quasi-characters.

We begin the proof of the first part of the theorem. If ϕ1 and ϕ2 are numerical functions on F×

we set

〈ϕ1, ϕ2〉 =

∫
ϕ1(a)ϕ2(−a) d

×a.

The Haar measure is the one which assigns the measure 1 to UF . If one of the functions is in S(F×)
and the other is locally constant the integral is certainly defined. By the Plancherel theorem for UF

〈ϕ,ϕ′〉 =
∑

n

∑

ν

ν(−1)ϕ̂n(ν)ϕ̂
′
n(ν

−1).

The sum is in reality finite. It is easy to se that if b belongs to B

〈ξψ(b)ϕ, ξψ(b)ϕ′)〉 = 〈ϕ,ϕ′〉.

Suppose π is given in the Kirillov form and acts on V . Let π′, the Kirillov model of ω−1 ⊗ π,

act on V ′. To prove part (i) we have only to construct an invariant non­degenerate bilinear form β on
V × V ′. If ϕ belongs to V0 and ϕ′ belongs to V ′ or if ϕ belongs to V and ϕ′ belongs to V ′

0 we set

β(ϕ,ϕ′) = 〈ϕ,ϕ′〉.

If ϕ and ϕ′ are arbitrary vectors in V and V ′ we may write ϕ = ϕ1 + π(w)ϕ2 and ϕ′ = ϕ1 + π′(w)ϕ′
2

with ϕ, ϕ2 in V0 and ϕ′
1, ϕ′

2 in V ′
0 . We want to set

β(ϕ,ϕ′) = 〈ϕ1, ϕ
′
1〉 + 〈ϕ1, π

′(w)ϕ′
2〉 + 〈π(w)ϕ2, ϕ

′
1〉 + 〈ϕ2, ϕ

′
2〉.

The second part of the next lemma shows that β is well defined.

Lemma 2.19.1 Let ϕ and ϕ′ belong to V0 and V ′
0 respectively. Then

(i)
〈π(w)ϕ,ϕ′〉 = ν0(−1)〈ϕ, π′(w)ϕ′〉

(ii) If either π(w)ϕ belongs to V0 or π′(w)ϕ′ belongs to V ′
0 then

〈π(w)ϕ, π′(w)ϕ′〉 = 〈ϕ,ϕ′〉.
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The relation
π(w)ϕ̂(ν, t) =

∑

n

tn
∑

p

Cn+p(ν)ϕ̂p(ν
−1ν−1

0 )z−p0

implies that

〈π(w)ϕ,ϕ′〉 =
∑

n,p,ν

ν(−1)Cn+p(ν)ϕ̂p(ν
−1ν−1

0 )z−p0 ϕ̂′
n(ν

−1). (2.19.2)

Replacing π by π′ replaces ω by ω−1, ν0 by ν−1
0 , z0 by z−1

0 , and C(ν, t) by C(νν−1
0 , z−1

0 t). Thus

〈ϕ, π(w)ϕ′〉 =
∑

n,p,ν

ν(−1)Cn+p(νν
−1
0 )z−n0 ϕ̂′

p(ν
−1ν0)ϕ̂n(ν

−1). (2.19.3)

Replacing ν by νν0 in (2.19.3) and comparing with (2.19.2) we obtain the first part of the lemma.

Because of the symmetry it will be enough to consider the second part when π(w)ϕ belongs to
V0. By the first part

〈π(w)ϕ, π′(w)ϕ′〉 = ν0(−1)〈π2(w)ϕ,ϕ′〉 = 〈ϕ,ϕ′〉.

It follows immediately from the lemma that

β
(
π(w)ϕ, π′(w)ϕ′

)
= β(ϕ,ϕ′)

so that to establish the invariance of β we need only show that

β
(
π(p)ϕ, π′(p)ϕ′

)
= β(ϕ,ϕ′)

for all triangular matrices p. If ϕ is in V0 or ϕ′ is in V ′
0 this is clear. We need only verify it for ϕ in

π(w)V0 and ϕ′ in π′(w)V ′
0 .

If ϕ is in V0, ϕ′ is in V ′
0 and p is diagonal then

β
(
π(p)π(w)ϕ, π′(p)π′(w)ϕ′

)
= β

(
π(w)π(p1)ϕ, π

′(w)π′(p1)ϕ
′
)

where p1 = w−1pw is also diagonal. The right side is equal to

β
(
π(p1)ϕ, π

′(p1)ϕ
′
)

= β(ϕ,ϕ′) = β
(
π(w)ϕ, π′(w)p′

)
.

Finally we have to show that*

β

(
π

((
1 x
0 1

))
ϕ, π′

((
1 x
0 1

))
ϕ′

)
= β(ϕ,ϕ′) (2.19.2)

for all x in F and all ϕ and ϕ′. Let ϕi, 1 < i < r, generate V modulo V0 and let ϕ′
j , 1 ≤ j ≤ r′, generate

V ′ modulo V ′
0 . There certainly is an ideal a of F such that

π

((
1 x
0 1

))
ϕi = ϕi

* The tags on Equations 2.19.2 and 2.19.3 have inadvertently been repeated.
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and

π′

((
1 x
0 1

))
ϕ′
j = ϕ′

j

for all i and j if x belongs to a. Then

β

(
π

((
1 x
0 1

))
ϕi, π

′

((
1 x
0 1

))
ϕ′
j

)
= β(ϕi, ϕj).

Since 2.19.2 is valid if x is in a and ϕ is in V0 or ϕ′ is in V ′
0 it is valid for all ϕ and ϕ′ provided that x is

in a. Any y in F may be written as ax with a in F× and x in a. Then

(
1 y
0 1

)
=

(
a 0
0 1

)(
1 x
0 1

)(
a−1 0
0 1

)

and it follows readily that

β

(
π

((
1 y
0 1

))
$,π′

((
1 y
0 1

))
ϕ′

)
= β(ϕ,ϕ′).

Sinceβ is invariant and not identically zero it is non­degenerate. The rest of the theorem will now

be proved for absolutely cuspidal representations. The remaining representations will be considered
in the next chapter. We observe that since W (π, ψ) is invariant under right translations the assertions

need only be established when g is the identity matrix e.
If π is absolutely cuspidal then V = V0 = S(F×) and W

((
a
0

0
1

))
= ϕ(a) is locally constant with

compact support. Therefore the integrals defining Ψ(e, s,W ) and Ψ̃(e, s,W ) are absolutely convergent

for all values of s and the two functions are entire. We may take L(s, π) = 1. If ϕ is taken to be the

characteristic function of UF then Φ(e, s,W ) = 1.
Referring to the discussion preceding Corollary 2.19 we see that if we take

ε(s, π, ψ) = C(ν−1
0 , z−1

0 q−1/2qs)

the local functional equation of part (iv) will be satisfied. It remains to show that ε(s, π, ψ) is an
exponential function or, what is at least ast strong, to show that, for all ν, C(ν, t) is a multiple of a

power of t. It is a finite linear combination of powers of t and if it is not of the form indicated it has a

zero at some point different form 0. C(νν−1
0 , z−1

0 t−1) is also a linear combination of powers of t and
so cannot have a pole except at zero. To show that C(ν, t) has the required form we have only to show

that
C(ν, t)C(ν−1ν−1

0 , z−1
0 t−1) = ν0(−1). (2.19.3)

Choose ϕ in V0 and set ϕ′ = π(w)ϕ. We may suppose that ϕ′(ν, t) 6= 0. The identity is obtained by

combining the two relations

ϕ̂′(ν, t) = C(ν, t)ϕ̂(ν−1ν−1
0 , z−1

0 t−1)

and

ν0(−1)ϕ̂(ν−1ν−1
0 , t) = C(ν−1ν−1

0 , t)ϕ̂′(ν, z−1
0 t−1).

We close this paragraph with a number of facts about absolutely cuspidal representations which
will be useful later.
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Proposition 2.20 Let π be an absolutely cuspidal representation of GF . If the quasi-character ω
defined by

π

((
a 0
0 a

))
= ω(a)I

is actually a character then π is unitary.

As usual we take π and π̃ in the Kirillov form. We have to establish the existence of a positive­

definite invariant hermitian form on V . We show first that if ϕ belongs to V and ϕ̃ belongs to Ṽ then
there is a compact set Ω in GF such that if

ZF =

{(
a 0
0 a

) ∣∣∣∣ a ∈ F

}

the support of 〈π(g)ϕ, ϕ̃〉, a function of g, is contained in ZFΩ. IfAF is the group of diagonal matrices

GF = GL(2, OF )AF GL(2, OF ). Since ϕ and ϕ̃ are both invariant under subgroups of finite index in
GL(2, OF ) it is enough to show that the function 〈π(b)ϕ, ϕ̃〉 on AF has support in a set ZFΩ with Ω
compact. Since

〈π

((
a 0
0 a

)
b

)
ϕ, ϕ̃〉 = ω(a)〈π(b)ϕ, ϕ̃〉

it is enough to show that the function

〈π

((
a 0
0 1

))
ϕ, ϕ̃〉

has compact support in F×. This matrix element is equal to

∫

F×

ϕ(ax)ϕ̃(−x) d×x.

Since ϕ and ϕ̃ are functions with compact support the result is clear.

Choose ϕ̃0 6= 0 in Ṽ and set

(ϕ1, ϕ2) =

∫

ZF \GF

〈π(g)ϕ1, ϕ̃0〉〈π(g)ϕ2, ϕ̃0〉 dg.

This is a positive invariant hermitian form on V .

We have incidentally shown that π is square­integrable. Observe that even if the absolutely

cuspidal representation π is not unitary one can choose a quasi­character χ such that χ⊗ π is unitary.

If π is unitary there is a conjugate linear map A : V → Ṽ defined by

(ϕ1, ϕ2) = 〈ϕ1, Aϕ2〉.

Clearly Aξψ(b) = ξψ(b)A for all b in BF . The map A0 defined by

A0ϕ(a) = ϕ(−a)

has the same properties. We claim that

A = λA0

with λ in C×. To see this we have only to apply the following lemma to A−1
0 A.
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Lemma 2.21.1. Let T be a linear operator on S(F ×) which commutes with ξψ(b) for all b in BF .
Then T is a scalar.

Since ξψ is irreducible it will be enough to show that T has an eigenvector. Let p−` be the largest
ideal on which ψ is trivial. Let µ be a non­trivial charcter ofUF and let pn be its conductor. T commutes

with the operator

S =

∫

UF

µ−1(ε)ξψ

((
ε 0
0 1

)(
1 $−`−n

0 1

))
dε

and it leaves the range of the restriction of S to the functions invariant under UF invariant. If ϕ is such
a function

Sϕ(a) = ϕ(a)

∫

UF

µ−1(ε)ψ(aε$−`−n) dε.

The Gaussian sum is 0 unless a lies in UF . Therefore Sϕ is equal to ϕ(1) times the function which is

zero outside of UF and equals µ on UF . Since T leaves a one­dimensional space invariant it has an
eigenvector.

Since A = λA0 the hermitian form (ϕ1, ϕ2) is equal to

λ

∫

F×

ϕ1(a)ϕ2(a) d
×a.

Proposition 2.21.2. Let π be an absolutely cuspidal representation of GF for which the quasi-
character ω defined by

π

((
a 0
0 a

))
= ω(a)I

is a character.

(i) If π is in the Kirillov form the hermitian form∫

F×

ϕ1(a)ϕ2(a) d
×a

is invariant.

(ii) If |z| = 1 then |C(ν, z)| = 1 and if Res = 1/2

|ε(s, π, ψ)| = 1.

Since |z0| = 1 the second relation of part (ii) follows from the first and the relation

ε(s, π, ψ) = C(ν−1
0 , qs−1/2z−1

0 ).

If n is in Z and ν is a character of UF let

ϕ(ε$m) = δn,mν(ε)ν0(ε)

for m in Z and ε in UF . Then ∫

F×

|ϕ(a)|2 da = 1.

If ϕ′ = π(w)ϕ and C(ν, t) = C`(ν)t
` then

ϕ′(ε$m) = δ`−n,mC`(ν)z
−n
0 ν−1(ε).

Since |z0| = 1 ∫

F×

|ϕ′(a)|2 da = |C`(ν)|
2.

Applying the first part of the lemma we see that, if |z| = 1, both |C`(ν)|
2 and |C(ν, z)|2 = |C`(ν)|

2 |z|2`

are 1.
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Proposition 2.22. Let π be an irreducible representation of GF . It is absolutely cuspidal if and only
if for every vector v there is an ideal a in F such that

∫

a

π

((
1 x
0 1

))
v dx = 0.

It is clear that the condition cannot be satisfied by a finite dimensional representation. Suppose

that π is infinite dimensional and in the Kirillov form. If ϕ is in V then

∫

a

π

((
1 x
0 1

))
ϕdx = 0

if and only if

ϕ(a)

∫

a

ψ(ax) dx = 0

for all a. If this is so the character x→ ψ(ax) must be non­trivial on a for all a in the support of ϕ. This
happens if and only if ϕ is in S(F×). The proposition follows.

Proposition 2.23. Let π be an absolutely cuspidal representation and assume the largest ideal on
which ψ is trivial is OF . Then, for all characters ν, Cn(ν) = 0 if n ≥ −1.

Take a character ν and choose n1 such that Cn1
(ν) 6= 0. Then Cn(ν) = 0 for n 6= n1. If

ν̃ = ν−1ν−1
0 then, as we have seen,

C(ν, t)C(ν̃, t−1z−1
0 ) = ν0(−1)

so that
Cn(ν̃) = 0

for n 6= n1 and
Cn1

(ν)Cn1
(ν̃) = ν0(−1)zn1

0 .

In the second part of Proposition 2.11 take n = p = n1 + 1 to obtain

∑

σ

η(σ−1ν,$n1+1)η(σ−1ν̃, $n1+1)C2n1+2(σ) = zn1+1
0 ν0(−1) + (|$| − 1)−1z0Cn1

(ν)Cn1
(ν̃).

The right side is equal to

zn1+1
0 ν0(−1) ·

|$|

|$| − 1
.

Assume n1 ≥ −1. Then η(σ−1ν,$n1+1) is 0 unless σ = ν and η(σ−1ν̃, $n1+1) is 0 unless σ = ν̃. Thus

the left side is 0 unless ν = ν̃. However if ν = ν̃ the left side equals C2n1+2(ν). Since this cannot be

zero 2n1 + 2 must be equal n1 so that n1 = −2. This is a contradiction.
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§3. The principal series for non-archimedean fields. In order to complete the discussion of the previous
pragraph we have to consider representations which are not absolutely cuspidal. This we shall now

do. We recall that if µ1, µ2 is a pair of quasi­characters of F× the space B(µ1, µ2) consists of all locally
constant functions f on GF which satisfy

f

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)

∣∣∣∣
a1

a2

∣∣∣∣
1/2

f(g) (3.1)

for all g in GF , a1, a2, in F×, and x in F . ρ(µ1, µ2) is the representation of GF on B(µa, µ2).

Because of the Iwasawa decomposition GF = PFGL(2, OF ) the functions in B(µ1, µ2) are

determined by their restrictions to GL(2, OF ). The restriction can be any locally constant function on
GL(2, OF ) satisfying

f

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)f(g)

for all g inGL(2, OF ), a1, a2 in UF , and x inOF . If U is an open subgroup ofGL(2, OF ) the restriction
of any function invariant under U is a function on GL(2, OF )/U which is a finite set. Thus the space

of all such functions is finite dimensional and as observed before ρ(µ1, µ2) is admissible.
Let F be the space of continuous functions f on GF which satisfy

f

((
a1 x
0 a2

)
g

)
=

∣∣∣∣
a1

a2

∣∣∣∣ f(g)

for all g in GF , a1, a2 in F×, and x in F . We observe that F contains B(α
1/2
F , α

−1/2
F ). GF acts on F.

The Haar measure on GF if suitably normalized satisfies

∫

GF

f(g) dg =

∫

NF

∫

AF

∫

GL(2,OF )

∣∣∣∣
a1

a2

∣∣∣∣
−1

f(nak) dn da dk

if

a =

(
a1 0
0 a2

)
.

It follows easily from this that ∫

GL(2,OF )

f(k) dk

is a GF ­invariant linear form on F. There is also a positive constant c such that

∫

GF

f(g) dg = c

∫

NF

∫

AF

∫

NF

∣∣∣∣
a1

a2

∣∣∣∣
−1

f

(
na

(
0 1
−1 0

)
n1

)
dn da dn1.

Consequently ∫

GL(2,OF )

f(k) dk = c

∫

F

f

((
0 1
−1 0

)(
1 x
0 1

))
dx.

If ϕ1 belongs to B(µ1, µ2) and ϕ2 belongs to B(µ−1
1 , µ−1

2 ) then ϕ1ϕ2 belongs to F and we set

〈ϕ1, ϕ2〉 =

∫

GL(2,OF )

ϕ1(k)ϕ2(k) dk.
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Clearly
〈ρ(g)ϕ1, ρ(g)ϕ2〉 = 〈ϕ1, ϕ2〉

so that this bilinear form is invariant. Since both ϕ1 and ϕ2 are determined by their restrictions to

GL(2, OF ) it is also non­degenerate. Thus ρ(µ−1
1 , µ−1

2 ) is equivalent to the contragredient of ρ(µ1, µ2).
In Proposition 1.6 we introduced a representation r of GF and then we introduced a representa­

tion rΩ = rµ1,µ2
. Both representations acted on S(F 2). If

Φ˜(a, b) =

∫

F

Φ(a, y)ψ(by) dy

is the partial Fourier transform

[r(g)Φ]̃ = ρ(g)Φ˜ (3.1.1)

and
rµ1,µ2

(g) = µ1(detg) |detg|1/2r(g). (3.1.2)

We also introduced the integral

θ(µ1, µ2; Φ) =

∫
µ1(t)µ

−1
2 (t)Φ(t, t−1) d×t

and we set

WΦ(g) = θ(µ1, µ2; rµ1,µ2
(g)Φ). (3.1.3)

The space of functions WΦ is denoted W (µ1, µ2;ψ).
If ω is a quasi­character of F× and if |ω($)| = |$|s with s > 0 the integral

z(ω,Φ) =

∫

F×

Φ(0, t)ω(t) d×t

is defined for all Φ in S(F 2). In particular if |µ1($)µ−1
1 ($)| = |$|s with s > −1 we can consider the

function
fΦ(g) = µ1(detg) |detg|1/2z(αFµ1µ

−1
2 , ρ(g)Φ)

on GF . Recall that αF (a) = |a|. Clearly

ρ(h)fΦ = fΨ (3.1.4)

if
Ψ = µ1(deth) |deth|1/2ρ(h)Φ.

We claim that fΦ belongs to B(µ1, µ2). Since the stabilizer of every Φ under the representation

g → µ1(detg) |detg|1/2ρ(g) is an open subgroup of GF the functions fΦ are locally constant. Since the

space of functions fΦ is invariant under right translations we need verify (3.1) only for g = e.

fΦ

((
a1 x
0 a2

))
= z

(
µ1µ

−1
2 αF , ρ

((
a1 x
0 a2

))
Φ

)
µ(a1a2) |a1a2|

1/2.

By definition the right side is equal to

µ1(a1a2)|a1a2|
1/2

∫
µ1(t)µ

−1
2 (t) |t|Φ(0, a2t) d

×t.

Changing variables we obtain

µ1(a1)µ2(a2)

∣∣∣∣
a1

a2

∣∣∣∣
1/2 ∫

µ1(t)µ
−1
2 (t) |t|Φ(0, t) d×t.

The integral is equal to fΦ(e). Hence our assertion.
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Proposition 3.2. Assume |µ1($)µ−1
2 ($)| = |$|s with s > −1.

(i) There is a linear transformation A of W (µ1, µ2;ψ) into B(µ1, µ2) which for all Φ in S(F 2),
sends WΦ to f

Φ˜.

(ii) A is bijective and commutes with right translations.

To establish the first part of the proposition we have to show that fΦ∼ is 0 if WΦ is. Since

NFAF

(
0 1
−1 0

)
NF is a dense subset of GF this will be a consequence of the following lemma.

Lemma 3.2.1. If the assumptions of the proposition are satisfied then, for all Φ in S(F 2), the
function

a −→ µ−1
2 (a) |a|−1/2WΦ

((
a 0
0 1

))

is integrable with respect to the additive Haar measure on F and

∫
WΦ

((
a 0
0 1

))
µ−1

2 (a) |a|−1/2ψ(ax) da = fΦ∼

((
0 −1
1 0

)(
1 x
0 1

))
.

By definition

fΦ∼

((
0 −1
1 0

)(
1 x
0 1

))
=

∫
Φ∼(t, tx)µ1(t)µ

−1
2 (t) |t| d×t

while

WΦ

((
a 0
0 1

))
µ−1

2 (a) |a|−1/2 = µ1(a)µ
−1
2 (a)

∫
Φ(at, t−1)µ1(t)µ

−1
2 (t) d×t. (3.2.2)

After a change of variable the right side becomes

∫
Φ(t, at−1)µ1(t)µ

−1
2 (t) d×t.

Computing formally we see that

∫
WΦ

((
a 0
0 1

))
µ−1

2 (a) |a|−1/2ψ(ax) da

is equal to

∫

F

ψ(ax)

{∫

F×

Φ(t, at−1)µ1(t)µ
−1
2 (t) d×t

}
da =

∫

F×

µ1(t)µ
−1
2 (t)

{∫

F

Φ(t, at−1)ψ(ax) da

}
d×t

which in turn equals

∫

F×

µ1(t)µ
−1
2 (t) |t|

{∫

F

Φ(t, a)ψ(axt) da

}
d×t =

∫

F×

Φ˜(t, xt)µ1(t)µ
−1
2 (t) |t| d×t.
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Our computation will be justified and the lemma proved if we show that the integral

∫

F×

∫

F

|Φ(t, at−1)µ1(t)| d
×t da

is convergent. It equals ∫

F×

∫

F

|Φ(t, a)| |t|s+1 d×t da

which is finite because s is greater than −1.

To show that A is surjective we show that every function f in B(µ1, µ2) is of the form fΦ for
some Φ in S(F 2). Given f let Φ(x, y) be 0 if (x, y) is not of the form (0, 1)g for some g in GL(2, OF )
but if (x, y) is of this form let Φ(x, y) = µ−1

1 (detg)f(g). It is easy to see that Φ is well­defined and
belongs to S(F 2). To show that f = fΦ we need only show that f(g) = fΦ(g) for all g in GL(2, OF ).

If g belongs to GL(2, OF ) then Φ((0, t)g) = 0 unless t belongs to UF so that

fΦ(g) = µ1(detg)

∫

UF

Φ((0, t)g)µ1(t)µ
−1
2 (t) dt.

Since

Φ((0, t)g) = µ−1
1 (t)µ−1

2 (detg)f

((
1 0
0 t

)
g

)
= µ−1

1 (t)µ2(t)µ
−1
2 (detg)f(g)

the required equality follows.

Formulae (3.1.2) to (3.1.4) show that A commutes with right translations. Thus to show that A is
injective we have to show that WΦ(e) = 0 if f

Φ˜ is 0. It follows from the previous lemma that

WΦ

((
a 0
0 1

))

is zero for almost all a if f
Φ˜ is 0. Since WΦ

((
a 0
0 1

))
is a locally constant function on F× it must

vanish everywhere.

We have incidentally proved the following lemma.

Lemma 3.2.3 Suppose |µ1($)µ−1
2 ($)| = |$|s with s > −1 and W belongs to W (µ1, µ2;ψ). If

W

((
a 0
0 1

))
= 0

for all a in F× then W is 0.

Theorem 3.3 Let µ1 and µ2 be two quasi-characters of F×.

(i) If neither µ1µ
−1
2 nor µ−1

1 µ2 is αF the representations ρ(µ1, µ2) and ρ(µ2, µ2) are equivalent
and irreducible.

(ii) If µ1µ
−1
2 = αF write µ1 = χα

1/2
F , µ2 = χα

−1/2
F . Then B(µ1, µ2) contains a unique proper

invariant subspace Bs(µ1, µ2) which is irreducible. B(µ2, µ1) also contains a unique proper
invariant subspace Bf (µ2, µ1). It is one-dimensional and contains the function χ(detg).
Moreover the GF -modules Bs(µ1, µ2) and B(µ2, µ1)/Bf(µ2, µ1) are equivalent as are the
modules B(µ1, µ2)/Bs(µ1, µ2) and Bf (µ2, µ1).

We start with a simple lemma.
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Lemma 3.3.1 Suppose there is a non-zero function f in B(µ1, µ2) invariant under right translations

by elements of NF . Then there is a quasi-character χ such that µ1 = χα
−1/2
F and µ2 = χα

1/2
F and

f is a multiple of χ.

Since NFAF
(

0
1
−1
0

)
NF is an open subset of GF the function f is determined by its value at(

0
1
−1
0

)
. Thus if µ1 and µ2 have the indicated form it must be a multiple of χ.
If c belongs to F× then

(
1 0
c 1

)
=

(
c−1 1
0 c

)(
0 −1
1 0

)(
1 c−1

0 1

)
.

Thus if f exists and ω = µ2µ
−1
1 α−1

F

f

((
1 0
c 1

))
= ω(c)f

((
0 −1
1 0

))
.

Since f is locally constant there is an ideal a in F such that ω is constant on a − {0}. It follows
immediately that ω is identically 1 and that µ1 and µ2 have the desired form.

The next lemma is the key to the theorem.

Lemma 3.3.2. If |µ1µ2($)| = |$|s with s > −1 there is a minimal non-zero invariant subspace X
of B(µ1, µ2). For all f in B(µ1, µ2) and all n in NF the difference f − ρ(n)f belongs to X.

By Proposition 3.2 it is enough to prove the lemma when B(µ1, µ2) is replaced by

W (µ1, µ2;ψ). Associate to each function W in W (µ1, µ2;ψ) a function

ϕ(a) = W

((
a 0
0 1

))

on F×. If ϕ is 0 so is W . We may regard π = ρ(µ1, µ2) as acting on the space V of such functions. If b
is in BF

π(b)ϕ = ξψ(b)ϕ.

Appealing to (3.2.2) we see that every function ϕ in V has its support in a set of the form

{a ∈ F×
∣∣ |a| ≤ c}

where c = c(ϕ) is a constant. As in the second paragraph the difference ϕ− π(n)ϕ = ϕ − ξψ(n)ϕ is
in S(F×) for all n in NF . Thus V ∩ S(F×) is not 0. Since the representation ξψ of BF on S(F×) is

irreducible, V and every non­trivial invariant subspace of V contains S(F×). Taking the intersection
of all such spaces we obtain the subspace of the lemma.

We first prove the theorem assuming that |µ1($)µ−1
2 ($)| = |$|s with s > −1. We have

defined a non­degenerate pairing between B(µ1, µ2) and B(µ−1
1 , µ−1

2 ). All elements of the orthogonal
complement ofX are invariant underNF . Thus if µ1µ

−1
2 is not αF the orthogonal complement is 0 and

X is B(µ1, µ2) so that the representation is irreducible. The contragredient representation ρ(µ−1
1 , µ−1

2 )
is also irreducible.

If µ1µ
−1
2 = αF we write µ1 = χα

1/2
F , µ2 = χα

−1/2
F . In this case X is the space of the functions

orthogonal to the function χ−1 in B(µ−1
1 , µ−1

2 ). We set Bs(µ1, µ2) = X and we let Bf (µ
−1
1 , µ−1

2 ) be
the space of scalar multiples of χ−1. The representation of GF on Bs(µ1, µ2) is irreducible. Since
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Bs(µ1, µ2) is of codimension one it is the only proper invariant subspace of B(µ1, µ2). Therefore
Bf (µ

−1
1 , µ−1

2 ) is the only proper invariant subspace of B(µ−1
1 , µ−1

2 ).

If |µ1($)µ−1
2 ($)| = |$|s then |µ−1

1 ($)µ2($)| = |$|−s and either s > −1 or −s > −1. Thus if
µ−1

1 µ2 is neither αF nor α−1
F the representation π = ρ(µ1, µ1) is irreducible. If ω = µ1µ2 then

π

((
a 0
0 a

))
= ω(a)I

so that π is equivalent to ω⊗ π̃ or to ω⊗ρ(µ−1
1 , µ−1

2 ). It is easily seen that ω⊗ρ(µ−1
1 , µ−1

2 ) is equivalent

to ρ(ωµ−1
1 , ωµ−1

1 ) = ρ(µ2, µ1).
If µ1µ

−1
2 = αF and π is the restriction of ρ to Bs(µ1, µ2) then π̃ is the representation on

B(µ−1
1 , µ−1

2 )/Bf(µ
−1
1 , µ−1

2 ) defined by ρ(µ−1
1 , µ−1

2 ). Thus π is equivalent to the tensor product of
ω = µ1µ2 and this representation. The tensor product is of course equivalent to the representation on

B(µ2, µ1)/Bf(µ2, µ1). If µ1 = χα
1/2
F and µ2 = χα

−1/2
F the representations on B(µ1, µ2)/Bs(µ1, µ2)

and Bf(µ2, µ1) are both equivalent to the representations g → χ(detg).

The space W (µ1, µ2;ψ) has been defined for all pairs µ1, µ2.

Proposition 3.4 (i) For all pairs µ1, µ2

W (µ1, µ2; ψ) = W (µ2, µ1; ψ)

(ii) In particular if µ1µ
−1
2 6= α−1

F the representation of GF on W (µ1, µ2; ψ) is equivalent to
ρ(µ1, µ2).

If Φ is a function on F2 define Φι by

Φι(x, y) = Φ(y, x).

To prove the proposition we show that, if Φ is in S(F2),

µ1(detg) |detg|1/2θ
(
µ1, µ2; r(g)Φ

ι
)

= µ2(detg) |detg|1/2θ
(
µ2, µ1; r(g)Φ

)
.

If g is the identity this relation follows upon inspection of the definition of θ(µ1, µ2; Φι). It is also easily
seen that

r(g)Φι = [r(g)Φ]ι

if g is in SL(2, F ) so that it is enough to prove the identity for

g =

(
a 0
0 1

)
.

It reduces to

µ1(a)

∫
Φι(at, t−1)µ1(t)µ

−1
2 (t) d×t = µ2(a)

∫
Φ(at, t−1)µ2(t)µ

−1
2 (t) d×t.

The left side equals

µ1(a)

∫
Φ(t−1, at)µ1(t)µ

−1
2 (t) d×t

which, after changing the variable of integration, one sees is equal to the right side.
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If µ1µ
−1
2 is not αF or α−1

F so that ρ(µ1, µ2) is irreducible we let π(µ1, µ2) be any representation
in the class of ρ(µ1, µ2). If ρ(µ1, µ2) is reducible it has two constituents one finite dimensional and one

infinite dimensional. A representation in the class of the first will be called π(µ1, µ2). A representation
in the class of the second will be calledσ(µ1, µ2). Any irreducible representation which is not absolutely

cuspidal is either a π(µ1, µ2) or a σ(µ1, µ2). The representations σ(µ1, µ2) which are defined only for

certain values of µ1 and µ2 are called special representations.
Before proceeding to the proof of Theorem 2.18 for representations which are not absolutely

cuspidal we introduce some notation. If ω is an unramified quasi­character of F× the associated
L­function is

L(s, ω) =
1

1 − ω($) |$|s
.

It is independent of the choice of the generator $ of p. If ω is ramified L(s, ω) = 1. If ϕ belongs to
S(F ) the integral

Z(ωαsF , ϕ) =

∫

F×

ϕ(α)ω(α) |α|s d×α

is absolutely convergent in some half­plane Re s > s0 and the quotient

Z(ωαsF , ϕ)

L(s, ω)

can be analytically continued to a function holomorphic in the whole complex plane. Moreover for a
suitable choice of ϕ the quotient is 1. If ω is unramified and

∫

UF

d×α = 0

one could take the characteristic function of OF . There is a factor ε(s, ω, ψ) which, for a given ω and

ψ, is of the form abs so that if ϕ̂ is the Fourier transform of ϕ

Z(ω−1α1−s
F , ϕ̂)

L(1 − s, ω−1)
= ε(s, ω, ψ)

Z(ωαsF , ϕ)

L(s, ω)
.

If ω is unramified and OF is the largest ideal on which ψ is trivial ε(s, ω, ψ) = 1.

Proposition 3.5 Suppose µ1 and µ2 are two quasi-characters of F× such that neither µ−1
1 µ2 nor

µ1µ
−1
2 is αF and π is π(µ1, µ2). Then

W (π, ψ) = W (µ1, µ2; ψ)

and if
L(s, π) = L(s, µ1)L(s, µ2)

L(s, π̃) = L(s, µ−1
1 )L(s, µ−1

2 )

ε(s, π, ψ) = ε(s, µ1, ψ) ε(s, µ2, ψ)

all assertions of Theorem 2.18 are valid. In particular if |µ1($)| = |$|−s1 and |µ2($)| = |$|−s2

the integrals defining Ψ(g, s,W ) are absolutely convergent if Re s > max{s1, s2}. If µ1 and µ2 are
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unramifed and OF is the largest ideal of F on which ψ is trivial there is a unique function W0 in
W (π, ψ) which is invariant under GL(2, OF ) and assumes the value 1 at the identity. If

∫

UF

d×α = 1

then Φ(e, s,W0) = 1.

That W (π, ψ) = W (µ1, µ2; ψ) is of course a consequence of the previous proposition. As we
observed the various assertions need be established only for g = e. Take Φ in S(F2) and let W = WΦ

be the corresponding element of W (π, ψ). Then

ϕ(a) = W

((
a 0
0 1

))

belongs to the space of the Kirillov model of π. As we saw in the closing pages of the first paragraph

Ψ(e, s,W ) =

∫

F×

W

((
a 0
0 1

))
|a|s−1/2 d×a = ϕ̂(α

s−1/2
F )

is equal to

Z(µ1α
s
F , µ2α

s
F ,Φ)

if the last and therefore all of the integrals are defined.

Also
Ψ̃(e, s,W ) = Z(µ−1

2 αsF , µ
−1
1 αsF ,Φ).

Any function in S(F2) is a linear combination of functions of the form

Φ(x, y) = ϕ1(x)ϕ2(y).

Since the assertions to be proved are all linear we need only consider the functions Φ which are given
as products. Then

Z(µ1α
s
F , µ2α

s
F ,Φ) = Z(µ1α

s
F , ϕ1)Z(µ2α

s
F , ϕ2)

so that the integral does converge in the indicated region. Moreover

Z(µ−1
2 αsF , µ

−1
1 αsF ,Φ) = Z(µ−1

2 αsF , ϕ1)Z(µ−1
1 αsF , ϕ2)

also converges for Re s sufficiently large. Φ(e, s,W ) is equal to

Z(µ1α
s
F , ϕ1)

L(s, µ1)

Z(µ2α
s
F , ϕ2)

L(s, µ2)

and is holomorphic in the whole complex plane. We can choose ϕ1 and ϕ2 so that both factors are 1.
It follows from the Iwasawa decomposition GF = PF GL(2, OF ) that if both µ1 and µ2 are

unramified there is a non­zero function on B(µ1, µ2) which is invariant under GL(2, OF ) and that it
is unique up to a scalar factor. If the largest ideal on which ψ is trivial is OF , if Φ0 is the characteristic

function ofO2
F , and if Φ∼

0 is the partial Fourier transform introduced in Proposition 1.6 then Φ∼
0 = Φ0.

Consequently
rµ1,µ2

(g)Φ0 = Φ0
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for all g in GL(2, OF ). If W0 = WΦ0
then, since Φ0 is the product of the characteristic function of OF

with itself, Φ(e, s,W0) = 1 if ∫

UF

d×α = 1.

The only thing left to prove is the local functional equation. Observe that

Φ̃(w, s,W ) = Φ̃
(
e, s, ρ(w)W

)
,

that if W = WΦ then ρ(w)W = Wr(w)Φ, and that r(w)Φ(x, y) = Φ′(y, x) if Φ′ is the Fourier transform

of Φ. Thus if Φ(x, y) is a product ϕ1(x)ϕ2(y)

Φ̃(w, s,W ) =
Z(µ−1

1 αsF , ϕ̂1)

L(s, µ−1
1 )

Z(µ−1
2 αsF , ϕ̂2)

L(s, µ−1
2 )

.

The functional equation follows immediately.

If µ1µ
−1
2 is αF or α−1

F and π = π(µ1, µ2) we still set

L(s, π) = L(s, µ1)L(s, µ2)

and
ε(s, π, ψ) = ε(s, µ1, ψ) ε(s, µ2, ψ).

Since π̃ is equivalent to π(µ−1
1 , µ−1

2 )

L(s, π̃) = L(s, µ−1
1 )L(s, µ−1

2 ).

Theorem 2.18 is not applicable in this case. It has however yet to be proved for the special representa­

tions. Any special representation σ is of the form σ(µ1, µ2) with µ1 = χα
1/2
F and µ2 = χα

−1/2
F . The

contragredient representation of σ̃ is σ(µ−1
2 , µ−1

1 ). This choice of µ1 and µ2 is implicit in the following

proposition.

Proposition 3.6 W (σ, ψ) is the space of functions W = WΦ in W (µ1, µ2; ψ) for which

∫

F

Φ(x, 0) dx = 0.

Theorem 2.18 will be valid if we set L(s, σ) = L(s, σ̃) = 1 and ε(s, σ, ψ) = ε(s, µ1, ψ) ε(s, µ2, ψ)
when χ is ramified and we set L(s, σ) = L(s, µ1), L(s, σ̃) = L(s, µ−1

2 ), and

ε(s, σ, ψ) = ε(s, µ1, ψ) ε(s, µ2, ψ)
L(1 − s, µ−1

1 )

L(s, µ2)

when χ is unramified.

W (σ, ψ) is of course the subspace ofW (µ1, µ2; ψ) corresponding to the space Bs(µ1, µ2) under

the transformation A of Proposition 3.2. If W = WΦ then A takes W to the function f = fΦ∼ defined
by

f(g) = z
(
µ1µ

−1
2 αF , ρ(g)Φ

∼
)
µ1(detg) |detg|1/2.
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f belongs to Bs(µ1, µ2) if and only if

∫

GL(2,OF )

χ−1(g)f(g) dg = 0.

As we observed this integral is equal to a constant times

∫

F

χ−1

(
w

(
1 x
0 1

))
f

(
w

(
1 x
0 1

))
dx =

∫

F

f

(
w

(
1 x
0 1

))
dx

which equals

∫
z

(
α2
F , ρ(w) ρ

((
1 x
0 1

))
Φ∼

)
dx =

∫ {∫
Φ∼(−t,−tx) |t|2 d×t

}
dx.

The double integral does converge and equals, apart from a constant factor,

∫∫
Φ∼(t, tx) |t| dt dx =

∫∫
Φ∼(t, x) dt dx

which in turn equals ∫
Φ(t, 0) dt.

We now verify not only the remainder of the theorem but also the following corollary.

Corollary 3.7 (i) If π = π(µ1, µ2) then

ε(s, σ, ψ)
L(1 − s, σ̃)

L(s, σ)
= ε(s, π, ψ)

L(1 − s, π̃)

L(s, π)

(ii) The quotient
L(s, π)

L(s, σ)

is holomorphic
(iii) For all Φ such that ∫

Φ(x, 0) dx = 0

the quotient
Z(µ1α

s
F , µ2α

s
F ,Φ)

L(s, σ)

is holomorphic and there exists such a Φ for which the quotient is one.

The first and second assertions of the corollary are little more than matters of definition. Although

W (µ1, µ2ψ) is not irreducible we may still, for all W in this space, define the integrals

Ψ(g, s,W ) =

∫
W

((
a 0
0 1

)
g

)
|a|s−1/2 d×a

Ψ̃(g, s,W ) =

∫
W

((
a 0
0 1

)
g

)
|a|s−1/2ω−1(a) d×a.
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They may be treated in the same way as the integrals appearing in the proof of Proposition 3.5. In
particular they converge to the right of some vertical line and if W = WΦ

Ψ(e, s,W ) = Z(µ1α
s
F , µ2α

s
F ,Φ)

Ψ̃(e, s,W ) = Z(µ−1
2 αsF , µ

−1
1 αsF ,Φ).

Moreover
Ψ(g, s,W )

L(s, π)

is a holomorphic function of s and

Ψ̃(g, 1 − s,W )

L(1 − s, π̃)
= ε(s, π, ψ)

Ψ(g, s,W )

L(s, π)
.

Therefore

Φ(g, s,W ) =
Ψ(g, s,W )

L(s, σ)

and

Φ̃(g, s,W ) =
Ψ̃(g, s,W )

L(s, σ̃)

are meromorphic functions of s and satisfy the local functional equation

Φ̃(wg, 1 − s,W ) = ε(s, σ, ψ)Φ(g, s,W ).

To compete the proof of the theorem we have to show that ε(s, σ, ψ) is an exponential function of
s and we have to verify the third part of the corollary. The first point is taken care of by the observation

that µ−1
1 ($) |$| = µ−1

2 ($) so that

L(1− s, µ−1
1 )

L(s, µ2)
=

1 − µ2($) |$|s

1 − µ−1
1 ($) |$|1−s

= −µ1($) |$|s−1.

If χ is ramified so that L(s, σ) = L(s, π) the quotient part (iii) of the corollary is holomorphic.
Moreover a Φ in S(F 2) for which

Z(µ1α
s
F , µ2α

s
F ,Φ) = L(s, σ) = 1

can be so chosen that

Φ(εx, ηy) = χ(εη)Φ(x, y)

for ε and η in UF . Then ∫

F

Φ(x, 0) dx = 0.

Now take χ unramified so that χ(a) = |a|r for some complex number r. We have to show that if

∫

F

Φ(x, 0) dx = 0
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then
Z(µ1α

s
F , µ2α

s
F ,Φ)

L(s, µ1)

is a holomorphic function of s. Replacing s by s− r + 1/2 we see that it is enough to show that

(1 − |$|s+1)

∫∫
Φ(x, y) |x|s+1 |y|s d×x d×y

is a holomorphic function of s. Without any hypothesis on Φ the integral converges for Re s > 0 and

the product has an analytic continuation whose only poles are at the roots of |$|s = 1. To see that these
poles do not occur we have only to check that there is no pole at s = 0. For a given Φ in S(F2) there is

an ideal a such that
Φ(x, y) = Φ(x, 0)

for y in a. If a′ is the complement of a∫∫
Φ(x, y) |x|s+1 |y|s d×x d×y

is equal to the sum of ∫

F

∫

a′

Φ(x, y) |x|s+1 |y|s d×x d×y

which has no pole at s = 0 and a constant times
{∫

F

Φ(x, 0) |x|s dx

}{∫

a

|y|s d×y

}

If a = pn the second integral is equal to

|$|ns(1 − |$|s)−1

If ∫

F

Φ(x, 0) dx = 0

the first term, which defines a holomorphic function of s, vanishes at s = 0 and the product has no

pole there.
If ϕ0 is the characteristic function of OF set

Φ(x, y) =
{
ϕ0(x) − |$|−1ϕ0($

−1x)
}
ϕ0(y).

Then ∫

F

Φ(x, 0) dx = 0

and

Z(µ1α
s
F , µ2α

s
F ,Φ)

is equal to
{∫ (

ϕ0(x) − |$|−1ϕ0($
−1x)

)
µ1(x) |x|

s d×x

}{∫
ϕ0(y)µ2(y) |y|

s d×y

}

The second integral equals L(s, µ2) and the first equals

(1 − µ1($) |$|s−1)L(s, µ1)

so their product is L(s, µ1) = L(s, σ).

Theorem 2.18 is now completely proved. The properties of the local L­functions L(s, π) and the

factors ε(s, π, ψ) described in the next proposition will not be used until the paragraph on extraordinary
representations.
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Proposition 3.8 (i) If π is an irreducible representation there is an integer m such that if the order
of χ is greater than m both L(s, χ⊗ π) and L(s, χ⊗ π̃) are 1.

(ii) Suppose π1 and π2 are two irreducible representations of GF and that there is a quasi-
character ω such that

π1

((
a 0
0 a

))
= ω(a)I π2

((
a 0
0 a

))
= ω(a)I

Then there is an integer m such that if the order of χ is greater than m

ε(s, χ⊗ π1, ψ) = ε(s, χ⊗ π2, ψ)

(iii) Let π be an irreducible representation and let ω be the quasi-character defined by

π

((
a 0
0 a

))
= ω(a)I

Write ω in any manner as ω = µ1µ2. Then if the order of χ is sufficiently large in comparison
to the orders of µ1 and µ2

ε(s, χ⊗ π, ψ) = ε(s, χµ1, ψ) ε(s, χµ2, ψ).

It is enough to treat infinite­dimensional representations because if σ = σ(µ1, µ2) and π =
π(µ1, µ2) are both defined L(s, χ⊗ σ) = L(s, χ⊗ π), L(s, χ⊗ σ̃) = L(s, χ⊗ π̃), and ε(s, χ⊗ σ, ψ) =
ε(s, χ⊗ π, ψ) if the order of χ is sufficiently large.

If π is not absolutely cuspidal the first part of the proposition is a matter of definition. If π is

absolutely cuspidal we have shown that L(s, χ⊗ π) = L(s, χ⊗ π̃) = 1 for all π.

According to the relation (2.18.1)

ε(s, χ⊗ π, ψ) = C(ν−1
0 ν−1

1 , z−1
0 z−1

1 q−1/2z−1)

if the order of χ is so large that L(s, χ ⊗ π) = L(s, χ−1 ⊗ π̃) = 1. Thus to prove the second part we
have only to show that if {C1(ν, t)} and {C2(ν, t)} are the series associated to π1 and π2 then

C1(ν, t) = C2(ν, t)

if the order of ν is sufficiently large. This was proved in Lemma 2.16.6. The third part is also a
consequence of that lemma but we can obtain it by applying the second part to π1 = π and to

π2 = π(µ1, µ2).
We finish up this paragraph with some results which will be used in the Hecke theory to be

developed in the second chapter.
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Lemma 3.9 The restriction of the irreducible representation π to GL(2, OF ) contains the trivial
representation if and only if there are two unramified characters µ1 and µ2 such that π = π(µ1, µ2).

This is clear if π is one­dimensional so we may as well suppose that π is infinite dimensional.
If π = π(µ1, µ2) we may let π = ρ(µ1, µ2). It is clear that there is a non­zero vector in B(µ1, µ2)
invariant under GL(2, OF ) if and only if µ1 and µ2 are unramified and that if there is such a vector
it is determined up to a scalar factor. If π = σ(µ1, µ2) and µ1µ

−1
2 = αF we can suppose that π is the

restriction of ρ(µ1, µ2) to BS(µ1, µ2). The vectors in B(µ1, µ2) invariant under GL(2, OF ) clearly do
not lie in Bs(µ1, µ2) so that the restriction of π toGL(2, OF ) does not contain the trivial representation.

All that we have left to do is to show that the restiction of an absolutely cuspidal representation to

GL(2, OF ) does not contain the trivial representation.
Suppose the infinite­dimensional irreducible representation π is given in the Kirillov form with

respect to an additive character ψ such that OF is the largest ideal on which ψ is trivial. Suppose the
non­zero vector ϕ is invariant under GL(2, OF ). It is clear that if

π

((
a 0
0 a

))
= ω(a)I

then ω is unramified, that ϕ(ν, t) = 0 unless ν = 1 is the trivial character, and that ϕ(ν, t) has no pole

at t = 0. Suppose π is absolutely cuspidal so that ϕ belongs to S(F×). Since π(w)ϕ = ϕ and the

restriction of ω to UF is trivial
ϕ̂(1, t) = C(1, t) ϕ̂(1, z−1

0 t−1)

if z0 = ω($). Since C(1, t) is a constant times a negative power of t the series on the left involves no
negative powers of t and that on the right involves only negative powers. This is a contradiction.

Let H0 be the subalgebra of the Hecke algebra formed by the functions which are invariant under
left and right translations by elements of GL(2, OF ). Suppose the irreducible representation π acts on

the space X and there is a non­zero vector x in X invariant under GL(2, OF ). If f is in H0 the vector

π(f)x has the same property and is therefore a multiple λ(f)x of x. The map f → λ(f) is a non­trivial
homomorphism of H0 into the complex numbers.

Lemma 3.10 Suppose π = π(µ1, µ2) where µ1 and µ2 are unramified and λ is the associated homo-
morphism of H0 into C. There is a constant c such that

|λ(f)| ≤ c

∫

GF

|f(g)| dg (3.10.1)

for all f in H if and only if µ1µ2 is a character and |µ1($)µ−1
2 ($)| = |$|s with −1 ≤ s ≤ 1.

Let π̃ act on X̃ and let x̃ in X̃ be such that 〈x, x̃〉 6= 0. Replacing x̃ by

∫

GL(2,OF )

π̃(g)x̃ dg

if necessary we may suppose that x̃ is invariant underGL(2, OF ). We may also assume that 〈x, x̃〉 = 1.
If η(g) = 〈π(g)x, x̃〉 then

λ(f) η(g) =

∫

GF

η(gh) f(h) dh
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for all f in H0. In particular

λ(f) =

∫

GF

η(h) f(h) dh.

If |η(h)| ≤ c for all h the inequality (3.10.1) is certainly valid. Conversely, since η is invariant under

left and right translations by GL(2, OF ) we can, if the inequality holds, apply it to the characteristic

functions of double cosets of this group to see that |η(h)| ≤ c for all h. Since

η

((
a 0
0 a

)
h

)
= µ1(a)µ2(a) η(h)

the function η is bounded only if µ1µ2 is a character as we now assume it to be. The finite dimensional

representations take care of themselves so we now assume π is infinite­dimensional.

Since π and π̃ are irreducible the function 〈π(g)x, x̃〉 is bounded for a given pair of non­zero
vectors if and only if it is bounded for all pairs. Since GF = GL(2, OF )AF GL(2, OF ) and µ1µ2 is a

character these functions are bounded if and only if the functions

〈π

((
a 0
0 1

))
x, x̃〉

are bounded on F×. Take π and π̃ in the Kirillov form. If ϕ is in V and ϕ̃ is in V then

〈π

((
a 0
0 1

))
ϕ, π̃(w)ϕ̃〉

is equal to

〈π−1(w)π

((
a 0
0 1

))
ϕ, ϕ̃〉 = µ1(a)µ2(a) < π

((
a−1 0
0 1

))
π−1(w)ϕ, ϕ̃ >

Thus η(g) is bounded if and only if the functions

〈π

((
a 0
0 1

))
ϕ, ϕ̃〉

are bounded for all ϕ in V and all ϕ̃ in S(F×).

It is not necessary to consider all ϕ̃ in S(F×) but only a set which together with its translates by
the diagonal matrices spans S(F×). If µ is a character of UF let ϕµ be the function on F× which is 0
outside of UF and equals µ on UF . It will be sufficient to consider the functions ϕ̃ = ϕµ and all we

need show is that

〈π

((
$n 0
0 1

))
ϕ,ϕµ〉 (3.10.2)

is a bounded function of n for all µ and all ϕ. The expression (3.10.2) is equal to ϕ̂n(µ). If ϕ belongs
to S(F×) the sequence {ϕ̂n(µ)} has only finitely many non­zero terms and there is no problem. If

ϕ = π(w)ϕ0 then ∑

n

ϕ̂n(µ)tn = C(µ, t) η(t)
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where η(t) depends on ϕ0 and is an arbitrary finite Laurent series. We conclude that (3.10.1) is valid if
and only if µ1µ2 is a character and the coefficients of the Laurent series C(µ, t) are bounded for every

choice of µ.
It follows from Proposition 3.5 and formula (2.18.1) that, in the present case, the series has only

one term if µ is ramified but that if µ is trivial

C
(
µ, |$|1/2 µ−1

1 ($)µ−1
2 ($)t

)
=

(
1 − µ1($)t−1

)(
1 − µ2($)t−1

)
(
1 − µ−1

1 ($) |$| t
)(

1 − µ−1
2 ($) |$| t

) .

The function on the right has zeros at t = µ1($) and t = µ2($) and poles at t = 0, t = |$|−1µ1($),
and t = |$|−1µ2($). A zero can cancel a pole only if µ2($) = |$|−1µ1($) or µ1($) = |$|−1µ2($).

Since µ1 and µ2 are unramified this would mean that µ−1
1 µ2 equals αF or α−1

F which is impossible

when π = π(µ1, µ2) is infinite dimensional.
If C(µ, t) has bounded coefficients and µ1µ2 is a character the function on the right has no poles

for |t| < |$|−1/2 and therfore |µ1($)| ≥ |$|1/2 and |µ2($)| ≥ |$|1/2. Since

|µ1($)µ−1
2 ($)| = |µ1($)|2 = |µ−1

2 ($)|2

where µ1µ2 is a character these two inequalities are equivalent to that of the lemma. Conversely if these

two inequalities are satisifed the rational function on the right has no pole except that at 0 inside the
circle |t| = |$|−1/2 and at most simple poles on the circle itself. Applying, for example, partial fractions

to find its Laurent series expansion about 0 one finds that the coefficients of C(µ, t) are bounded.

Lemma 3.11 Suppose µ1 and µ2 are unramified, µ1µ2 is a character, and π = π(µ1, µ2) is infinite
dimensional. Let |µ1($)| = |$|r where r is real so that |µ2($)| = |$|−r. Assume OF is the
largest ideal on which ψ is trivial and let W0 be that element of W (π, ψ) which is invariant under
GL(2, OF ) and takes the value 1 at the identity. If s > |r| then

∫

F×

∣∣∣∣W0

((
a 0
0 1

))∣∣∣∣ |a|
s−1/2 d×a ≤

1

(1− |$|s+r)(1− |$|s−r)

if the Haar measure is so normalized that the measure of UF is one.

If Φ is the characteristic function of O2
F then

W0

((
a 0
0 1

))
= µ1(a) |a|

1/2

∫

F×

Φ(at, t−1)µ1(t)µ
−1
2 d×t

and ∫

F×

∣∣∣∣W0

((
a 0
0 1

))∣∣∣∣ |a|
s−1/2 d×a ≤

∫∫
Φ(at, t−1) |a|s+r|t|2r d×a d×t.

Changing variables in the left­hand side we obtain

∫

OF

∫

OF

|a|s+r|b|s−r d×a d×b =
1

(1− |$|s+r)(1− |$|s−r)
.
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§4. Examples of absolutely cuspidal representations In this paragraph we will use the results of the
first paragraph to construct some examples of absolutely cuspidal representations.

First of all let K be a quaternion algebra over F . K is of course unique up to isomorphism.
As in the first paragraph Ω will denote a continuous finite­dimensional representation of K× the

multiplicative group of K . If χ is a quasi­character of F× and ν is the reduced norm on K we denote

the one­dimensional representation g → χ
(
ν(g)

)
of K× by χ also. If Ω is any representation χ⊗ Ω is

the representation g → χ(g)Ω(g). If Ω is irreducible all operators commuting with the action of K×

are scalars. In particular there is a quasi­character Ω of F× such that

Ω(a) = ω(a)I

for all a in F× which is of course a subgroup of K×. If Ω is replaced by χ ⊗ Ω then ω is replaced by

χ2ω. Ω̃ will denote the representation contragredient to Ω.

Suppose Ω is irreducible, acts on V , and the quasi­character ω is a character. Since K×/F× is

compact there is a positive definite hermitian form on V invariant under K×. When this is so we call
Ω unitary.

It is a consequence of the following lemma that any one­dimensional representation ofK× is the
representation associated to a quasi­character of F×.

Lemma 4.1 Let K1 be the subgroup of K× consisting of those x for which ν(x) = 1. Then K1 is
the commutator subgroup, in the sense of group theory, of K×.

K1 certainly contains the commutator subgroup. Suppose x belongs to K1. If x = xι then
x2 = xxι = 1 so that x = ±1. Otherwise x determines a separable quadratic extension of F . Thus,

in all cases, if xxι = 1 there is a subfield L of K which contains x and is quadratic and separable over

L. By Hilbert’s Theorem 90 there is a y in L such that x = yy−ι. Moreover there is an element σ in K
such that σzσ−1 = zι for all z in L. Thus x = yσy−1σ−1 is in the commutator subgroup.

In the first paragraph we associated to Ω a representation rΩ of a groupG+ on the space S(K,Ω).
Since F is now non­archimedean the group G+ is now GF = GL(2, F ).

Theorem 4.2 (i) The representation rΩ is admissible.
(ii) Let d = degree Ω. Then rΩ is equivalent to the direct sum of d copies of an irreducible

representation π(Ω).
(iii) If Ω is the representation associated to a quasi-character χ of F× then

π(Ω) = σ(χα
1/2
F , χα

−1/2
F ).

(iv) If d > 1 the representation π(Ω) is absolutely cuspidal.

If n is a natural number we set

Gn = {g ∈ GL(2, OF ) | g = I(mod pn)}

We have first to show that if Φ is in S(K,Ω) there is an n such that rΩ(g)Φ = Φ if g is in Gn and that
for a given n the space of Φ in S(K,Ω) for which rΩ(g)Φ = Φ for all g in Gn is finite dimensional.

Any

g =

(
a b
c d

)

in Gn may be written as

g =

(
1 0

ca−1 1

)(
a b′

0 d′

)
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and both the matrices on the right are in Gn. Thus Gn is generated by the matrices of the forms
(
a 0
0 1

) (
1 x
0 1

)
w

(
a 0
0 1

)
w−1 w

(
1 x
0 1

)
w−1

with a ≡ 1 (mod pn) and x ≡ 0 (mod pn). It will therefore be enough to verify the following three
assertions.

(4.2.1) Given Φ there is an n > 0 such that

rΩ

((
a 0
0 1

))
Φ = Φ

if a ≡ 1 (mod pn)

(4.2.2) Given Φ there is an n > 0 such that

rΩ

((
1 x
0 1

))
Φ = Φ

if x ≡ 0 (mod pn).

(4.2.3) Given n > 0 the space of Φ in S(K,Ω) such that

rΩ

((
1 x
0 1

))
Φ = Φ

and

rΩ(w−1) rΩ

((
1 x
0 1

))
rΩ(w)Φ = Φ

for all x in pn is finite­dimensional.

If a = ν(h) then

rΩ

((
a 0
0 1

))
Φ = |h|

1/2
K Ω(h)Φ(xh).

Since Φ has compact suport inK and is locally constant there is a neighborhood U of 1 inK× such that

Ω(h)Φ(xh) |h|
1/2
K = Φ(x)

for all h in U and all x in K . The assertion (4.2.1) now follows from the observation that ν is an open

mapping of K× onto F×.

We recall that

rΩ

((
1 x
0 1

))
Φ(z) = ψ

(
xν(z)

)
Φ(z)

Let p−` be the largest ideal on which ψ is trivial and let pK be the prime ideal of K . Since ν(pmK) = pmF

rΩ

((
1 x
0 1

))
Φ = Φ

for all x in pn if and only if the support of Φ is contained in p−n−`K . With this (4.2.2) is established.

Φ satisfies the two conditions of (4.2.3) if and only if both Φ and r(w)Φ have support in p−n−`K

or, since r(w)Φ = −Φ′, if and only if Φ and Φ′, its Fourier transform, have support in this set. There

is certainly a natural number k such that ψ
(
τ(y)

)
= 1 for all y in pkK . Assertion (4.2.3) is therefore a

consequence of the following simple lemma.



Chapter 1 64

Lemma 4.2.4 If the support of Φ is contained in p−n
K and ψ

(
τ(y)

)
= 1 for all y in pkK the Fourier

transform of Φ is constant on cosets of pk+nK .

Since

Φ′(x) =

∫

p
−n
K

Φ(y)ψ
(
τ(x, y)

)
dy

the lemma is clear.

We prove the second part of the theorem for one­dimensional Ω first. Let Ω be the representation
associated to χ. S(K,Ω) is the space of Φ in S(K) such that Φ(xh) = Φ(x) for all h in K1. Thus to

every Φ in S(K,Ω) we may associate the function ϕΦ on F× defined by

ϕΦ(a) = |h|
1/2
K Ω(h)Φ(h)

if a = ν(h). The map Φ → ϕΦ is clearly injective. If ϕ belongs to S(F×) the function Φ defined by

Φ(h) = |h|
−1/2
K Ω−1(h)ϕ

(
ν(h)

)

if h 6= 0 and by
Φ(0) = 0

belongs to S(K,Ω) and ϕ = ϕΦ. Let S0(K,Ω) be the space of functions obtained in this way. It is the
space of functions in S(K,Ω) which vanish at 0 and therefore is of codimension one. If Φ belongs to

S0(K,Ω), is non­negative, does not vanish identically and Φ′ is its Fourier transform then

Φ′(0) =

∫
Φ(x) dx 6= 0.

Thus rΩ(w)Φ does not belong to S0(K,Ω) and S0(K,Ω) is not invariant. Since it is of codimension one

there is no proper invariant subspace containing it.

Let V be the image of S(K,ω) under the map Φ → ϕΦ. We may regard rΩ as acting in V . >From
the original definitions we see that

rΩ(b)ϕ = ξψ(b)ϕ

if b is in BF . If V1 is a non­trivial invariant subspace of V the difference

ϕ− rΩ

((
1 x
0 1

))
ϕ

is in V0 ∩ V1 for all ϕ in V1 and all x in F . If ϕ is not zero we can certainly find an x for which the
difference is not zero. Consequently V0 ∩ V1 is not 0 so that V1 contains V0 and hence all of V .

rΩ is therefore irreducible and when considered as acting on V it is in the Kirillov form. Since

V0 is not V it is not absolutely cuspidal. It is thus a π(µ1, µ2) or a σ(µ1, µ2). To see which we have to
find a linear form on V which is trivial on V0. The obvious choice is

L(ϕ) = Φ(0)

if ϕ = ϕΦ. Then

L

(
rΩ

((
a1 0
0 a2

)
ϕ

))
= χ(a1a2)

∣∣∣∣
a1

a2

∣∣∣∣ L(ϕ).
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To see this we have only to recall that

rΩ

((
a 0
0 a

))
= Ω(a)I = χ2(a)I

and that

rΩ

((
a 0
0 1

))
Φ(0) = |h|

1/2
K Ω(h)Φ(0)

where a = ν(h) so that |h|
1/2
K = |a|2F and Ω(h) = χ(a)I . Thus if

Aϕ(g) = L(rΩ(g)ϕ)

A is an injection of V into an irreducible invariant subspace of B(χα
1/2
F , χα

−1/2
F ). The only such

subspace is Bs(χα
1/2
F , χα

−1/2
F ) and rΩ is therefore σ(χα

1/2
F , χα

−1/2
F ).

Suppose now that Ω is not one­dimensional. Let Ω act on U . Since K1 is normal and K/K1 is

abelian there is no non­zero vector in U fixed by every element of K1. If Φ is in S(K,Ω) then

Φ(xh) = Ω−1(h)Φ(x)

for all h in K1. In particular Φ(0) is fixed by every element in K1 and is therefore 0. Thus all functions

in S(K,Ω) have compact supports in K× and if we associate to every Φ in S(K,Ω) the function

ϕΦ(a) = |h|
1/2
K Ω(h)Φ(h)

where a = ν(h) we obtain a bijection from S(K,Ω) to S(F×, U). It is again clear that

ϕΦ1
= ξψ(b)ϕΦ

if b is in BF and Φ1 = rΩ(b)Φ.

Lemma 4.2.5 Let Ω be an irreducible representation of K× in the complex vector space U . Assume
that U has dimension greater than one.

(i) For any Φ in S(K,U) the integrals

Z(αsF ⊗ Ω,Φ) =

∫

K×

|a|
s/2
K Ω(a)Φ(a) d×a

Z(αsF ⊗ Ω−1,Φ) =

∫

K×

|a|
s/2
K Ω−1(a)Φ(a) d×a

are absolutely convergent in some half-plane Re s > s0.
(ii) The functions Z(αsF ⊗ Ω,Φ) and Z(αsF ⊗ Ω−1,Φ) can be analytically continued to functions

meromorphic in the whole complex plane.
(iii) Given u in U there is a Φ in S(K,U) such that

Z(αsF ⊗ Ω,Φ) ≡ u.

(iv) There is a scalar function ε(s,Ω, ψ) such that for all Φ in S(K,U)

Z(α
3/2−s
F ⊗ Ω−1,Φ′) = −ε(s,Ω, ψ)Z(α

s+1/2
F ⊗ Ω,Φ)
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if Φ′ is the Fourier transform of Φ. Moreover, as a function of s, ε(s,Ω, ψ) is a constant
times an exponential.

There is no need to verify the first part of the lemma. Observe that αF
(
ν(x)

)
= |ν(x)|F = |x|

1/2
K

so that
(αsF ⊗ Ω)(x) = |x|

s/2
K Ω(x).

If Φ belongs to S(K,U) set

Φ1(x) =

∫

K1

Ω(h)Φ(xh).

The integration is taken with respect to the normalized Haar measure on the compact group K1. Φ1

clearly belongs to S(K,U) and

Z(αsF ⊗ Ω,Φ) = Z(αsF ⊗ Ω,Φ1) (4.2.6)

and the Fourier transform Φ′
1 of Φ1 is given by

Φ′
1(x) =

∫

K1

Ω(h−1)Φ′(hx)

The function Φ′
1(x

ι) belongs to S(K,Ω) and

Z(αsF ⊗ Ω−1,Φ′) = Z(αsF ⊗ Ω−1,Φ′
1). (4.2.7)

Since Φ1 and Φ′
1 both have compact support in K× the second assertion is clear.

If u is in U and we let Φu be the function which is O outside of UK , the group of units of OK ,
and on UK is given by Φu(x) = Ω−1(x)u then

Z(αsF ⊗ Ω,Φu) = cu

if

c =

∫

UK

d×a.

If ϕ belongs to S(K×) let A(ϕ) and B(ϕ) be the linear transformations of U defined by

A(ϕ)U = Z(α
s+1/2
F ⊗ Ω, ϕu)

B(ϕ)u = Z(α
−s+3/2
F ⊗ Ω−1, ϕ′u)

where ϕ′ is the Fourier transform of ϕ. If λ(h)ϕ(h) = ϕ(h−1x) and ρ(h)ϕ(x) = ϕ(xh) then

A(λ(h)ϕ) = |h|
s/2+1/4
K Ω(h)A(ϕ)

and
A(ρ(h)ϕ) = |h|

−s/2−1/4
K A(ϕ)Ω−1(h).

Since the Fourier transform of λ(h)ϕ is |h|Kρ(h)ϕ
′ and the Fourier transform of

ρ(h)ϕ is |h|−1
K λ(h)ϕ′, the map ϕ → B(ϕ) has the same two properties. Since the kernel of Ω is
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open it is easily seen that A(ϕ) and B(ϕ) are obtained by integrating ϕ against locally constant func­
tions α and β. They will of course take values in the space of linear transformations of U . We will

have
α(ha) = |h|

s/2+1/4
K Ω(h)α(a)

and
α(ah−1) = |h|

−s/2−1/4
K α(a)Ω−1(h)

β will satisfy similar identities. Thus

α(h) = |h|
s/2+1/4
K Ω(h)α(1)

β(h) = |h|
s/2+1/4
K Ω(h)β(1)

α(1) is of course the identity. However β(1) must commute with Ω(h) for all h in K× and therefore it
is a scalar multiple of the identity. Take this scalar to be −ε(s,Ω, ψ).

The identity of part (iv) is therefore valid for Φ in S(K×, U) and in particular for Φ in S(K,Ω).

The general case follows from (4.2.6) and (4.2.7). Since

ε(s,Ω, ψ) = −
1

c
Z(α

3/2−s
F ⊗ Ω−1,Φ′

u)

the function ε(s,Ω, ψ) is a finite linear combination of powers |$|s if$ is a generator of pF . Exchanging

the roles of Φu and Φ′
u we see that ε−1(s,Ω, ψ) has the same property. ε(s,Ω, ψ) is therefore a multiple

of some power of |$|s.
We have yet to complete the proof of the theorem. Suppose ϕ = ϕΦ belongs to S(F×, U) and

ϕ′ = ϕrΩ(w)Φ. We saw in the first paragraph that if χ is a quasi­character of F× then

ϕ̂(χ) = Z(αFχ⊗ Ω,Φ) (4.2.8)

and, if Ω(a) = ω(a)I for a in F×,

ϕ̂′(χ−1ω−1) = −Z(αFχ
−1 ⊗ Ω−1,Φ′). (4.2.9)

Suppose U0 is a subspace of U and ϕ takes its values in U0. Then, by the previous lemma, ϕ̂(χ)
and ϕ̂′(χ−1ω−1) also lie in U0 for all choices of χ. Since ϕ′ lies in S(F×, U) we may apply Fourier

inversion to the multiplicative group to see that ϕ′ takes values in U0.
We may regard rΩ as acting on S(F×, U). Then S(F×, U0) is invariant under rΩ(w). Since

rΩ(b)ϕ = ξψ(b)ϕ for b in BF it is also invariant under the action of BF . Finally rΩ
((
a
0

0
a

))
ϕ = ω(a)ϕ

so that S(F×, U0) is invariant under the action of GF itself. If we take U0 to have dimension one

then S(F×, U0) may be identified with S(F×) and the representation rΩ restricted to S(F×, U0) is

irreducible. From (4.2.8) and (4.2.9) we obtain

ϕ̂(α
s−1/2
F χ) = Z(α

s+1/2
F χ⊗ Ω,Φ)

ϕ̂′(α
−s+1/2
F χ−1ω−1) = −Z(α

−s+3/2
F χ−1 ⊗ Ω−1,Φ′)

so that
ϕ̂′(α

−s+1/2
F χ−1ω−1 = ε(s, χ⊗ Ω, ψ) ϕ̂(α

s−1/2
F χ).
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Thus if π0 is the restriction of rΩ to S(F×, U0)

ε(s, χ⊗ π0, ψ) = ε(s, χ⊗ Ω, ψ)

so that π0 = π(Ω) is, apart from equivalence, independent of U0. The theorem follows.

Let Ω be any irreducible finite­dimensional representation of K× and let Ω act on U . The

contragredient representation Ω̃ acts on the dual space Ũ of U . If u belongs to U and ũ belongs to Ũ

〈u, Ω̃(h)ũ〉 = 〈Ω−1(h)u, ũ〉.

If Φ belongs to S(K) set

Z(αsF ⊗ Ω̃,Φ;u, ũ) =

∫

K×

|ν(h)|sΦ(h) 〈Ω(h)u, ũ〉 d×h

and set

Z(αsF ⊗ Ω̃,Φ;u, ũ) =

∫

K×

|ν(h)|sΦ(h) 〈u, Ω̃(h)ũ〉 d×h.

Theorem 4.3 Let Ω be an irreducible representation of K× in the space U .
(i) For any quasi-character χ of F×

π(χ⊗ Ω) = χ⊗ π(Ω).

(ii) There is a real number s0 such that for all u, ũ and Φ and all s with Re s > s0 the integral
defining Z(αsF ⊗ Ω,Φ;u, ũ) is absolutely convergent.

(iii) There is a unique Euler factor L(s,Ω) such that the quotient

Z(α
s+1/2
F ⊗ Ω,Φ, u, ũ)

L(s,Ω)

is holomorphic for all u, ũ, Φ and for some choice of these variables is a non-zero constant.
(iv) There is a functional equation

Z(α
3/2−s
F ⊗ Ω̃,Φ′, u, ũ)

L(1 − s, Ω̃)
= −ε(s,Ω, ψ)

Z(α
s+1/2
F ⊗ Ω,Φ, u, ũ)

L(s,Ω)

where ε(s,Ω, ψ) is, as a function of s, an exponential.
(v) If Ω(a) = ω(a)I for a in F× and if π = π(Ω) then

π

((
a 0
0 a

))
= ω(a)I.

Moreover L(s, π) = L(s,Ω), L(s, π̃) = L(s, Ω̃) and ε(s, π, ψ) = ε(s,Ω, ψ).

The first assertion is a consequence of the definitions. We have just proved all the others when Ω
has a degree greater than one. Suppose then that Ω(h) = χ

(
ν(h)

)
where χ is a quasi­character of F×.

Then π(Ω) = π(χα
1/2
F , χα

−1/2
F ) and if the last part of the theorem is to hold L(s,Ω), which is of course
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uniquely determined by the conditions of part (iii), must equal L(s, π) = L(s, χα
1/2
F ). Also L(s, Ω̃)

must equal L(s, π̃) = L(s, χ−1α
1/2
F ).

In the case under consideration U = C and we need only consider

Z(αsF ⊗ Ω,Φ; 1, 1) = Z(αsF ⊗ Ω,Φ).

As before the second part is trivial and

Z(αsF ⊗ Ω,Φ) = Z(αsF ⊗ Ω,Φ1)

if

Φ1(x) =

∫

K1

Φ(xh).

The Fourier transform of Φ1 is

Φ′
1(x) =

∫

K1

Φ′(hx) =

∫

K1

Φ′(xh)

and
Z(αsF ⊗ Ω̃,Φ′) = Z(αsF ⊗ Ω̃,Φ′

1).

It is therefore enough to consider the functions in S(K,Ω).
If ϕ = ϕΦ is defined as before then ϕ lies in the space on which the Kirillov model of π acts and

ϕ̂(α
s−1/2
F ) = A(α

s+1/2
F ⊗ Ω,Φ).

The third assertion follows from the properties of L(s, π). The fourth follows from the relation

ϕ̂′(α
1/2−s
F ω−1) = −Z(α

3/2−s
F ⊗ Ω−1,Φ′),

which was proved in the first paragraph, and the relation

ϕ̂′(α
1/2−s
F ω−1)

L(1 − s, π̃)
= ε(s, π, ψ)

ϕ̂(α
s−1/2
F )

L(s, π)
,

which was proved in the second, if we observe that Ω̃(h) = Ω−1(h). ϕ′ is of course π(w)ϕ.

Corollary 4.4 If π = π(Ω) then π̃ = π(Ω̃).

This is clear if Ω if of degree one so suppose it is of degree greater than one. Combining the

identity of part (iv) with that obtained upon interchanging the roles of Ω and Ω̃ and of Φ and Φ′ we

find that
ε(s,Ω, ψ) ε(1 − s, Ω̃, ψ) = ω(−1).

The same considerations show that

ε(s, π, ψ) ε(1− s, π̃, ψ) = ω(−1).

Consequently

ε(s, π̃, ψ) = ε(s, Ω̃, ψ).

Replacing Ω by χ⊗ Ω we see that

ε(s, χ−1 ⊗ π̃, ψ) = ε(s, χ−1 ⊗ Ω̃, ψ) = ε
(
s, χ−1π(Ω̃), ψ

)

for all quasi­characters χ. Since π̃ and π(Ω̃) are both absolutely cuspidal they are equivalent.
There is a consequence of the theorem whose significance we do not completely understand.



Chapter 1 70

Proposition 4.5 Let Ω be an irreducible representation of K× on the space U and suppose that the
dimension of U is greater than one. Let Ũ be the dual space of U . Let π be the Kirillov model of
π(Ω), let ϕ lie in S(F×), and let ϕ′ = π(w)ϕ. If u belongs to U and ũ belong to Ũ the function Φ
on K which vanishes at 0 and on K× is defined by

Φ(x) = ϕ
(
ν(x)

)
|ν(x)|−1〈u, Ω̃(x)ũ〉

is in S(K) and its Fourier transform Φ′ vanishes at 0 and on K× is given by

Φ′(x) = −ϕ′
(
ν(x)

)
|ν(x)|−1ω−1

(
ν(x)

)
〈Ω(x)u, ũ〉

if Ω(a) = ω(a)I for a in F×.

It is clear that Φ belongs not merely to S(K) but in fact to S(K×). So does the function Φ1 which

we are claiming is equal to Φ′. The Schur orthogonality relations for the group K1 show that Φ′(0) = 0
so that Φ′ also belongs to S(K×).

We are going to show that for every irreducible representation of Ω′ of K×

∫
Φ1(x), 〈u

′, Ω̃′(x)ũ′〉 |ν(x)|3/2−s d×x

L(1 − s, Ω̃′)
= −

∫
ε(s,Ω′, ψ)Φ(x) 〈Ω′(x)u′, ũ′〉 |ν(x)|s+1/2 d×x

L(s,Ω′)

for all choices of u′ and ũ′. Applying the theorem we see that
∫

{Φ1(x) − Φ′(x)} 〈u′, Ω̃′(x)ũ′〉 |ν(x)|3/2−s d×x = 0

for all choices of Ω′, u′, ũ′, and all s. An obvious and easy generalization of the Peter­Weyl theorem,
which we do not even bother to state, shows that Φ1 = Φ′.

If

Ψ(x) =

∫

K1

〈u, Ω̃(hx)ũ〉 〈Ω′(hx)u′, ũ′〉 dh

then ∫

K×

Φ(x)〈Ω′(x)u′, ũ′〉 |ν(x)|s+1/2 d×x =

∫

K×/K1

ϕ
(
ν(x)

)
|ν(x)|s−1/2 Ψ(x) d×x

while
∫

K×

Φ1(x) 〈u
′Ω̃′(x), ũ′〉 |ν(x)|3/2−s d×x = −

∫

K×/K1

ϕ′
(
ν(x)

)
ω−1

(
ν(x)

)
|ν(x)|1/2−sΨ(x−1) d×x

If Ψ is 0 for all choice of u′ and ũ′ the required identity is certainly true. Suppose then Ψ is different

from 0 for some choice u′ and ũ′.
Let U be the intersection of the kernels of Ω′ and Ω. It is an open normal subgroup of K× and

H = U K1 F
× is open, normal, and of finite index in K×. Suppose that Ω′(a) = ω′(a)I for a in F×. If

h belongs to H
Ψ(xh) = χ0(h)Ψ(x)

whereχ0 is a quasi­character ofH trivial onU andK1 and equal toω′ω−1 onF×. Moreover χ0 extends
to a quasi­character χ of K× so that

∫

K×/H

Ψ(x)χ−1(x) =

∫

K×/F×

ψ(x)χ−1(x) 6= 0

χ may of course be identified with a quasi­character of F×.
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Lemma 4.5.1 If ∫

K×/F×

Ψ(x)χ−1(x) 6= 0

then Ω′ is equivalent to χ⊗ Ω.

Ω′ and χ⊗ Ω agree on F× and

∫

K×/F×

〈u, χ̃⊗ Ω(x)ũ〉 〈Ω′(x)u′, ũ′〉 6= 0.

The lemma follows from the Schur orthogonality relations.
We have therefore only to prove the identity for Ω′ = χ⊗ Ω. Set

F (x) =

∫

K1

〈u, Ω̃(hx)ũ〉 〈Ω(hx)u′, ũ′〉 dh.

u′ and ũ′ now belong to the spaces U and Ũ . There is a function f on F× such that

F (x) = f
(
ν(x)

)

The identity we are trying to prove may be written as

∫
ϕ′(a)χ−1(a)ω−1(a) f(a−1) |a|1/2−s d×a

L(1 − s, χ−1 ⊗ π̃)
= ε(s, χ⊗ π, ψ)

∫
ϕ(a)χ(a) f(a) |a|s−1/2 d×a

L(s, χ⊗ π)
. (4.5.2)

Let H be the group constructed as before with U taken as the kernel of Ω. The image F ′ of H under ν
is a subgroup of finite index in F× and f , which is a function on F×/F ′, may be written as a sum

f(a) =

p∑

i=1

λk χi(a)

where {χ1, · · · , χp} are the characters of F×/F ′ which are not orthogonal to f . By the lemma Ω is
equivalent to χi ⊗ Ω for 1 ≤ i ≤ p and therefore π is equivalent to χi ⊗ π. Consequently

ε(s, χ⊗ π, ψ) = ε(s, χχi ⊗ π, ψ)

and

∫
F× ϕ

′(a)χ−1(a)χ−1
1 (a)ω−1(a) |a|1/2−s d×a

L(1− s, χ−1 ⊗ π̃)
= ε(s, χ⊗ π, ψ)

∫
F× ϕ(a)χ(a)χi(a) |a|

s−1/2 d×a

L(s, χ⊗ π)
.

The identity (4.5.2) follows.

Now let K be a separable quadratic extension of F . We are going to associate to each quasi­
character ω of K× an irreducible representation π(ω) of GF . If G+ is the set of all g in GF whose

determinants belong to ν(K×) we have already, in the first paragraph, associated to ω a representation

rω of G+. To emphasize the possible dependence of rω on ψ we now denote it by π(ω,ψ). G+ is of
index 2 in GF . Let π(ω) be the representation of GF induced from π(ω,ψ).
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Theorem 4.6 (i) The representation π(ω,ψ) is irreducible.
(ii) The representation π(ω) is admissible and irreducible and its class does not depend on the

choice of ψ.
(iii) If there is no quasi-character χ of F× such that ω = χ0ν the representation π(ω) is absolutely

cuspidal.
(iv) If ω = χ0ν and η is the character of F× associated to K by local class field theory then π(ω)

is π(χ, χη).

It is clear what the notion of admissibility for a representation of G+ should be. The proof that

π(ω,ψ) is admissible proceeds like the proof of the first part of Theorem 4.2 and there is little point in

presenting it.
To every Φ in S(K,ω) we associate the function ϕΦ on F+ = ν(K×) defined by

ϕΦ(a) = ω(h) |h|
1/2
K Φ(h)

if a = ν(h). Clearly ϕΦ = 0 if and only if Φ = 0. Let V+ be the space of functions on F+ obtained in

this manner. V+ clearly contains the space S(F+) of locally constant compactly supported functions on
F+. In fact if ϕ belongs to S(F+) and

Φ(h) = ω−1(h) |h|
−1/2
K ϕ

(
ν(h)

)

then ϕ = ϕΦ. If the restriction of ω to the group K1 of elements of norm 1 in K× is not trivial so that

every element of S(K,ω) vanishes at 0 then V+ = S(F+). Otherwise S(F+) is of codimension one in
V+.

Let B+ be the group of matrices of the form

(
a x
0 1

)

with a in F+ and x in F . In the first paragraph we introduced a representation ξ = ξψ of B+ on the

space of functions on F+. It was defined by

ξ

((
a 0
0 1

))
ϕ(b) = ϕ(ba)

and

ξ

((
1 x
0 1

))
ϕ(b) = ψ(bx)ϕ(b).

We may regard π(ω,ψ) as acting on V+ and if we do the restriction of π(ω,ψ) to B+ is ξψ .

Lemma 4.6.1 The representation of BF induced from the representation ξψ of B+ on S(F+) is the
representation ξψ of BF . In particular the representation ξψ of B+ is irreducible.

The induced representation is of course obtained by letting BF act by right translations on the
space of all functions ϕ̃ on BF with values in S(F+) which satisfy

ϕ̃(b1b) = ξψ(b1) ϕ̃(b)
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for all b1 in B+. Let L be the linear functional in S(F+) which associates to a function its value at 1.
Associate to ϕ̃ the function

ϕ(a) = L

(
ϕ̃

((
a 0
0 1

)))
= L

(
ρ

((
a 0
0 1

))
ϕ̃(e)

)

The value of ϕ̃
((
a
0
x
1

))
at α in F+ is

L

(
ϕ̃

((
αa αx
0 1

)))
= L

(
ξψ

((
1 αx
0 1

))
ϕ̃

((
αa 0
0 1

)))

= ψ(ax)L

(
ϕ̃

((
αa 0
0 1

)))
= ψ(αx)ϕ(αa).

Since F×/F+ is finite it follows immediately that ϕ is in S(F×) and that ϕ̃ is 0 if ϕ is. It also shows

that ϕ can be any function in S(F×) and that if ϕ̃′ = ρ(b) ϕ̃ then ϕ′ = ξ(b)ϕ for all b in BF . Since
a representation obtained by induction cannot be irreducible unless the original representation is, the

second assertion follows from Lemma 2.9.1.

If the restriction of ω toK1 is not trivial the first assertion of the theorem follows immediately. If
it is then, by an argument used a number of times previously, any non­zero invariant subspace of V+
contains S(F+) so that to prove the assertion we have only to show that S(F+) is not invariant.

As before we observe that if Φ in S(K,ω) = S(K) is taken to vanish at 0 but to be non­negative

and not identically 0 then

rω(w)Φ(0) = γ

∫

K

Φ(x) dx 6= 0

so that ϕΦ is in S(F+) but ϕrω(w)Φ is not.

The representation π(ω) is the representation obtained by lettingG+ act to the right on the space
of functions ϕ̃ on G+ with values in V+ which satisfy

ϕ̃(hg) = π(ω,ψ)(h) ϕ̃(g)

for h in G+. Replacing the functions ϕ̃ by the functions

ϕ̃′(g) = ϕ̃

((
a 0
0 1

)
g

)

we obtain an equivalent representation, that induced from the representation

g → π(ω,ψ)

((
a 0
0 1

)
g

(
a−1 0
0 1

))

of G+. It follows from Lemma 1.4 that this representation is equivalent to π(ω,ψ′) if ψ′(x) = ψ(ax).

Thus π(ω) is, apart from equivalence, independent of ψ.
Since

GF =

{
g

(
a 0
0 1

) ∣∣ g ∈ G+, a ∈ F×

}

ϕ̃ is determined by its restrictions to BF . This restriction, which we again call ϕ̃, is any one of the
functions considered in Lemma 4.6.1. Thus, by the construction used in the proof of that lemma, we
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can associate to any ϕ̃ a function ϕ on F×. Let V be the space of functions so obtained. We can regard
π = π(ω) as acting on V . It is clear that, for all ϕ in V ,

π(b)ϕ = ξψ(b)ϕ

if b is in BF . Every function on F+ can, by setting it equal to 0 outside of F+, be regarded as a function
F×. Since

ϕ̃

((
a 0
0 1

))
(α) = ϕ(αa)

V is the space generated by the translates of the functions in V+. Thus if V+ = S(F+) then V = S(F×)
and if S(F+) is of codimension one in V+ then S(F×) is of codimension two in V .

It follows immediately that π(ω) is irreducible and absolutely cuspidal if the restriction of ω to
K1 is not trivial.

The function ϕ in V+ corresponds to the function ϕ̃which is 0 outside of G+ and onG+ is givne

by
ϕ̃(g) = π(ω,ψ)(g)ϕ.

It is clear that
π(ω)(g)ϕ = π(ω,ψ)(g)ϕ

if g is in G+. Any non­trivial invariant subspace of V will have to contain S(F×) and therefore S(F+).
Since π(ω,ψ) is irreducible it will have to contain V+ and therefore will be V itself. Thus π(ω) is

irreducible for all ω.

If the restriction of ω to K1 is trivial there is a quasi­character χ of F× such that ω = χ ◦ ν. To
establish the last assertion of the lemma all we have to do is construct a non­zero linear form L on V
which annihilates S(F×) and satisfies

L

(
π

((
a1 0
0 a2

))
ϕ

)
= χ(a1a2) η(a2)

∣∣∣∣
a1

a2

∣∣∣∣
1/2

L(ϕ)

if π = π(ω). We saw in Proposition 1.5 that

π

((
a 0
0 a

))
ϕ = χ2(a) η(a)ϕ

so will only have to verify that

L

(
π

((
a 0
0 a

))
ϕ

)
= χ(a)|a|1/2L(ϕ)

If ϕ = ϕΦ is in V+ we set
L(ϕ) = Φ(0)

so that if a is in F+

L

(
π

((
a 0
0 1

))
ϕ

)
= rω

((
a 0
0 1

))
Φ(0) = χ(a) |a|1/2 L(ϕ).
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If ε is in F× but not in F+ any function ϕ in V can be written uniquely as

ϕ = ϕ1 + π

((
ε 0
0 1

))
ϕ2

with ϕ1 and ϕ2 in V+. We set

L(ϕ) = L(ϕ1) + χ(ε)L(ϕ2).

Theorem 4.7 (i) If π = π(ω) then π = π(ωι) if ωι(a) = ω(aι), π̃ = π(ω−1) and χ⊗ π = π(ωχ′) if
χ is a quasi-character of F× and χ′ = χ ◦ ν.

(ii) If a is in F× then

π

((
a 0
0 a

))
= ω(a) η(a)I.

(iii) L(s, π) = L(s, ω) and L(s, π̃) = L(s, ω−1). Moreover if ψK(x) = ψF
(
ξ(x)

)
for x in K and

if λ(K/F,ψF ) is the factor introduced in the first paragraph then

ε(s, π, ψF ) = ε(s, ω, ψK)λ(K/F,ψF )

It is clear that χ ⊗ π(ω,ψ) of G+. However by its very construction χ ⊗ π(ω,ψ) = π(ωχ′, ψ).

The relation

π

((
a 0
0 a

))
= ω(a) η(a)I

is a consequence of part (iii) of Proposition 1.5 and has been used before. Since η′ = η ◦ ν is trivial and

ω
(
ν(a)

)
= ω(a)ωι(a)

π̃ = ω−1η−1 ⊗ π = π(ω−ι)

To complete the proof of the first part of the theorem we have to show that π(ω) = π(ωι). It is enough
to verify that π(ω,ψ) = π(ωι, ψ). If Φ belongs to S(K) let Φι(x) = Φ(xι). Φ → Φι is a bijection of

S(K,ω) with S(K,ωι) which changes π(ω,ψ) into π(ωι, ψ). Observe that here as elsewhere we have
written an equality when we really mean an equivalence.

We saw in the first paragraph that if ϕ = ϕΦ is in V+ then

ϕ̂(α
s−1/2
F ) = Z(αsKω,Φ)

and that if ϕ′ = π(w)ϕ and Φ′ is the Fourier transform of Φ then, if ω0(a) = ω(a) η(a) for a in F×,

ϕ̂′(ω−1
0 α

s−1/2
F ) = γZ(α1−s

K ω−1,Φ′)

if γ = λ(K/F,ψF ). Thus for all ϕ in V+ the quotient

ϕ̂(α
s−1/2
F )

L(s, ω)

has an analytic continuation as a holomorphic function of s and for some ϕ it is a non­zero constant.

Also
ϕ̂′(w−1

0 α
1/2−s
F )

L(1 − s, ω−1)
= λ(K/F,ψF ) ε(s, ω, ψK)

ϕ̂(α
s−1/2
F )

L(s, ω)
.
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To prove the theorem we have merely to check that these assertions remain valid when ϕ is
allowed to vary in V . In fact we need only consider functions of the form

ϕ = π

((
ε 0
0 1

))
ϕ0

where ϕ0 is in V+ and ε is not in F+. Since

ϕ̂(α
s−1/2
F ) = |ε|1/2−s ϕ̂0(α

s−1/2
F )

the quotient

ϕ̂(α
s−1/2
F )

L(s, ω)

is certainly holomorphic in the whole plane. Since

ϕ̂′(ω−1
0 α

1/2−s
F ) = ω0(ε)ω

−1
0 (ε) |ε|1/2−sϕ̂′

0(ω
−1
0 α

1/2−s
F ) = |ε|

1
2−sϕ̂′

0(ω
−1
0 α

1/2−s
F )

the functional equation is also satisfied.

Observe that if ω = χ ◦ ν then π(ω) = π(χ, χη) so that

L(s, ω) = L(s, χ)L(s, χη)

and

ε(s, ω, ψK)λ(K/F,ψF ) = ε(s, χ, ψF ) ε(s, χη, ψF )

These are special cases of the identities of [19].
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§5. Representations of GL(2,R). We must also prove a local functional equation for the real and
complex fields. In this paragraph we consider the field R of real numbers. The standard maximal

compact subgroup of GL(2,R) is the orthogonal group O(2,R). Neither GL(2,R) nor O(2,R) is
connected.

Let H1 be the space of infinitely differentiable compactly supported functions onGL(2,R) which

are O(2,R) finite on both sides. Once a Haar measure on GR = GL(2,R) has been chosen we may
regard the elements of H1 as measures and it is then an algebra under convolution.

f1 × f2(g) =

∫

GR

f1(gh
−1) f2(h) dh.

OnO(2,R) we choose the normalized Haar measure. Then every function ξ onO(2,R) which is a finite

sum of matrix elements of irreducible representations of O(2,R) may be identified with a measure on
O(2,R) and therefore on GL(2,R). Under convolution these measures form an algebra H2. HR will

be the sum of H1 and H2. It is also an algebra under convolution of measures. In particular if ξ belongs
to H2 and f belongs to H1

ξ ∗ f(g) =

∫

O(2,R)

ξ(u) f(u−1g) du

and

f ∗ ξ(g) =

∫

O(2,R)

f(gu−1) ξ(u) du.

If σi, 1 ≤ i ≤ p, is a family of inequivalent irreducible representations of O(2,R) and

ξi(u) = dimσi traceσi(u
−1)

then

ξ =

p∑

i=1

ξi

is an idempotent of HR. Such an idempotent is called elementary.

It is a consequence of the definitions that for any f in H1 there is an elementary idempotent ξ
such that

ξ ∗ f = f ∗ ξ = f.

Moreover for any elementary idempotent ξ

ξ ∗H1 ∗ ξ = ξ ∗ C∞
c (GR) ∗ ξ

is a closed subspace of C∞
c (GR), in the Schwartz topology. We give it the induced topology.

A representation π of the algebra HR on the complex vector space V is said to be admissible if

the following conditions are satisfied.

(5.1) Every vector v in V is of the form

v =
r∑

i=1

π(fi)vi

with fi in H1 and vi in V .
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(5.2) For every elementary idempotent ξ the range of π(ξ) is finite dimensional.

(5.3) For every elementary idempotent ξ and every vector v in π(ξ)V the map f → π(f)v of
ξH1ξ into the finite dimensional space π(ξ)V is continuous.

If v =
∑r

i=1 π(fi)vi we can choose an elementary idempotent ξ so that ξfi = fiξ = fi for

1 ≤ i ≤ r. Then π(ξ)v = v. Let {ϕ} be a sequence in C∞
c (GR) which converges, in the space of

distributions, towards the Dirac distribution at the origin. Set ϕ′n = ξ ∗ϕn ∗ ξ. For each i the sequence

{ϕ′
n ∗ fi} converges to fi in the space ξH1ξ. Thus by (5.3) the sequence {π(ϕ′

n)v} converges to v in
the finite dimensional space π(ξ)v. Thus v is in the closure of the subspace π(ξH1ξ)v and therefore

belongs to it.

As in the second paragraph the conditions (5.1) and (5.2) enable us to define the representation
π̃ contragredient to π. Up to equivalence it is characterized by demanding that it satisfy (5.1) and (5.2)

and that there be a non­degenerate bilinear form on V × Ṽ satisfying

〈π(f)v, ṽ〉 = 〈v, π(f̌)ṽ〉

for all f in HR. Ṽ is the space on which π̃ acts and f̌ is the image of the measure f under the map
g → g−1. Notice that we allow ourselves to use the symbol f for all elements of HR. The condition

(5.3) means that for every v in V and every ṽ in Ṽ the linear form

f → 〈π(f)v, ṽ〉

is continuous on each of the spaces ξH1ξ. Therefore π̃ is also admissible.
Choose ξ so that π(ξ)v = v and π̃(ξ̌)ṽ = ṽ. Then for any f in H1

〈π(f)v, ṽ〉 = 〈π(ξfξ)v, ṽ〉.

There is therefore a unique distribution µ on GR such that

µ(f) = 〈π(f)v, ṽ〉

for f in H1. Choose ϕ in ξH1ξ so that π(ϕ)v = v. Then

µ(fϕ) = µ(ξfϕξ) = µ(ξfξϕ) = 〈π(ξfξϕ)v, ṽ〉 = 〈π(ξfξ)v, ṽ〉

so that µ(fϕ) = µ(f). Consequently the distribution µ is actually a function and it is not unreasonable

to write it as g → 〈π(g)v, ṽ〉 even though π is not a representation of GR. For a fixed g, 〈π(g)v, ṽ〉
depends linearly on v and ṽ. If the roles of π and π̃ are reversed we obtain a function 〈v, π̃(g)ṽ〉. It is

clear from the definition that
〈π(g)v, ṽ〉 = 〈v, π̃(g−1)ṽ〉.

Let g be the Lie algebra of GR and let gC = g
⊗

R
C. Let A be the universal enveloping algebra

of gC. If we regard the elements of A as distributions on GR with support at the identity we can take
their convolution product with the elements of C∞

c (GR). More precisely if X belongs to g

X ∗ f(g) =
d

dt
f
(
exp(−tX)

)∣∣
t=0

and

f ∗X(g) =
d

dt
f
(
g exp(−tX)

)∣∣
t=0
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If f belongs to H1 so do f ∗X and X ∗ f .
We want to associate to the representation π of HR on V a representation π of A on V such that

π(X)π(f) = π(X ∗ f)

and
π(f)π(X) = π(f ∗X)

for all X in A and all f in H1. If v =
∑
π(fi) vi we will set

π(X)v =
∑

i

π(X ∗ fi)vi

and the first condition will be satisfied. However we must first verify that if

∑

i

π(fi) vi = 0

then

w =
∑

i

π(X ∗ fi)vi

is also 0. Choose f so that w = π(f)w. Then

w =
∑

i

π(f)π(X ∗ fi)vi =
∑

i

π(f ∗X ∗ fi)vi = π(f ∗X){
∑

π(fi)vi} = 0.

>From the same calculation we extract the relation

π(f)

{
∑

i

π(X ∗ fi)vi

}
= π(f ∗X)

{∑
π(fi)vi

}

for all f so that π(f)π(X) = π(f ∗X).
If g is in GR then λ(g) f = δg ∗ f if δg is the Dirac function at g. If g is in O(2,R) or in ZR, the

groups of scalar matrices, δg ∗ f is in H1 if f is, so that the same considerations allow us to associate

to π a representation π of O(2,R) and a representation π of ZR. It is easy to see that if h is in either of
these groups then

π(AdhX) = π(h)π(X)π(h−1).

To dispel any doubts about possible ambiguities of notation there is a remark we should make. For

any f in H1

〈π(f)v, ṽ〉 =

∫

GR

f(g)〈π(g)v, ṽ〉 dg.

Thus if h is in O(2,R) or ZR

〈π(f ∗ δh)v, ṽ〉 =

∫

GR

f(g) 〈π(gh)v, ṽ〉 dg



Chapter 1 80

and

〈π(f)π(h)v, ṽ〉 =

∫

GR

f(g)〈π(g)π(h)v, ṽ〉 dg

so that

〈π(gh)v, ṽ〉 = 〈π(g)π(h)v, ṽ〉.

A similar argument shows that

〈π(hg)v, ṽ〉 = 〈π(g)v, π̃(h−1ṽ〉.

It is easily seen that the function 〈π(g)v, ṽ〉 takes the value of 〈v, ṽ〉 at g = e. Thus if h belongs to
O(2,R) or ZR the two possible interpretations of 〈π(h)v, ṽ〉 give the same result.

It is not possible to construct a representation ofGR on V and the representation of A is supposed
to be a substitute. Since GR is not connected, it is not adequate and we introduce instead the notion of

a representation π1 of the system {A, ε} where

ε =

(
−1 0
0 1

)
.

It is a representation π1 of A and an operator π1(ε) which satisfy the relations

π2
1(ε) = I

and

π1(AdεX) = π1(ε)π1(X)π1(ε
−1).

Combining the representation π with A with the operator π(ε) we obtain a representation of the system

{A, ε}.
There is also a representation π̃ of A associated to π̃ and it is not difficult to see that

〈π(X)v, ṽ〉 = 〈v, π̃(X̌)ṽ〉

if X → X̌ is the automorphism of A which sends X in g to −X .
Let

ϕ(g) = 〈π(g)v, ṽ〉.

ϕ is certainly infinitely differentiable. Integrating by parts we see that

∫

GR

f(g)ϕ ∗X(g) dg =

∫

GR

f ∗ X̌(g)ϕ(g) dg

The right side is

〈π(f)π(X̌)v, ṽ〉 =

∫

GR

f(g)〈π(g)π(X̌)v, ṽ〉

so that

ϕ ∗ X̌(g) = 〈π(g)π(X̌)v, ṽ〉.
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Assume now that the operators π(X) are scalar if X is in the centre Z of A. Then the standard
proof, which uses the theory of elliptic operators, shows that the functions ϕ are analytic on GR. Since

ϕ ∗ X̌(e) = 〈π(X̌)v, ṽ〉

ϕ ∗ X̌(ε) = 〈π(ε)π(X̌)v, ṽ〉

andGR has only two components, one containing e and the other containing ε. The function ϕ vanishes

identically if 〈π(X̌)v, ṽ〉 and 〈π(ε)π(X̌)v, ṽ〉 are 0 for allX in A. Any subspace V1 of V invariant under

A and ε is certainly invariant under O(2,R) and therefore is determined by its annihilator in Ṽ . If v is
in V1 and ṽ annihilates V1 the function 〈π(g)v, ṽ〉 is 0 so that

〈π(f)v, ṽ〉 = 0

for all f in H1. Thus π(f)v is also in V1. Since H2 clearly leaves V1 invariant this space is left invariant
by all of HR.

By the very construction any subspace of V invariant under HR is invariant under A and ε so
that we have almost proved the following lemma.

Lemma 5.4 The representation π of HR is irreducible if and only if the associated representation π
of {A, ε} is.

To prove it completely we have to show that if the representation of {A, ε} is irreducible the

operator π(X) is a scalar for all X in Z. As π(X) has to have a non­zero eigenfunction we have only
to check that π(X) commutes with π(Y ) for Y in A with π(ε). It certainly commutes with π(Y ). X is

invariant under the adjoint action not only of the connected component ofGR but also of the connected

component of GL(2,C). Since GL(2,C) is conected and contains ε

π(ε)π(X)π−1(ε) = π
(
Adε(X)

)
= π(X).

Slight modifications, which we do not describe, of the proof of Lemma 5.4 lead to the following

lemma.

Lemma 5.5 Suppose π and π′ are two irreducible admissible representations of HR. π and π′ are
equivalent if and only if the associated representations of {A, ε} are.

We comment briefly on the relation between representations of GR and representations of HR.
Let V be a complete separable locally convex topological space and π a continuous representation of

GR on V . Thus the map (g, v) → π(g)v ofGR×V to V is continuous and for f inC∞
c (GR) the operator

π(f) =

∫

GR

f(x)π(x) dx

is defined. So is π(f) for f in H2. Thus we have a representation of HR on V . Let V0 be the space

of O(2,R)­finite vectors in V . It is the union of the space π(ξ)V as ξ ranges over the elementary
idempotents and is invariant under HR. Assume, as is often the case, that the representation π0 of HR

on V0 is admissible. Then π0 is irreducible if and only if π is irreducible in the topological sense.
Suppose π′ is another continuous representation of GR in a space V ′ and there is a continuous

non­degenerate bilinear form on V × V ′ such that

〈π(g)v, v′〉 = 〈v, π′(g−1)v′〉.
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Then the restriction of this form to V0 × V ′
0 is non­degenerate and

〈π(f)v, v′〉 = 〈v, π′(f̌)v′〉

for all f in HR, v in V0, and v′ in V ′
0 . Thus π′0 is the contragredient of π0. Since

〈π0(f)v, v′〉 =

∫

GR

f(g) 〈π(g)v, v′〉

we have
〈π0(g)v, v

′〉 = 〈π(g)v, v′〉.

The special orthogonal group SO(2,R) is abelian and so is its Lie algebra. The one­dimensional
representation (

cos θ sin θ
− sin θ cos θ

)
→ einθ

of SO(2,R) and the associated representation of its Lie algebra will be both denoted by κn. A

representation π of A or of {A, ε} will be called admissible if its restrictions to the Lie algebra of
SO(2,R) decomposes into a direct sum of the representations κn each occurring with finite multiplicity.

If π is an admissible representation of HR the corresponding representation of {A, ε} is also admissible.
We begin the classification of the irreducible admissible representations of HR and of {A, ε} with the

introduction of some particular representations.

Let µ1 and µ2 be two quasi­characters of F×. Let B(µ1, µ2) be the space of functions f on GR

which satisfy the following two conditions.

(i)

f

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)

∣∣∣∣
a1

a2

∣∣∣∣
1/2

f(g)

for all g in GR, a1, a2 in R×, and x in R.
(ii) f is SO(2,R) finite on the right.

Because of the Iwasawa decomposition

GR = NR AR SO(2,R)

these functions are complete determined by their restrictions to SO(2,R) and in particular are infinitely
differentiable. Write

µi(g) = |t|si

(
t

|t|

)mi

where si is a complex number and mi is 0 or 1. Set s = s1 − s2 and m = |m1 − m2| so that

µ1 µ
−1
2 (t) = |t|s ( t|t|)

m. If n has the same parity as m let ϕn be the function in B(µ1, µ2) defined by

ϕn

((
1 x
0 1

)(
a1 0
0 a2

)(
cos θ sin θ
− sin θ cos θ

))
= µ1(a1)µ2(a2)

∣∣∣∣
a1

a2

∣∣∣∣
1/2

einθ.

The collection {ϕn} is a basis of B(µ1, µ2).

For any infinitely differentiable function f on GR and any compactly supported distribution µ
we defined λ(µ)f by

λ(µ)f(g) = µ̌
(
ρ(g)f

)
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and ρ(µ)f by
ρ(µ)f(g) = µ

(
λ(g−1)f

)
.

If, for example, µ is a measure

λ(µ)f(g) =

∫

GR

f(h−1g) dµ(h)

and

ρ(µ)f(g) =

∫

GR

f(gh) dµ(h).

In all cases λ(µ)f and ρ(µ)f are again infinitely differentiable. For all f in HR the space B(µ1, µ2)
is invariant under ρ(f) so that we have a representation ρ(µ1, µ2) of HR on B(µ1, µ2). It is clearly
admissible and the associated representation ρ(µ1, µ2) of {A, ε} is also defined by right convolution.

We introduce the following elements of g which is identified with the Lie algebra of 2×2 matrices.

U =

(
0 1
−1 0

)
, J =

(
1 0
0 1

)
, V+ =

(
1 i
i −1

)
, V− =

(
1 −i
−i −1

)
,

X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
, Z =

(
1 0
0 −1

)
,

as well as

D = X+X− +X−X+ +
Z2

2
,

which belongs to A.

Lemma 5.6 The following relations are valid

(i) ρ(U)ϕn = inϕn (ii) ρ(ε)ϕn = (−1)m1ϕ−n

(iii) ρ(V+)ϕn = (s+ 1 + n)ϕn+2 (iv) ρ(V−)ϕn = (s+ 1 − n)ϕn−2

(v) ρ(D)ϕn = s2−1
2
ϕn (vi) ρ(J)ϕn = (s1 + s2)ϕn

The relations (i), (ii), and (vi) are easily proved. It is also clear that for all ϕ in B(µ1, µ2)

ρ(Z)ϕ(e) = (s+ 1)ϕ(e)

and

ρ(X+)ϕ(e) = 0.

The relations

Ad

((
cos θ sin θ
− sin θ cos θ

))
V+ = e2iθV+

and

Ad

((
cos θ sin θ
− sin θ cos θ

))
V− = e−2iθV−
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show that ρ(V+)ϕn is a multiple of ϕn+2 and that ρ(V−)ϕn is a multiple of ϕn−2. Since

V+ = Z − iU + 2iX+

and

V− = Z + iU − 2iX+

the value of ρ(V+)ϕn at the identity e is s+ 1 + n and that of ρ(V−)ϕn = s+ 1− n. Relations (iii) and

(iv) follow.
It is not difficult to see that D belongs to Z the centre of A. Therefore ρ(D)ϕ = λ(Ď)ϕ = λ(D)ϕ

since D = Ď. If we write D as

2X−X+ + Z +
Z2

2

and observe that λ(X+)ϕ = 0 and λ(Z)ϕ = −(s+ 1)ϕ if ϕ is in B(µ1, µ2) we see that

ρ(D)ϕn =

{
−(s+ 1) +

(s+ 1)2

2

}
ϕ =

s2 − 1

2
ϕn.

Lemma 5.7 (i) If s−m is not an odd integer B(µ1, µ2) is irreducible under the action of g.
(ii) If s−m is an odd integer and s ≥ 0 the only proper subspaces of B(µ1, µ2) invariant under

g are

B1(µ1, µ2) =
∑

n≥s+1
n=s+1(mod 2)

Cϕn

B2(µ1, µ2) =
∑

n≤−s−1
n=s+1(mod 2)

Cϕn

and, when it is different from B(µ1, µ2),

Bs(µ1, µ2) = B1(µ1, µ2) + B2(µ1, µ2).

(iii) If s−m is an odd integer and s < 0 the only proper subspaces of B(µ1, µ2) invariant under
g are

B1(µ1, µ2) =
∑

n≥s+1
n=s+1(mod 2)

Cϕn

B2(µ1, µ2) =
∑

n≤−s−1
n=(s+1)(mod 2)

Cϕn

and
Bf (µ1, µ2) = B1(µ1, µ2) ∩ B2(µ1, µ2).

Since a subspace of B(µ1, µ2) invariant under g is spanned by those of the vectors ϕn that it

contains this lemma is an easy consequence of the relations of Lemma 5.6.
Before stating the corresponding results for {A, ε} we state some simple lemmas.
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Lemma 5.8 If π is an irreducible admissible representation of {A, ε} there are two possibilities:
(i) The restriction of π to A is irreducible and the representations X → π(X) and X →

π
(
Adε(X)

)
are equivalent.

(ii) The space V on which π acts decomposes into a direct sum V1 ⊕V2 where V1 and V2 are both
invariant and irreducible under A. The representations π1 and π2 of A on V1 and V2 are not
equivalent but π2 is equivalent to the representation X → π

(
Adε(X)

)
.

If the restriction of π to A is irreducible the representationsX → π(X) andX → π
(
Adε(X)

)
are

certainly equivalent. If it is not irreducible letV1 be a proper subspace invariant under A. IfV2 = π(ε)V1

then V1 ∩ V2 and V1 + V2 are all invariant under {A, ε}. Thus V1 ∩ V2 = {0} and V = V1 ⊕ V2. If V1

had a proper subspace V ′
1 invariant under A the same considerations would show that V = V ′

1 ⊕ V ′
2

with V ′
2 = π(ε)V ′

1 . Since this is impossible V1 and V2 are irreducible under A.
If v1 is in V1

π2(X)π(ε)v1 = π(ε)π1

(
ad ε(X)

)
v1

so that the representations X → π2(X) and X → π1

(
Adε(X)

)
are equivalent. If π1 and π2 were

equivalent there would be an invertible linear transformation A from V1 to V2 so that Aπ1(X) =
π2(X)A. If v1 is in V1

A−1π(ε)π1(X)v1 = A−1 π2

(
ad ε(X)

)
π(ε) v1 = π1

(
Adε(X)

)
A−1 π(ε) v1

Consequently {A−1π(ε)}2 regarded as a linear transformation of V1 commutes with A and is therefore
a scalar. There is no harm in supposing that it is the identity. The linear transformation

v1 + v2 → A−1v2 +Av1

then commutes with the action of {A, ε}. This is a contradiction.

Letχ be a quasi­character of R× and letχ(t) = tc for tpositive. For any admissible representation
π of A and therefore of g we define a representation χ⊗ π of g and therefore A by setting

χ⊗ π(X) =
c

2
traceX + π(X)

if X is in g. If π is a representation of {A, ε} we extend χ⊗ π to {A, ε} by setting

χ⊗ π(ε) = χ(−1)π(ε)

If π is associated to a representation π of HR then χ⊗π is associated to the representation of HR defined
by

χ⊗ π(f) = π(χf)

if χf is the product of the functions χ and f .

Lemma 5.9 Let π0 be an irreducible admissible representation of A. Assume that π0 is equivalent
to the representation X → π0

(
Adε(X)

)
. Then there is an irreducible representation π of {A, ε}

whose restriction to A is π0. If η is the non-trivial quadratic character of R× the representations
π and η ⊗ π are not equivalent but any representatin of {A, ε} whose restriction to A is equivalent
to π0 is equivalent to one of them.

Let π0 act on V . There is an invertible linear transformation A of V such that Aπ0(X) =
π0

(
Adε(X)

)
A for all X in A. Then A2 commutes with all π0(X) and is therefore a scalar. We may

suppose that A2 = I . If we set π(ε) = A and π(X) = π0(X) for X in A we obtain the required
representation. If we replace A by −A we obtain the representation η ⊗ π. π and η ⊗ π are not

equivalent because any operator giving the equivalence would have to commute with all of the π(X)
and would therefore be a scalar. Any representation π′ of {A, ε} whose restriction to A is equivalent to
π0 can be realized on V0 in such a way that π′(X) = π0(X) for all X . Then π′(ε) = ±A.
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Lemma 5.10 Let π1 be an irreducible admissible representation of A. Assume that π1 and π2, with
π2(X) = π1

(
Adε(X)

)
, are not equivalent. Then there is an irreducible representation π of {A, ε}

whose restriction to A is the direct sum of π1 and π2. Every irreducible admissible representation
of {A, ε} whose restriction to A contains π1 is equivalent to π. In particular η ⊗ π is equivalent
to π.

Let π1 act on V1. To construct π we set V = V1 ⊕ V2 and we set

π(X) (v1 ⊕ v2) = π1(X)v1 ⊕ π2(X)v2

and
π(ε) (v1 ⊕ v2) = v2 ⊕ v1.

The last assertion of the lemma is little more than a restatement of the second half of Lemma 5.8.

Theorem 5.11 Let µ1 and µ2 be two quasi-characters of F×.
(i) If µ1µ

−1
2 is not of the form t → tp sgn t with p a non-zero integer the space B(µ1, µ2) is

irreducible under the action of {A, ε} or HR. π(µ1, µ2) is any representation equivalent to
ρ(µ1, µ2).

(ii) If µ1µ
−1
2 (t) = tp sgn t, where p is a positive integer, the space B(µ1, µ2) contains exactly

one proper subspace Bs(µ1, µ2) invariant under {A, ε}. It is infinite dimensional and any
representation of {A, ε} equivalent to the restriction of ρ(µ1, µ2) to Bs(µ1, µ2) will be denoted
by σ(µ1, µ2). The quotient space

Bf (µ1, µ2) = B(µ1, µ2)/Bs(µ1, µ2)

is finite-dimensional and π(µ1, µ2) will be any representation equivalent to the representation
of {A, ε} on this quotient space.

(iii) If µ1µ
−1
2 (t) = tp sgn t, where p is a negative integer, the space B(µ1, µ2) contains exactly one

proper subspace Bf (µ1, µ2) invariant under {A, ε}. It is finite-dimensional and π(µ1, µ2)
will be any representation equivalent to the restriction of ρ(µ1, µ2) to Bf (µ1, µ2). σ(µ1, µ2)
will be any representation equivalent to the representation on the quotient space

Bs(µ1, µ2) = B(µ1, µ2)/Bf(µ1, µ2).

(iv) A representation π(µ1, µ2) is never equivalent to a representation σ(µ′
1, µ

′
2).

(v) The representations π(µ1, µ2) and π(µ′
1, µ

′
2) are equivalent if and only if either (µ1, µ2) =

(µ′
1, µ

′
2) or (µ1, µ2) = (µ′

2, µ
′
1).

(vi) The representations σ(µ1, µ2) and σ(µ′
1, µ

′
2) are equivalent if and only if (µ1, µ2) is one of

the four pairs (µ′
1, µ

′
2), (µ′

2, µ
′
1), (µ′

1η, µ
′
2η), or (µ′

2η, µ
′
1η).

(vii) Every irreducible admissible representation of {A, ε} is either a π(µ1, µ2) or a σ(µ1, µ2).

Let µ1µ
−1
2 (t) = |t|s( t

|t|
)m. s−m is an odd integer if and only if s is an integer p and µ1µ

−1
2 (t) =

tp sgn t. Thus the first three parts of the lemma are consequences of Lemma 5.6 and 5.7. The fourth
follows from the observation that π(µ1, µ2) and σ(µ′

1, µ
′
2) cannot contain the same representations of

the Lie algebra of SO(2,R).
We suppose first that s −m is not an odd integer and construct an invertible transformation T

from B(µ1, µ2) to B(µ2, µ1) which commutes with the action of {A, ε}. We have introduced a basis
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{ϕn} of B(µ1, µ2). Let {ϕ′
n} be the analogous basis of B(µ2, µ1). T will have to take ϕn to a multiple

anϕ
′
n of ϕ′

n. Appealing to Lemma 5.6 we see that it commutes with the action of {A, ε} if and only if

(s+ 1 + n)an+2 = (−s+ 1 + n)an

(s+ 1 − n)an−2 = (−s+ 1 − n)an

and
an = (−1)ma−n.

These relations will be satisfied if we set

an = an(s) =
Γ (−s+1+n)

2

Γ (s+1+n)
2

Since n = m(mod2) and s−m− 1 is not an even integer all these numbers are defined and different

from 0.
If s ≤ 0 and s−m is an odd integer we set

an(s) = lim
z→s

an(z)

The numbers an(s) are still defined although some of them may be 0. The associated operator T
maps B(µ1, µ2) into B(µ2, µ1) and commutes with the action of {A, ε}. If s = 0 the operator T is

non­singular. If s < 0 its kernel is Bf (µ1, µ2) and it defines an invertible linear transformation from
Bs(µ1, µ2) to Bs(µ2, µ1). If s > 0 and s−m is an odd integer the functions an(z) have at most simple

poles at s. Let
bn(s) = lim

z→s
(z − s) an(z)

The operator T associated to the family {bn(s)} maps B(µ1, µ2) into B(µ2, µ1) and commutes with

the action of {A, ε}. It kernel is Bs(µ1, µ2) so that it defines an invertible linear transformation from
Bf (µ1, µ2) to Bf (µ2, µ1). These considerations together with Lemma 5.10 give us the equivalences of

parts (v) and (vi).
Now we assume that π = π(µ1, µ2) and π′ = π(µ′

1, µ
′
2) or π = σ(µ1, µ2) and π′ = σ(µ′

1, µ
′
2)

are equivalent. Let µi(T ) = |t|si( t|t| )
mi and let µ′i(t) = |t|s

′
i( t|t| )

m′
i . Let s = s1 − s2, m = |m1 −m2|,

s′ = s′1 − s′2, m′ = |m′
1 −m′

2|. Since the two representations must contain the same representations of

the Lie algebra of SO(2,R) the numbers m and m′ are equal. Since π(D) and π′(D) must be the same
scalar Lemma 5.6 shows that s′ = ±s. π(J) and π′(J) must also be the same scalar so s′1 +s′2 = s1 +s2.

Thus if η(t) = sgn t the pair (µ1, µ2) must be one of the four pairs (µ′1, µ
′
2), (µ′

2, µ
′
1), (ηµ′

1, ηµ
′
2),

(ηµ′
2, ηµ

′
1). Lemma 5.9 shows that π(µ′1µ

′
2) and π(ηµ′1, ηµ

′
2) are not equivalent. Parts (v) and (vi) of

the theorem follow immediately.

Lemmas 5.8, 5.9, and 5.10 show that to prove the last part of the theorem we need only show
that any irreducible admissible representation π of A is, for a suitable choice of µ1 and µ2, a constituent

of ρ(µ1, µ2). That is there should be two subspace B1 and B2 of B(µ1, µ2) invariant under A so
that B1 contains B2 and π is equivalent to the representation of A on the quotient B1/B2. If χ is

a quasi­character of F× then π is a constituent of ρ(µ1, µ2) if and only if χ ⊗ π is a constituent of

ρ(χµ1, χµ2). Thus we may suppose that π(J) is 0 so that π is actually a representation of A0, the
universal enveloping algebra of the Lie algebra of ZR \GR. Since this group is semi­simple the desired

result is a consequence of the general theorem of Harish–Chandra [6].
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It is an immediate consequence of the last part of the theorem that every irreducible admissible
representations of {A, ε} is the representation associated to an irreducible admissible representation of

HR. Thus we have classifed the irreducible admissible representations of {A, ε} and of HR. We can
write such a representation of HR as π(µ1, µ2) or σ(µ1, µ2).

In the first paragraph we associated to every quasi­character ω of C× a representation of rω of

G+ the group of matrices with positive determinant. rω acts on the space of functions Φ in S(C) which
satisfy

Φ(xh) = ω−1(h)Φ(x)

for all h such that hh̄ = 1. All elements of S(C,ω) are infinitely differentiable vectors for rω so that rω
also determines a representation, again called rω , of A. rω depended on the choice of a character of R.
If that character is

ψ(x) = e2πuxi

then

rω(X+)Φ(z) = (2πuzz̄i)Φ(z).

Lemma 5.12 Let S0(C, ω) be the space of functions Φ in S(C,ω) of the form

Φ(z) = e−2π|u|zz̄P (z, z̄)

where P (z, z̄) is a polynomial in z in z̄. Then S0(C, ω) is invariant under A and the restriction of
rω to S0(C, ω) is admissible and irreducible.

It is well known and easily verified that the function e−2π|u|zz̄ is its own Fourier transform

provided of course that the transform is taken with respect to the character

ψC(z) = ψ(z + z̄)

and the self­dual measure for that character. From the elementary properties of the Fourier transform
one deduces that the Fourier transform of a function

Φ(z) = e−2π|u|zz̄ P (z, z̄)

where P is a polynomial in z and z̄ is of the same form. Thus rω(w) leaves S0(C, ω) invariant. Recall
that

w =

(
0 1
−1 0

)
.

S0(C, ω) is clearly invariant under rω(X+). Since X− = Adw(X+) it is also invariant under X . But

X+X− −X−X+ = Z so that it is also invariant under Z . We saw in the first paragraph that if ω0 is
the restriction of ω to R× then

rω

((
a 0
0 a

))
= (sgna)ω0(a)I

thus rω(J) = cI ifω0(a) = ac for a positive a. In conclusion S0(C, ω) is invariant under g and therefore

under A.

If

ω(z) = (zz̄)r
zmz̄n

(zz̄)
m+n

2
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where r is a complex number and m and n are two integers, one 0 and the other non­negative, the
functions

Φp(z) = e−2π|u|zz̄ zn+p z̄m+p,

with p a non­negative integer, form a basis of S0(C, ω). Suppose as usual that ∂
∂z = 1

2
∂
∂x + 1

2i
∂
∂y and

that ∂
∂z̄ = 1

2
∂
∂x − 1

2i
∂
∂y . Then the Fourier transform Φ′

p of Φp is given by

Φ′
p(z) =

1

(2πiu)m+n+2p

∂n+p

∂zn+p

∂m+p

∂z̄m+p
e−2π|u|zz̄

which is a function of the form

(i sgnu)m+n+2pe−2π|u|zz̄ z̄n+p zm+p +

p−1∑

q=0

aqe
−2π|u|zz̄ z̄n+q zm+q.

Only the coefficient ap−1 interests us. It equals

(i sgnu)m+n+2p−1

2πiu
{p(n+m+ 1 + p− 1)}.

Since

rω(w)Φ(z) = (i sgnu)Φ′(z̄)

and
rω(X−) = (−1)m+n rω(w) rω(X+) r(w)

while

rω(X+)Φp = (2πui)Φp+1

we see that

rω(X−)Φp = (2πui)Φp+1 − (i sgnu)(n+m+ 2p+ 1)Φp +

p−1∑

q=0

bqΦq.

Since U = X+ −X− we have

rω(U)Φp = (i sgnu)(n+m+ 2p+ 1)Φp −

p−1∑

1=0

bqΦq

and we can find the functions Ψp, p = 0, 1, · · ·, such that

Ψp = Φp +

p−1∑

q=0

apq Φq

while
rω(U)Ψp = (i sgnu)(n+m+ 2p+ 1)Ψp.

These functions form a basis of S0(C, ω). Consequently rω is admissible.

If it were not irreducible there would be a proper invariant subspace which may or not contain
Φ0. In any case if S1 is the intersection of all invariant subspaces containing Φ0 and S2 is the sum of all
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invariant subspaces which do not contain Φ0 both S1 and S2 are invariant and the representation π1 of
A on S1/S2 ∩ S1 is irreducible. If the restriction of π1 to the Lie algebra of SO(2,R) contains κp it does

not contain κ−p. Thus π1 is not equivalent to the representation X → π1

(
Adε(X)

)
. Consequently

the irreducible representation π of {A, ε} whose restriction to A is π1 must be one of the special

representations σ(µ1, µ2) or a representation π(µ1, µ2η). Examining these we see that since π contains

κq with q = sgnu(n+m + 1) it contains all the representations κq with q = sgnu(n +m + 2p+ 1),
p = 0, 1, 2, · · ·. Thus S1 contains all the functions Ψp and S2 contains none of them. Since this

contradicts the assumption that S0(C, ω) contains a proper invariant subspace the representation rω is
irreducible.

For the reasons just given the representation π of {A, ε} whose restriction to A contains rω is
either a σ(µ1, µ2) or a π(µ1, µ1η). It is a π(µ1, µ1η) if and only if n+m = 0. Since

π

((
a 0
0 a

))
= ω(a) sgnaI = ω(a) η(a)I,

we must have µ1µ2 = ω0η in the first case and µ2
1 = ω0 in the second. ω0 is the restriction of ω to R×.

Since the two solutions µ2
1 = ω0 differ by η they lead to the same representation. If n + m = 0 then

µ2
1 = ω0 if and only if ω(z) = µ1

(
ν(z)

)
for all z in C×. Of course ν(z) = zz̄.

Suppose n +m > 0 so that π is a σ(µ1, µ2). Let µi(t) = |t|si( t|t| )
mi . Because of Theorem 5.11

we can suppose that m1 = 0. Let s = s1 − s2. We can also suppose that s is non­negative. If
m = |m1 − m2| then s − m is an odd integer so m and m2 are determined by s. We know what

representations of the Lie algebra of SO(2,R) are contained in π. Appealing to Lemma 5.7 we see that

s = n +m. Since µ1µ2 = ηω0 we have s1 + s2 = 2r. Thus s1 = r + m+n
2 and s2 = r − n+m

2 . In all
cases the representation π is determined by ω alone and does not depend on ψ. We refer to it as π(ω).

Every special representation σ(µ1, µ2) is a π(ω) and π(ω) is equivalent to π(ω′) if and only if ω = ω′

or ω′(z) = ω(z̄).

We can now take the first step in the proof of the local functional equation.

Theorem 5.13 Let π be an infinite-dimensional irreducible admissible representation of HR. If ψ is
a non-trivial additive character of R there exists exactly one space W (π, ψ) of functions W on GR

with the following properties
(i) If W is in W (π, ψ) then

W

((
1 x
0 1

)
g

)
= ψ(x)W (g)

for all x in F .
(ii) The functions W are continuous and W (π, ψ) is invariant under ρ(f) for all f in HR.

Moreover the representation of HR on W (π, ψ) is equivalent to π.
(iii) If W is in W (π, ψ) there is a positive number N such that

W

((
t 0
0 1

))
= O(|t|N )

as |t| → ∞.

We prove first the existence of such a space. Suppose π = π(ω) is the representation associated
to some quasi­character ω of C×. An additive character ψ being given the restriction of π to A contains

the representation rω determined by ω and ψ. For any Φ in S(C, ω) define a function WΦ on G+ by

WΦ(g) = rω(g)Φ(1)
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Since ρ(g)WΦ = Wrω(g)Φ the space of such functions is invariant under right translations. Moreover

WΦ

((
1 x
0 1

)
g

)
= ψ(x)WΦ(g)

Every vector in S(C, ω) is infinitely differentiable for the representation rω . Therefore the functions
WΦ are all infinitely differentiable and, if X is in A,

ρ(X)WΦ = Wrω(X)Φ.

In particular the space W1(π, ψ) of those WΦ for which Φ is in S0(C, ω) is invariant under A. We set

WΦ equal to 0 outside of G+ and regard it as a function on GR.
We want to take W (π, ψ) to be the sum of W1(π, ψ) and its right translate by ε. If we do it

will be invariant under {A, ε} and transform according to the representation π of {A, ε}. To verify the
second condition we have to show that it is invariant under HR. For this it is enough to show that

S0(C, ω) is invariant under the elements of HR with support in G+. The elements certainly leave the

space of functions in S(C, ω) spanned by the functions transforming according to a one­dimensional
representation of SO(2,R) invariant. Any function in S(C, ω) can be approximated uniformly on

compact sets by a function in S0(C, ω). If in addition it transforms according to the representation
κn of SO(2,R) it can be approximated by functions in S0(C, ω) transforming according to the same

representation. In other words it can be approximated by multiples of a single function in S0(C, ω) and
therefore is already in S0(C, ω).

The growth condition need only be checked for the functions WΦ in W1(π, ψ). If a is negative

WΦ

((
a 0
0 1

))
= 0

but if a is positive and

Φ(z) = e−2π|u|zz̄P (z, z̄)

it is equal to

e−2π|u|aP (a1/2, a1/2)ω(a) |a|1/2,

and certainly satisfies the required condition.

We have still to prove the existence of W (π, ψ) when π = π(µ1, µ2) and is infinite dimensional.
As in the first paragraph we set

θ(µ1, µ2,Φ) =

∫

R×

µ1(t)µ
−1
2 (t)Φ(t, t−1) d×t

for Φ in S(Rs) and we set

WΦ(g) = µ1(detg) |detg|1/2 θ
(
µ1, µ2, r(g)Φ

)

= θ
(
µ1, µ2, rµ1,µ2

(g)Φ
)
.

rµ1,µ2
is the representation associated to the quasi­character (a, b) → µ1(a)µ2(b) of R× × R×. If X is

in A

ρ(X)WΦ(g) = Wrµ1,µ2
(X)Φ(g)

LetW (µ1, µ2;ψ)be the space of thoseWΦ which are associated toO(2,R)­finite functionsΦ. W (µ1, µ2;ψ)
is invariant under {A, ε} and under HR.
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Lemma 5.13.1 Assume µ1(x)µ
−1
2 (x) = |x|s ( x|x| )

m with Re s > −1 and m equal to 0 or 1. Then

there exists a bijection A of W (µ1, µ2;ψ) with B(µ1, µ2) which commutes with the action of {A, ε}.

We have already proved a lemma like this in the non­archimedean case. If Φ is in S(R2) and ω
is a quasi­character of R× set

z(ω,Φ) =

∫
Φ(0, t)ω(t) d×(t)

The integral converges if ω(t) = |t|r(sgn t)n with r > 0. In particular under the circumstances of the
lemma

fΦ(g) = µ1(detg) |detg|1/2z(µ1µ
−1
2 αR, ρ(g)Φ)

is defined. As usual αR(x) = |x|. A simple calculation shows that

fΦ

((
a1 x
0 a2

)
g

)
= µ1(a1)µ2(a2)

∣∣a1

a2

∣∣1/2 fΦ(g).

If Φ∼ is the partial Fourier transform of Φ introduced in the first paragraph then

ρ(g) fΦ∼ = fΦ∼
1

if Φ1 = rµ1,µ2
(f)Φ. A similar relation will be valid for a function f in HR, that is

ρ(f)fΦ∼ = fΦ∼
1

if Φ1 = rµ1,µ2
(f)Φ. In particular if fΦ∼ is O(2,R)­finite there is an elementary idempotent ξ such that

ρ(ξ)fΦ∼ = fΦ∼ . Thus, if Φ1 = rµ1,µ2
(ξ)Φ, fΦ∼ = fΦ∼

1
and Φ∼

1 is O(2,R) finite. Of course fΦ∼ is
O(2,R)­finite if and only if it belongs to B(µ1, µ2).

We next show that given any f in B(µ1, µ2) there is an O(2,R)­finite function Φ in S(R2) such
that f = fΦ∼ . According to the preceding observation together with the self­duality of S(R2) under

Fourier transforms it will be enough to show that for some Φ in S(R2), f = fΦ. In fact, by linearity, it

is sufficient to consider the functions ϕn in B(µ1, µ2) defined earlier by demanding that

ϕn

((
cos θ sin θ
− sin θ cos θ

))
= einθ

n must be of the same parity as m. If δ = sgnn set

Φ(x, y) = e−π(x2+y2)(x+ iδy)|n|

Then

ρ

((
cos θ sin θ
− sin θ cos θ

))
Φ = einθΦ

Since ρ(g)fΦ = fρ(g)Φ when detg = 1 the function fΦ is a multiple of ϕn. Since

fΦ(e) = (i)|n|
∫ ∞

−∞

e−πt
2

t|n|+s+1 d×t

= (i)n
π

−(|n|+s+1)
2

2
Γ

(|n| + s+ 1)

2
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which is not 0, the function fΦ is not 0.
The map A will transform the function WΦ to fΦ∼ . It will certainly commute with the action of

{A, ε}. That A exists and is injective follows from a lemma which, together with its proof, is almost
identical to the statement and proof of Lemma 3.2.1.

The same proof as that used in the non­archimedian case also shows that W (µ1, µ2;ψ) =
W (µ2, µ1;ψ) for all ψ. To prove the existence of W (π, ψ) when π = π(µ1, µ2) and is infinite­
dimensional we need only show that when µ1 and µ2 satisfy the condition the previous lemma the

functions W in W (µ1, µ2;ψ) satisfy the growth condition of the theorem. We have seen that we can
take W = WΦ with

Φ∼(x, y) = e−π(x2+y2)P (x, y)

where P (x, y) is a polynomial in x and y. Then

Φ(x, y) = e−π(x2+u2y2)Q(x, y)

where Q(x, y) is another polynomial. Recall that ψ(x) = e2πiux. Then

WΦ

((
a 0
0 1

))
= µ1(a) |a|

1/2

∫ ∞

−∞

e−π(a2t2+u2t−2)Q(at, ut−1) |t|s(sgn t)m d×t

The factor in front certainly causes no harm. If δ > 0 the integrals from −∞ to −δ and from δ to ∞
decrease rapidly as |a| → ∞ and we need only consider integrals of the form

∫ δ

0

e−π(a2t2+u2t−2)tr dt

where r is any real number and u is fixed and positive. If v = u
2

then u2 = v2 + 3u2

4
and e−

3
4πu

2t−2

tr

is bounded in the interval [0, δ] so we can replace u by v and suppose r is 0. We may also suppose that
a and v are positive and write the integral as

e−2πav

∫ δ

0

e−π(at+vt−1)2 dt.

The integrand is bounded by 1 so that the integral is O(1). In any case the growth condition is more

than satisfied.
We have still to prove uniqueness. Suppose W1(π, ψ) is a space of functions satisfying the first

two conditions of the lemma. Let κn be a representation of the Lie algebra of SO(2,R) occurring in π
and let W1 be a function in W1(π, ψ) satisfying

W1

(
g

(
cos θ sin θ
− sin θ cos θ

))
= einθW1(g).

If

ϕ1(t) = W1

((
t

|t|1/2 0

0 1
|t|1/2

))
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the function W1 is completely determined by ϕ1. It is easily seen that

ρ(U)W1

((
t

|t|1/2 0

0 1
|t|1/2

))
= i nϕ1(t)

ρ(Z)W1

((
t

|t|1/2 0

0 1
|t|1/2

))
= 2t

dϕ1

dt

ρ(X+)W1

((
t

|t|1/2 0

0 1
|t|1/2

))
= i u t ϕ1(t).

Thus if ϕ+
1 and ϕ−

1 correspond to ρ(V+)W1 and ρ(V−)W1

ϕ+
1 (t) = 2t

dϕ1

dt
− (2ut− n)ϕ1

and

ϕ−
1 (t) = 2t

dϕ1

dt
+ (2ut− n)ϕ1(t).

Since

D =
1

2
V− V+ − iU −

U2

2

ρ(D)W1 corresponds to

2t
d

dt

(
t
dϕ1

dt
− 2t

dϕ2

dt

)
+ (2nut− 2u2t2)ϕ1.

Finally ρ(ε)W1 corresponds to ϕ1(−t).

Suppose that π is either π(µ1, µ2) or σ(µ1, µ2). Let µ1µ
−1
2 (t) = |t|s(sgn t)m. If s − m is an

odd integer we can take n = |s| + 1. From Lemma 5.6 we have ρ(V−)W1 = 0 so that ϕ1 satisfies the

equation

2t
dϕ1

dt
+ (2ut− n)ϕ1 = 0.

If the growth condition is to be satisfied ϕ1 must be 0 for ut < 0 and a multiple of |t|n/2e−ut for ut > 0.

Thus W1 is determined up to a scalar factor and the space W (π, ψ) is unique.

Suppose s − m is not an odd integer. Since ρ(D)W1 = s2−1
2
W1 the function ϕ1 satisfies the

equation
d2ϕ1

dt2
+

{
−u2 +

nu

t
+

(1− s2)

4t2

}
ϕ1 = 0

We have already constructed a candidate for the space W (π, ψ). Let’s call this candidate W2(π, ψ).

There will be a non­zero function ϕ2 in it satisfying the same equation as ϕ1. Now ϕ1 and all of
its derivatives go to infinity no faster than some power of |t| as t → ∞ while as we saw ϕ2 and its

derivations go to 0 at least exponentially as |t| → ∞. Thus the Wronskian

ϕ1
dϕ2

dt
− ϕ2

dϕ1

dt
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goes to 0 as |t| → ∞. By the form of the equation the Wronskian is constant. Therefore it is identically
0 and ϕ1(t) = αϕ2(t) for t > 0 and ϕ1(t) = β ϕ2(t) for t < 0 where α and β are two constants. The

uniqueness will follow if we can show that for suitable choice of n we have α = β. If m = 0 we can
take n = 0. If µ1(t) = |t|s1 (sgn t)m1 then π(ε)W1 = (−1)m2W1 so that ϕ1(−t) = (−1)m1ϕ1(t) and

ϕ2(−t) = (−1)m2ϕ2(t). Thus α = β. If m = 1 we can take n = 1. From Lemma 5.6

π(V−1)W1 = (−1)m1sπ(ε)W1

so that

2t
dϕ1

dt
+ (2ut− 1)ϕ1(t) = (−1)m1sϕ1(−t).

Since ϕ2 satisfies the same equation α = β.

If µ is a quasi­character of R× and ω is the character of C× defined by ω(z) = µ(zz̄) then
π(ω) = π(µ, µη). We have defined W (π(ω), ψ) in terms of ω and also as W (µ1, µ2;ψ). Because of the

uniqueness the two resulting spaces must be equal.

Corollary 5.14 Let m and n be two integers, one positive and the other 0. Let ω be a quasi-character
of C× of the form

ω(z) = (zz̄)r−
m+n

2 zm z̄n

and let µ1 and µ2 be two quasi-characters of R× satisfying µ1µ2(x) = |x|2r(sgnx)m+n+1 and
µ1µ

−1
2 (x) = xm+n sgnx so that π(ω) = σ(µ1, µ2). Then the subspace Bs(µ1, µ2) of B(µ1, µ2) is

defined and there is an isomorphism of B(µ1, µ2) with W (µ1, µ2;ψ) which commutes with the action
of {A, ε}. The image Ws(µ1, µ2;ψ) of Bs(µ1, µ2) is W (π(ω), ψ). If Φ belongs to S(R2) and WΦ

belongs to W (µ1, µ2;ψ) then WΦ belongs to Ws(µ1, µ2;ψ) if and only if

∫ ∞

∞

xi
∂j

∂yj
Φ(x, 0) dx = 0

for any two non-negative integers i and j with i+ j = m+ n− 1.

Only the last assertion is not a restatement of previously verified facts. To prove it we have to

show that fΦ∼ belongs to Bs(µ1, µ2) if and only if Φ satisfies the given relations. Let f = fΦ∼ . It is
in Bs(µ1, µ2) if and only if it is orthogonal to the functions in Bf (µ

−1
1 , µ−1

2 ). Since Bf (µ
−1
1 , µ−1

2 ) is

finite­dimensional there is a non­zero vector f0 in it such that ρ(X+)f0 = 0. Then

f0

(
w

(
1 y
0 1

))
= f0(w)

and f is orthogonal to f0 if and only if

∫

R

f

(
w

(
1 y
0 1

))
dy = 0. (5.14.1)

The dimension of Bf(µ
−1
1 , µ−2

2 ) is m + n. It follows easily from Lemmas 5.6 and 5.7 that the vectors
ρ(Xp

+) ρ(w) f0, 0 ≤ p ≤ m+ n− 1 span it. Thus f is in Bs(µ1, µ2) if and only if each of the functions

ρ(Xp
+) ρ(w) f satisfy (5.14.1). For f itself the left side of (5.14.1) is equal to

∫ {∫
Φ∼

(
(0, t)w

(
1 x
0 1

))
µ1(t)µ

−1
2 (t) |t| d×t

}
dx.



Chapter 1 96

Apart from a positive constant which relates the additive and multiplicative Haar measure this equals

∫∫
Φ∼(−t,−tx)tm+n sgn t dt dx

which is

(−1)m+n−1

∫∫
Φ∼(t, x)tm+n−1 dt dx

or, in terms of Φ,

(−1)m+n−1

∫
Φ(t, 0) tm+n−1 dt. (5.14.2)

By definition
rµ1,µ2

(w)Φ(x, y) = Φ′(y, x)

and an easy calculation based on the definition shows that

rµ1,µ2
(Xp

+)Φ(x, y) = (2iπuxy)pΦ(x, y).

Thus rµ1,µ2
(Xp

+) rµ1,µ2
(w)Φ is a non­zero scalar times

∂2p

∂xp ∂yp
Φ′(y, x)

For this function (5.14.2) is the product of a non­zero scalar and

∫∫
∂2p

∂xp ∂yp
Φ′(0, x)xm+n−1 dx.

Integrating by parts we obtain ∫
∂p

∂yp
Φ′(0, x)xm+n−p−1 dx

except perhaps for sign. If we again ignore a non­zero scalar this can be expressed in terms of Φ as

∫
∂m+n−p−1

∂ym+n−p−1
Φ(x, 0)xp dx.

The proof of the corollary is now complete.

Before stating the local functional equation we recall a few facts from the theory of local zeta­
functions. If F is R or C and if Φ belongs to S(F ) we set

Z(ωαsF ,Φ) =

∫
Φ(a)ω(a) |a|sF d

×a.

ω is a quasi­character. The integral converges in a right half­plane. One defines functions L(s, ω) and

ε(s, ω, ψF ) with the following properties:
(a) For every Φ the quotient

Z(ωαsF ,Φ)

L(s, ω)
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has an analytic continuation to the whole complex plane as a holomorphic function. Moreover
for a suitable choice of Φ it is an exponential function and in fact a constant.

(b) If Φ′ is the Fourier transform of Φ with respect to the character ψF then

Z(ω−1α1−s
F ,Φ′)

L(1 − s, ω−1)
= ε(s, ω, ψF )

Z(ωαsF ,Φ)

L(s, ω)
.

If F = R and ω(x) = |x|r
R
(sgnx)m with m equal to 0 or 1 then

L(s, ω) = π− 1
2 (s+r+m) Γ

(s+ r +m

2

)

and if ψF (x) = e2πiux

ε(s, ω, ψF ) = (i sgnu)m |u|
s+r− 1

2

R
.

If F = C and

ω(x) = |x|rC x
mx̄n

where m and n are non­negative integers, one of which is 0, then

L(s, ω) = 2(2π)−(s+r+m+n)Γ(s+ r +m+ n).

Recall that |x|C = xx̄. If ψF (x) = e4πiRe(wz)

ε(s, ω, ψF ) = im+nω(w) |w|
s−1/2
C

.

These facts recalled, let π be an irreducible admissible representation of HR. If π = π(µ1, µ2) we
set

L(s, π) = L(s, µ1)L(s, µ2)

and

ε(s, π, ψR) = ε(s, µ1, ψR) ε(s, µ2, ψR)

and if π = π(ω) where ω is a character of C∗ we set

L(s, π) = L(s, ω)

and
ε(s, π, ψR) = λ(C/R, ψR) ε(s, ω, ψC/R)

if ψC/R(z) = ψR(z+ z̄). The factor λ(C/R, ψR) was defined in the first paragraph. It is of course neces­
sary to check that the two definitions coincide if π(ω) = π(µ1, µ2). This is an immediate consequence

of the duplication formula.
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Theorem 5.15 Let π be an infinite-dimensional irreducible admissible representation of HR. Let ω
be the quasi-character of R× defined by

π

((
a 0
0 a

))
= ω(a)I

If W is in W (π, ψ) set

Ψ(g, s,W ) =

∫

R×

W

((
a 0
0 1

)
g

)
|a|s−1/2 d×a

Ψ̃(g, s,W ) =

∫

R×

W

((
a 0
0 a

)
g

)
ω−1(a) |a|s−1/2 d×a

and let
Ψ(g, s,W ) = L(s, π)Φ(g, s,W )

Ψ̃(g, s,W ) = L(s, π̃) Φ̃(g, s,W ).

(i) The integrals defined Ψ(g, s,W ) and Ψ̃(g, s,W ) are absolutely convergent in some right half-
plane.

(ii) The functions Φ(g, s,W ) and Φ̃(g, s,W ) can be analytically continued to the whole complex
plane as meromorphic functions. Moreover there exists a W for which Φ(e, s,W ) is an
exponential function of s.

(iii) The functional equation

Φ̃(wg, 1 − s,W ) = ε(s, π, ψ)Φ(g, s,W )

is satisifed.
(iv) If W is fixed Ψ(g, s,W ) remains bounded as g varies in a compact set and s varies in the

region obtained by removing discs centred at the poles of L(s, π) from a vertical strip of finite
width.

We suppose first that π = π(µ1, µ2). Then W (π, ψ) = W (µ1, µ2;ψ). Each W in W (µ1, µ2;ψ) is

of the form W = WΦ where
Φ(x, y) = e−π(x2+u2y2)P (x, y)

with P (x, y) a polynomial. However we shall verify the assertions of the theorem not merely for W in

W (π, ψ) but for any function W = WΦ with Φ in S(R2). Since this class of functions is invariant under
right translations most of the assertions need then be verified only for g = e.

A computation already performed in the non­archimedean case shows that

Ψ(e, s,W ) = Z(µ1α
s
R, µ2α

s
R,Φ)

the integrals defining these functions both being absolutely convergent in a right half­plane. Also for

s in some left half­plane

Ψ̃(w, 1 − s,W ) = Z(µ−1
1 α1−s

R
, µ−1

2 α1−s
R

,Φ′)

if Φ′ is the Fourier transform of Φ.

Since Φ can always be taken to be a function of the form Φ(x, y) = Φ1(x)Φ2(y) the last assertion

of part (ii) is clear. All other assertions of the theorem except the last are consequence of the following
lemma.
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Lemma 5.15.1 For every Φ in S(R2) the quotient

Z(µ1α
s1
R
, µ2α

s2
R
,Φ)

L(s, µ1)L(s, µ2)

is a holomorphic function of (s1, s2) and

Z(µ−1
1 α1−s1

R
, µ−1

2 α1−s2
R

,Φ′)

L(1 − s1, µ
−1
1 )L(1− s2, µ

−1
2 )

is equal to

ε(s1, µ1, ψ) ε(s2, µ2, ψ)
Z(µ1α

s1
R
, µ2α

s2
R
,Φ)

L(s1, µ1)L(s2, µ2)
.

We may as well assume that µ1 and µ2 are characters so that the integrals converge for Re s1 > 0
and Re s2 > 0. We shall show that when 0 < Re s1 < 1 and 0 < Re s2 < 1

Z(µ1α
s1
R
, µ2α

s2
R
,Φ)Z(µ−1

1 α1−s1
R

, µ−1
2 α1−s2

R
Ψ′)

is equal to
Z(µ−1

1 α1−s1
R

, µ−1
2 α1−s2

R
,Φ′)Z(µ1α

s1
R
, µ2α

s2
R
,Ψ)

if Φ and Ψ belong to S(R2).

The first of these expressions is equal to
∫

Φ(x, y)Ψ′(u, v)µ1

(
x

u

)
µ2

(
y

v

) ∣∣∣∣
x

u

∣∣∣∣
s1
∣∣∣∣
y

v

∣∣∣∣
s2

d×x d×y du dv

if we assume, as we may, that d×x = |x|−1 dx. Changing variables we obtain
∫
µ1(x)µ2(y) |x|

s1 |y|s2
{∫

Φ(xu, yv)Ψ′(u, v) du dv

}
d×x d×y

The second expression is equal to
∫
µ−1

1 (x)µ−1
2 (y) |x|1−s1 |y|1−s1

{∫
Φ′(xu, yv)Ψ(u, v) du dv

}
d×x d×y

which equals
∫
µ1(x)µ2(y) |x|

s1 |y|s2
{∫

|xy|−1 Φ′(x−1u, y−1v)Ψ(u, v) du dv

}
d×x d×y.

Since the Fourier transform of the function (u, v) → Φ(xu, yv) is the function |xy|−1Φ′(x−1u, y−1v)
the Plancherel theorem implies that

∫
Φ(xu, yv)Ψ′(u, v) du dv =

∫
|xy|−1Φ′(x−1u, y−1v)Ψ(u, v) du dv.

The desired equality follows.
Choose Φ1 and Φ2 in S(R) such that

L(s, µi) = Z(µiα
s
R,Φi)

and take Ψ(x, y) = Φ1(x)Φ2(y). The functional equation of the lemma follows immediately if 0 <
s1 < 1 and 0 < s2 < 1. The expression on one side of the equation is holomorphic for 0 < Re s1 and
0 < Re s2. The expression on the other side is holomorphic for Re s1 < 1 and Re s2 < 1. Standard and

easily proved theorems in the theory of functions of several complex variables show that the function

they define is actually an entire function of s1 and s2. The lemma is completely proved.
For π = π(µ1, µ2) the final assertion of the theorem is a consequence of the following lemma.
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Lemma 5.15.2 Let Ω be a compact subset of S(R2) and C a domain in C2 obtained by removing
balls about the poles of L(s1, µ1)L(s2, µ2) from a tube a1 ≤ Re s1 ≤ b1, a2 ≤ Re s2 ≤ b2. Then

Z(µ1α
s1
R
, µ2α

s2
R
,Φ)

remains bounded as Φ varies in Ω and (s1, s2) varies in C.

The theorems in the theory of functions alluded to earlier show that it is enough to prove this

when either both a1 and a2 are greater than 0 or both b1 and b2 are less than 1. On a region of the first

type the functions Z(µ1α
s
R
, µ2α

s
R
,Φ) is defined by a definite integral. Integrating by parts as in the

theory of Fourier transforms one finds that

Z(µ1α
σ1+iτ1
R

, µ2α
σ2+iτ2
R

,Φ) = O(τ 2
1 + τ2

2 )−n

as τ2
1 + τ2

2 → ∞ uniformly for Φ in Ω and a1 ≤ σ1 ≤ b1, a2 ≤ σ2 ≤ b2 which is a much stronger

estimate than required. For a region of the second type one combines the estimates just obtained with

the functional equation and the known asymptotic behavior of the Γ­function.
Now let ω be a quasi­character of C× which is not of the form ω(z) = χ(zz̄) with χ a quasi­

character of R× and let π = π(ω). W (π, ψ) is the sum of W1(π, ψ) and its right translate by ε. It is
easily seen that

Φ(g, s, ρ(ε)W ) = ω(−1)Φ(ε−1gε, s,W )

and that
Φ̃(wg, s, ρ(ε)W ) = ω(−1) Φ̃(wε−1gε, s,W )

Thus it will be enough to prove the theorem for W in W1(π, ψ). Since

Φ(εg, s,W ) = Φ(g, s,W )

and

Φ̃(wεg, s,W ) = Φ̃(wg, s,W )

we can also take g in G+. W1(π, ψ) consists of the functions WΦ with Φ in S0(C, ω). We prove the
assertions for functions WΦ with Φ in S(C, ω). Since this class of functions is invariant under right

translations by elements of G+ we may take g = e.
As we observed in the first paragraph we will have

Ψ(e, s,W ) = Z(ωαsC,Φ)

Ψ̃(w, 1 − s,W ) = λ(C/R, ψ)Z(ω−1α1−s
C

,Φ′)

in some right half plane and the proof proceeds as before. If ω(z) = (zz̄)rzmz̄n and p− q = n−m the
function

Φ(z) = e−2π|u|zz̄zpz̄q

belongs to S0(C, ω) and

Z(ωαsC,Φ) = 2π

∫ ∞

0

e−2π|u|t2t2(s+ r + p+m) dt

= π(2π|u|)−(s+r+p+m) Γ(s+ r + p+m)

Taking p = n we obtain an exponential times L(s, ω). The last part of the theorem follows from an
analogue of Lemma 5.15.2.

The local functional equation which we have just proved is central to the Hecke theory. We

complete the paragraph with some results which will be used in the paragraph on extraordinary
representations and the chapter on quaternion algebras.
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Lemma 5.16 Suppose µ1 and µ2 are two quasi-characters for which both π = π(µ1, µ2) and σ =
σ(µ1, µ2) are defined. Then

L(1 − s, σ̃) ε(s, σ, ψ)

L(s, σ)
=
L(1 − s, π̃) ε(s, π, ψ)

L(s, π)

and the quotient
L(s, σ)

L(s, π)

is an exponential times a polynomial.

Interchanging µ1 and µ2 if necessary we may suppose that µ1µ
−1
2 (x) = |x|s(sgnx)m with s > 0.

According to Corollary 5.14, W (σ, ψ) is a subspace of W (µ1, µ2, ψ). Although W (µ1, µ2, ψ) is not

irreducible it is still possible to define Ψ(g, s,W ) and Ψ̃(g, s,W ) when W lies in W (µ1, µ2, ψ) and to
use the method used to prove Theorem 5.15 to show that

Ψ̃(wg, 1 − s,W )

L(1 − s, π̃)

is equal to

ε(s, πψ)
Ψ(g, s,W )

L(s, π)

Applying the equality to an element ofW (σ, ψ) we obtain the first assertion of the lemma. The second
is most easily obtained by calculation. Replacing µ1 and µ2 by µ1α

t
R

and µ2α
t
R

is equivalent to a

translation in s so we may assume µ2 is of the form µs(x) = (sgnx)m2 . There is a quasi­character

ω of C× such that σ = π(ω). If ω(z) = (zz̄)rzmz̄n then µ1(x) = |x|2r+m+n(sgnx)m+n+m2+1,
µ1(x) = xm+n(sgnx)m2+1 so that r = 0. Apart from an exponential factor L(s, σ) is equal to

Γ(s+m+ n) while L(s, π) is, again apart from an exponential factor,

Γ

(
s+m+ n+m1

2

)
Γ

(
s+m2

2

)
(5.16.1)

where m1 = m+ n+m2 + 1 (mod2). Since m+ n > 0 the number

k =
1

2
(m+ n+ 1 +m1 −m2) − 1

is a non­negative integer and m2 + 2k = m+ n+m1 − 1. Thus

Γ

(
s+m2

2

)
=





1

2k+1

k∏

j=0

(s+m2 + 2j)





−1

Γ

(
s+m+ n+m1 + 1

2

)
.

By the duplication formula the product (5.16.1) is a constant times an exponential times

Γ(s+m+ n+m1)∏k
j=0(s+m2 + 2j)

.

If m1 = 0 the lemma follows immediately. If m1 = 1

Γ(s+m+ n+m1) = (s+m+ n) Γ(s+m+ n)

and m2 + 2k = m+ n. The lemma again follows.



Chapter 1 102

Lemma 5.17 Suppose ω(z) = (zz̄)rzmz̄n is a quasi-charaacter of C× with mn = 0 and m+ n > 0.
Suppose µ1 and µ2 are two quasi-characters of F× with µ1µ2(x) = |x|2rxm+n sgnx and µ1µ

−1
2 (x) =

xm+n sgnx. Then for every Φ in S(R2) such that

∫
xi
∂jΦ

∂yj
(x, 0) dx = 0

for i > 0, j ≥ 0, and i+ j + 1 = m+ n the quotient

Z(µ1α
s
R
, µ2α

s
R
,Φ)

L
(
s, π(w)

)

is a holomorphic function of s and for some Φ it is an exponential.

If WΦ belongs to W (µ1, µ2, ψ) this is a consequence of Corollary 5.14 and Theorem 5.15. Unfor­
tunately we need the result for all Φ. The observations made during the proof of Lemma 5.16 show

that if π = π(µ1, µ2) the quotient
Z(µ1α

s
R
, µ2α

s
R
,Φ)

L(s, π)

is holomorphic. Since L(s, π) and L(s, σ) have no zeros we have only to show that the extra poles of
L(s, π) are not really needed to cancel poles of Z(µ1α

s
R
, µ2α

s
R
,Φ). As in the proof of Lemma 5.16 we

may take r = 0. We have to show that Z(µ1α
s
R
, µ2α

s
R
,Φ) is holomorphic at s = −m2 − 2j, 0 ≤ j ≤ k

if m1 = 0 and at s = −m2 − 2j, 0 ≤ j ≤ k if m1 = 1. We remark first that if µ1 and µ2 are two
quasi­characters of R×, Φ belongs to S(R2), and Re s is sufficiently large then, by a partial integration,

∫
µ1(x)µ2(y) |x|

s |y|s Φ(x, y) d×x d×y = −
1

s

∫
µ1(x)µ2(y) η(y) |x|

s |y|s+1 ∂Φ

∂y
(x, y) d×x d×y

if η(y) = sgn y. Integrating by parts again we obtain

∫
µ1(x)µ2(y) |x|

s |y|s Φ(x, y) d×x d×y =
1

s(s+ 1)

∫
µ1(x)µ2(y) |x|

s |y|s+2 ∂
2Φ

∂y2
(x, y) d×x d×y.

If Φ belongs to S(R2) the function defined by

∫
Φ(x, y) |x|s+1 |y|s d×x dyy (5.17.1)

is certainly holomorphic for Re s > 0. We have to show that if

∫
Φ(x, 0) dx = 0

it is holomorphic for Re s > −1. Suppose first that Φ(x, 0) ≡ 0. Since

Φ(x, y) = y
∂Φ

∂y
(x, 0) +

∫ y

0

(y − u)
∂2Φ

∂y2
(x, u) du
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the function

Ψ(x, y) =
1

y
Φ(x, y)

is dominated by the inverse of any polynomial. Thus (5.17.1) which equals
∫

Ψ(x, y) |x|s+1 |y|s+1 η(y) d×x d×y

is absolutely convergent for Re s > −1. In the general case we set

Φ(x, y) = {Φ(x, y) − Φ(x, 0)e−y
2

} + Φ(x, 0)e−y
2

= Φ1(x, y) + Φ2(x, y).

Since Φ1(x, 0) = 0 we need only consider
∫

Φ2(x, 0)e−y
2

|x|s+1 |y|s d×x d×y

which is the product of a constant and

Γ
(s

2

)∫
Φ2(x, 0) |x|s dx.

The integral defines a function which is holomorphic for Re s > −1 and, when the assumptions are

satisfied, vanishes at s = 0.

We have to show that if 0 ≤ j ≤ m + n − 1 and j − m2 is even then Z(µ1α
s
R
, µ2α

s
R
,Φ) is

holomorphic at −j. Under these circumstances the function Z(µ1α
s
R
, µ2α

s
R
,Φ) is equal to

∫
η(x)m1 η(y)m2 |x|m+n |x|s|y|s Φ(x, y) d×x d×y

which equals
(−1)j
∏j−1
i=0 (si)

∫
η(x)m1 |x|s+m+n |y|s+j

∂jΦ

∂yj
(x, y) d×x d×y.

The factor in front is holomorphic at s = −j. If

Ψ(x, y) = xm+n−j−1 ∂
jΦ

∂yj
(x, y)

the integral itself is equal to ∫
|x|s+j+1|y|s+j Ψ(x, y) d×x d×y.

Since, by assumption, ∫
Ψ(x, 0) dx = 0,

it is holomorphic at s = −j.
We observe that if m+ n is even

Φ(x, y) = e−π(x2+y2)xym+n

satisfies the conditions of the lemma and, if r = 0 and m2 = 0, Z(µ1α
s
R
, µ2α

s
R
,Φ) is equal to

∫
e−π(x2+y2) |x|m+n+s+1 |y|m+n+s d×x d×y

which differs by an exponential from Γ(s + m + n) and L
(
s, π(ω)

)
. If m2 = 1 we take Φ(x, y) =

e−π(x2+y2) ym+n+1 to obtain the same result. If m + n is odd and m2 = 0 the polynomial factor will
be ym+n+1 but if m+ n is odd and m2 = 1 it will again be xym+n.
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Proposition 5.18 Suppose π and π′ are two infinite-dimensional irreducible admissible representa-
tions of HR such that, for some quasi-character ω of F×,

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω(a)I.

If
L(1− s, χ−1 ⊗ π̃)

L(s, χ⊗ π)
ε(s, χ⊗ π, ψ) =

L(1 − s, χ−1 ⊗ π̃′)

L(s, χ⊗ π′)
ε(s, χ⊗ π′, ψ)

for all quasi-characters χ and π and π′ are equivalent.

Suppose π = π(µ1, µ2) or σ(µ1, µ2). From Lemma 5.16 and the definitions the expression on
the left is equal to

(i sgnu)m1+m2 |u|2s+s1+s2−1π2s+s1+s2−1 Γ
(

1−s−r1+m1

2

)
Γ
(

1−s−r2+m2

2

)

Γ
(
s+r1+m1

2

)
Γ
(
s+r2+m2

2

)

if χ is trivial and µi(x) = |x|ri(sgnx)m1 . If χ(x) = sgnx and ni is 0 or 1 while mi + n1 = 1 (mod2)
the quotient is

(i sgnu)m1+m2 |u|2s+s1+s2−1π2s+s1+s2−1 Γ
(

1−s−r1−n1

2

)
Γ
(

1−s−r2+n2

2

)

Γ
(
s+r1+n1

2

)
Γ
(
s+r2+n2

2

) .

If we let π′ be π(µ′
1, µ

′
2) or σ(µ′

1, µ
′
2) we obtain similar formulae with ri replaced by r′i and mi by m′

i.

Consider first the quotients for π. The first has an infinite number of zeros of the form −r1 −
m1 −2pwhere p is a non­negative integer and an infinite number of the form −r2 −m2 −2pwhere p is

a non­negative integer, but no other zeros. Similarly the zeros of the second are at points −r1 −n1 − 2p
or −r2 −n2 − 2p. Thus if the quotients are equal r1 +m1 ≡ r2 +n2 ≡ r2 +m2 +1 (mod2). Moreover

if r1 +m1 = r2 +m2 + 1 (mod2) then π = σ(µ1, µ2) and, as we saw in Theorem 5.11, σ(µ1η, µ2η) =
σ(µ1, µ2) so that the two quotients are equal. As a result either r1 +m1 = r2 +m2 + 1 (mod2) and
r′1 +m′

1 = r′2 +m′
2 + 1 (mod2) or neither of these congruences hold.

Suppose first that π = π(µ1, µ2) and π′(µ′
1, µ

′
2). Then the first quotient for π has zeros at the

points −r1 −m1, −r1 −m1 − 2, · · · and −r2 −m2, −r2 −m2 − 2, · · · while that for π′ has zeros at

−r′1 −m′
1, −r

′
1 −m′

1 − 2, · · · and −r′2 −m′
2, −r

′
2 −m′

2 − 2, · · ·. Thus either r1 + m1 = r′1 + m′
1 or

r1 + m1 = r′2 +m′
2. Interchanging µ′1 and µ′2 if necessary we may assume that the first of these two

alternatives hold. Then r2 +m2 = r′2 +m′
2. Moreover r1 + r2 = r′1 + r′2 and |m1 −m2| = |m′

1 −m′
2|.

If m1 = m′
1 it follows immediately that µ1 = µ′

1 and µ2 = µ′
2. Suppose that m1 6= m′

1. Examining
the second quotient we see that either r1 + n1 = r′1 + n′

1 or r1 + n1 = r′2 + n′
2. The first equality

is incompatible with the relations r1 + m1 = r′1 + m′
1 and m1 6= m′

1. Thus r1 + n1 = r′2 + n′
2. For

the same reason r2 + n2 = r′1 + n′
1. Interchanging the roles of µ1, µ2 and µ′1, µ

′
2 if necessary we may

suppose that m1 = 0 and m′
1 = 1. Then r1 = r′1 + 1. Since r1 + r2 = r′1 + r′2 we have r2 = r′2 − 1

so that m2 = 1, m′
2 = 0. Thus n1 = n′

2 = 1 and r1 = r′2 so that r2 = r′1. It follows that µ1 = µ′
2 and

µ2 = µ′
1.

Finally we suppose that π = σ(µ1, µ2) and π′ = σ(µ′
1, µ

′
2). Then there are quasi­characters ω1

and ω′
1 of C× such that π = π(ω1) and π′ = π(ω′

1). Replacing ω1 by the quasi­character z → ω1(z̄)

does not change π(ω1) so we may suppose that ω1(z) = (zz̄)rzm while ω′
1(z) = (zz̄)r

′

zm
′

. Since
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ω1 and ω′
1 must have the same restriction to R× the numbers 2r + m and 2r′ + m′ are equal while

m ≡ m′ (mod2). Apart from a constant and an exponential factor the quotient

ε(s, π, ψ)
L(1− s, π̃)

L(s, π)

is given by
Γ(1 − s− r)

Γ(s+ r +m)

whose pole furthest to the left is at 1 − r. Consequently r = r′ and m = m′.

Corollary 5.19 Suppose π and π′ are two irreducible admissible representations of HR. Suppose
there is a quasi-character ω of R× such that

π

((
a 0
0 a

))
= ω(a)I π′

((
a 0
0 a

))
= ω(a)I

If for all quasi-characters χ, L(s, χ ⊗ π) = L(s, χ ⊗ π′), L(s, χ−1 ⊗ π) =  L(s, χ−1 ⊗ π′), and
ε(s, χ⊗ π, ψ) = ε(s, χ⊗ π′, ψ) then π and π′ are equivalent.

Combining Lemma 5.16 with the previous propositon we infer that there is a pair of quasi­

characters µ1 and µ2 such that both π and π′ are one of the representations π(µ1, µ2) or σ(µ1, µ2).

However the computations made during the proof of Lemma 5.16 show that L
(
s, χ⊗π(µ1, µ2)

)
differs

from L
(
s, χ⊗ σ(µ1, µ2)

)
for a suitable choice of χ.

Let K be the quaternion algebra of R. We could proceed along the lies of the fourth paragraph
and associate to every finite­dimensional irreducible representation Ω of K× a representation π(Ω) of

GR. Since we have just classified the representations of GR we can actually proceed in a more direct

manner.
We identify K with the algebra of 2 × 2 complex matrices of the form

z =

(
a b
−b̄ ā

)

Then

zι =

(
ā −b
b̄ a

)

and ν(z) = zι is the scalar matrix (|a|2 + |b|2)I while τ(z) is the scalar matrix (a + ā + b + b̄)I . Let

ρ1 be the two dimensional representation of K× associated to this identification and let ρn be the nth

symmetric power of ρ1. Any irreducible representation is equivalent to a representation of the form
χ⊗ ρn where χ is a quasi­ character of R×. Thus

(χ⊗ ρn)(h) = χ
(
ν(h)

)
ρn(h)

Since ν(h) is always positive we may suppose that χ is of the form χ(x) = |x|r .

Let Ω be a finite dimensional representation and let Ω act on U . In the first paragraph we
introduced the space S(K,U). It is clear that if Φ is in S(K,U) the integrals

Z(αsR ⊗ Ω,Φ) =

∫

K×

Ω(h) |ν(h)|sΦ(h) d×h

and

Z(αsR ⊗ Ω−1,Φ) =

∫

K×

Ω−1(h) |ν(h)|sΦ(h) d×h

converge absolutely in some right half­plane.
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Proposition 5.20 Suppose χ(x) = |x|r and Ω = χ ⊗ ρn. Let ω be the character of C× defined by
ω(z) = (zz̄)r−1/2zn+1. Set L(s,Ω) = L(s, ω) and

ε(s,Ω, ψR) = λ(C/R, ψR) ε(s, ω, ψC/R)

The quotient

Z(α
s+1/2
R

⊗ Ω,Φ)

L(s,Ω)

can be analytically contained to the whole complex plane as a holomorphic function. Given u in U
there exists a Φ in S(K,U) such that

Z(α
s+1/2
R

,Φ)

L(s,Ω)
= asu.

For all Φ the two functions

Z(α
3/2−s
R

⊗ Ω−1,Φ′)

L(1 − s, Ω̃)

and

−ε(s,Ω, ψR)
Z(α

s+1/2
R

⊗ Ω,Φ)

L(s,Ω)

are equal. Finally Z(α
s+1/2
R

⊗Ω,Φ) is bounded in any region obtained by removing discs about the
poles L(s,Ω) from a vertical strip of finite width.

Suppose K1 is the subgroup of K× formed by the elements of reduced norm one. Let Φ1 be the

function on R defined by

Φ1(t) =

∫

K1

Ω(h)Φ(th) dh

Φ1 belongs to S(R) and if ω0 is the quasi­character of R× defined by Ω(t) = ω0(t)I the function
ω0(t)Φ1(t) is even. Moreover if the multiplcative Haar measures are suitably normalized

Z(α
s+1/2
R

⊗ Ω,Φ) = Z(α2s+1
R

ω0,Φ1).

Since ω0(t) = |t|2rtn we can integrate by parts as in the proof of Lemma 5.17 to see that for any

non­negative integer m

Z(α2s+1
R

ω0,Φ1) =
(−1)m

∏m−1
j=0 (2s+ 2r + n+ j + 1)

∫
η(t)m+n |t|2s+2r+m+n+1 ∂

mΦ1

∂tm
d×t.

The integral is holomorphic for Re(2s + 2r + m + n) > −1 and, if ∂mΦ1

∂tm vanishes at t = 0, for
Re(2s + 2r + m + n) > −2. Thus the function on the left has an analytic continuation to the whole

complex plane as a meromorphic function with simple poles. Since

L(s,Ω) = 2(2π)−(s+r+n+1/2)Γ
(
s+ r + n+

1

2

)
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we have to show that its poles occur at the points s+ r+n+ 1
2 + j = 0 with j = 0, 1, 2, · · ·. Since ∂mΦ1

∂tm

vanishes at 0 ifm+n is odd its only poles are at the points 2s+ 2r+ 2n+ 2j+ 1 = 0 with n+ 2j ≥ 0.

To exclude the remaining unwanted poles we have to show that ∂
mΦ1

∂tm = 0 at 0 if m < n. If we expand

Φ in a Taylor’s series about 0 we see that ∂
mΦ1

∂tm
= 0 at 0 unless the restriction of ρn to K1 is contained

in the representation on the polynomials of degree m on K . This can happen only if m ≥ n.

Since Ω̃ is equivalent to the representation h→ Ω−1(hι) the quotient

Z(α
3/2−s
R

⊗ Ω−1,Φ′)

L(1 − s, Ω̃)

is also holomorphic. The argument used to prove Lemma 5.15.1 shows that there is a scalar λ(s) such

that, for all Φ,

Z(α
3/2−s
R

⊗ Ω−1,Φ′)

L(1 − s, Ω̃)
= λ(s)

Z(α
s+1/2
R

⊗ Ω,Φ)

L(s,Ω)
.

We shall used the following lemma to evaluate λ(s).

Lemma 5.20.1 Let ϕ be a function in S(C) of the form

ϕ(x) = e−2πxx̄P (x, x̄)

where P is a polynomial in x and x̄. Suppose ϕ(xu) = ϕ(x)ω−1(u) if uū = 1. Define the function
Φ in K× by

Φ(z) = ϕ(α)ω(α) (αᾱ)−
1
2 〈u, Ω̃(z)ũ〉

if ν(z) = αᾱ. Then Φ extends to a function in S(K) and its Fourier transform is given by

Φ′(z) = −λ(C/R, ψR)ϕ′(α)ω−1(α) (αᾱ)−
1
2 〈Ω(z)u, ũ〉

if ϕ′ is the Fourier transform of ϕ.

By linearity we may assume that ϕ is of the form

ϕ(x) = e−2πxx̄(xx̄)px̄n+1

where p is a non­negative integer. We may suppose that the restriction of ρn to the elements of norm

one is orthogonal and identify the space U on which its acts with its dual Ũ . Then Ω̃ = α−r−n
R

⊗ ρn.

Thus if

z =

(
a b
−b̄ ā

)

the value of Φ at z is

e−2π(aā+bb̄)(aā+ bb̄)r+n+p〈u, Ω̃(z)ũ〉 = e−2π(aā+bb̄)(aā+ bb̄)p〈u, ρn(z)ũ〉

The expression on the right certainly defines a function in S(K).
We are trying to show that if

F (z) = ϕ(α)ω(α) (αᾱ)−
1
2 Ω−1(z)
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when z = αᾱ then the Fourier transform of F is given by

F ′(z) = −λ(C/R, ψR)ϕ′(α)ω−1(α) (αᾱ)−
1
2 Ω(z). (5.20.2)

If h1 and h2 have norm one
F (h1zh2) = Ω(h−1

2 )F (z)Ω(h−1
1 )

and therefore

F ′(h1zh2) = Ω(h1)F
′(z)Ω(h2)

In particular if z is a scalar in K the operator F ′(z) commutes with the elements of norm one and is

therefore a scalar operator. The expression F1(z) on the right of (5.20.2) has the same properties so that
all we need do is show that for some pair of vectors u and ũ which are not orthogonal

〈F ′(z)u, ũ〉 = 〈F1(z)u, ũ〉

for all positive scalars z.
If we only wanted to show that F ′(z) = c F1(z) where c is a positive constant it would be enough

to show that
〈F ′(z)u, ũ〉 = c〈F1(z)u, ũ〉. (5.20.3)

Once this was done we could interchange the roles of ϕ and ϕ′ and Φ and Φ′ to show that c2 = 1. To
obviate any fuss with Haar measures we prove (5.20.3).

Recall that if

a(θ) =

(
eiθ 0
θ e−iθ

)

then, apart from a positive constant,

∫

K1

〈u, Ω̃(k)ũ〉 f(k) dk

is equal to

〈u, ũ〉

∫ π

0

sin(n+ 1)θ sin θ f
(
a(θ)

)
dθ

if f is a class function onK1, the group of elements of norm one. The equality is of course a consequence

of the Weyl character formula and the Schur orthogonality relations.

If x is a positive scalar in K then, apart from a positive constant, Φ′(x) is given by

∫

K×

Φ(z)ψR

(
τ(xz)

)
|ν(z)|2 d×z

which is a positive multiple of

∫ ∞

0

t3ϕ(t)

{∫

K1

〈u, Ω̃(k)ũ〉ψR

(
xt τ(k)

)
dk

}
d×t.

Since τ(k) is a class function this expression is a positive multiple of

〈u, ũ〉

∫ ∞

0

t3ϕ(t)

{∫ π

0

sin(n+ 1)θ sin θ ψR(2xt cos θ) dθ

}
d×t
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Integrating the inner integral by parts we obtain

〈u, ũ〉
n+ 1

4πiux

∫ ∞

0

t2ϕ(t)

{∫ π

0

cos(n+ 1)θ ψR(2xt cos θ) dθ

}
d×t.

On the other hand if x, which is a positive real number, is regarded as an element of C then ϕ′(x)
is a positive multiple of ∫

C×

ϕ(z)ψR

(
τ(xz)

)
zz̄ d×z

or of ∫ ∞

0

t2ϕ(t)

{∫ 2π

0

e−i(n+1)θψR(xt cos θ) dθ)

}
d×t.

Since ∫ 2π

0

e−i(n+1)θψR(xt cos θ) dθ = 2

∫ π

0

cos(n+ 1)θ ψR(xt cos θ) dθ

and λ(C/R) = i sgn u the identity (5.20.3) follows for any choice of u and ũ.
To evaluate λ(s) we choose Φ as in the lemma and compute

〈Z(α
s+ 1

2

R
⊗ Ω,Φv), ṽ〉 =

∫
Φ(z) |ν(z)|s+

1
2 〈Ω(z)v, ṽ〉 d×z

and

〈Z(α
3
2−s

R
⊗ Ω−1,Φv), ṽ〉 =

∫
Φ(z) |ν(z)|

3
2−s〈v, Ω̃(z)ṽ〉 d×z.

The first is equal to ∫

K×/K1

|ν(z)|s+
1
2

{∫

K1

Φ(zk)〈Ω(zk)v, ṽ〉 dk

}
d×z.

Since ∫

K1

〈Ω(zk)v, ṽ〉〈u, Ω̃(zk)ũ〉 dk

is, by the Schur orthogonality relations, equal to

1

degΩ
〈v, ũ〉〈u, ṽ〉

the double integral is equal to

1

degΩ
〈v, ũ〉〈u, ṽ〉

∫

K×

ϕ(α)ω(α) (αᾱ)s d×z

where αᾱ = ν(z). If the Haar measure on C× is suitably chosen the integral here is equal toZ(ωαs
C
, ϕ).

The same choice of Haar measures lead to the relation

〈Z(α
3
2−s

R
⊗ Ω−1,Φv), ṽ〉 =

−λ(C/R, ψR)

degΩ
〈v, ũ〉〈u, ṽ〉Z(ω−1α1−s

C
, ϕ′).



Chapter 1 110

Since L(s,Ω) = L(s, ω) and L(s, Ω̃) = L(s, ω−1) we can compare the functional equation for

Z(ωαs
C
, ϕ) with that for Z(α

s+1/2
R

⊗ Ω,Φv) to see that

λ(s) = −λ(C/R, ψR) ε(s, ω, ψC/R)

as asserted.
If

ϕ(x) = e−2πxx̄

then Z(αs
C
ω,ϕ) is an exponential times L(s, ω) so that Z(α

s+1/2
R

⊗ Ω,Φv) is, with a suitable choice of

v and ũ, a non­zero scalar times an exponential times L(s, ω)u. The last assertion of the proposition is
proved in the same way as Lemma 5.15.2.

We end this paragraph with the observation that the spaceW (π, ψ) of Theorem 5.13 cannot exist

when π is finite­dimensional. If W = W (π, ψ) did exist the contragredient representation π̃ on the

dual space W̃ would also be finite dimensional and π̃(X+) would be nilpotent. However if λ is the
linear functional ϕ→ ϕ(e) then π̃(X+)λ = −2iπa if ψ(x) = e2iπax.
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§6. Representations of GL(2,C). In this paragraph we have to review the representation theory of
GC = GL(2,C) and prove the local functional equation for the complex field. Many of the definitions

and results of the previous paragraph are applicable, after simple modifications which we do not
always make explicit, to the present situation.

The standard maximal compact subgroup of GL(2,C) is the group U(2,C) of unitary matrices.

H1 will be the space of infinitely differentiable compactly supported functions on GC. H2 will be
the space of functions on U(2,C) which are finite linear combinations of the matrix elements of

finite dimensional representations. HC = H1 ⊕ H2 can be regarded as a space of measures. Under
convolution it forms an algebra called the Hecke algebra. The notion of an elementary idempotent and

the notion of an admissible representation of HC are defined more or less as before.
Let g be the Lie algebra of the real Lie group of GL(2,C) and let gC = g ⊗R C. A will be

the universal enveloping algebra of gC. A representation of A will be said to be admissible if its

restriction to the Lie algebra of U(2,C) decomposes into a direct sum of irreducible finite dimensional
representations each occurring with finite multiplicity. There is a one­to­one correspondence between

classes of irreducible admissible representations of HC and those of A. We do not usually distinguish
between the two. The representation π̃ contragredient to π and the tensor product of π with a quasi­

character of C× are defined as before.

If µ1 and µ2 are two quasi­characters of C× we can introduce the space B(µ1, µ2) and the
representation ρ(µ1, µ2) of HC or of A on B(µ1, µ2). In order to study this representation we identify

gC with g`(2,C) ⊕ g`(2,C) in such a way that g corresponds to the elements of X ⊕ X̄. If A1 is the
universal enveloping algebra of g`(2,C) we may then identify A with A1 ⊗ A1.

In the previous paragraph we introduced the elements D and J of A1. Set D1 = D ⊗ 1,

D2 = 1 ⊗D, J1 = J ⊗ 1, and J2 = 1⊗ J . These four elements lie in the centre of A. A representation
of A is admissible if its restriction to the Lie algebra of the group SU(2,C) of unitary matrices of

determinant one decomposes into the direct sum of irreducible finite dimensional representations each
occurring with finite multiplicity.

The first part of the next lemma is verified by calculations like those used in the proof of
Lemma 5.6. The second is a consequence of the Frobenius reciprocity law applied to the pair SU(2,C)
and its subgroup of diagonal matrices.

Lemma 6.1. Let
µ1(z) = (zz̄)si−

1
2 (ai+bi)zai z̄bi

and
µ1µ

−1
2 (z) = µ(z) = (zz̄)s−

1
2 (a+b)zaz̄b

where ai, bi, a, and b are non-negative integers and aibi = ab = 0.
(i) On B(µ1, µ2) we have the following four relations

ρ(D1) =
1

2

{(
s+

a− b

2

)2

− 1
}
I

ρ(D2) =
1

2

{(
s+

b− a

2

)2

− 1
}
I

ρ(J1) =
{

(s1 + s2) +
a1 − b1 + a2 − b2

2

}
I

ρ(J2) =
{

(s1 + s2) +
b1 − a1 + b2 − a2

2

}
I
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(ii) ρ(µ1, µ2) is admissible and contains the representation ρn of the Lie algebra of SU(2,C) if
and only if n ≥ a+ b and n ≡ a+ b (mod2) and then it contains it just once.

ρn is the unique irreducible representation of SU(2,C) of degree n+ 1. Let B(µ1, µ2, ρn) be the
space of functions in B(µ1, µ2) transforming according to ρn.

Theorem 6.2. (i) If µ is not of the form z → zpz̄q or z → z−pz̄−q with p ≥ 1 and q ≥ 1 then
ρ(µ2, µ2) is irreducible. A representation equivalent to ρ(µ1, µ2) will be denoted by π(µ1, µ2),

(ii) If µ(z) = zpz̄q with p ≥ 1, q ≥ 1 then

Bs(µ1, µ2) =
∑

n≥p+q
n≡p+q (mod 2)

B(µ1, µ2, ρn)

is the only proper invariant subspace of B(µ1, µ2). σ(µ1, µ2) will be any representation equiv-
alent to the representation on Bs(µ1, µ2) and π(µ1, µ2) will be any representation equivalent
to the representation on the quotient space

Bf (µ1, µ2) = B(µ1, µ2)/Bs(µ1, µ2)

(iii) If µ(z) = z−pz̄−q with p ≥ 1, q ≥ 1 then

Bf(µ1, µ2) =
∑

|p−q|≤n<p+q
n≡p+q (mod 2)

B(µ1, µ2, ρn)

is the only proper invariant subspace of B(µ1, µ2). π(µ1, µ2) will be any representation
equivalent to the representation Bf(µ1, µ2) and σ(µ1, µ2) will be any representation equivalent
to the representation on the quotient space

Bs(µ1, µ2) = B(µ1, µ2)/Bf(µ1, µ2).

(iv) π(µ1, µ2) is equivalent to π(µ′1, µ
′
2) if and only if (µ1, µ2) = (µ′

1, µ
′
2) or (µ1, µ2) = (µ′

2, µ
′
1).

(v) If σ(µ1, µ2) and σ(µ′
1, µ

′
2) are defined they are equivalent if and only if (µ1, µ2) = (µ′

1, µ
′
2) or

(µ1, µ2) = (µ′
2, µ

′
1).

(vi) If µ(z) = zpz̄q with p ≥ 1, q ≥ 1 there is a pair of characters ν1, ν2 such that µ1µ2 = ν1ν2
and ν1ν

−1
2 = zpz̄−q and σ(µ1, µ2) is equivalent to π(ν1, ν2).

(vii) Every irreducible admissible representation of HC or A is a π(µ1, µ2) for some choice of µ1

and µ2.

The proofs of the first three assertions will be based on two lemmas.

Lemma 6.2.1. If there exists a proper invariant subspace V of B(µ1, µ2) which is finite dimensional
then µ1µ

−1
2 (z) = z−pz̄−q with p ≥ 1, q ≥ 1 and V = Bf (µ1, µ2).

Lemma 6.2.2. Let V be a proper invariant subspace of B(µ1, µ2) and let n0 be the smallest integer
such that some subspace of V transforms according to the representation ρn0

of the Lie algebra of
SU(2,C). Either

V =
∑

n≥n0

B(µ1, µ2, ρn)
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or V contains a finite-dimensional invariant subspace.

Grant these lemmas for a moment and let V be a proper invariant subspae of B(µ1, µ2). As in

the case of the non­archimedean and real fields there is an invariant non­degenerate bilinear form on
B(µ1, µ2) × B(µ−1

1 , µ−1
2 ). The orthogonal complement V ⊥ of V in B(µ−1

1 , µ−1
2 ) is a proper invariant

subspace. By Lemma 6.2.1 they cannot both contain an invariant finite dimensional subspace. Therefore
by Lemma 6.2.2 one of them is of finite codimension. The other must be of finite dimension. If V
is finite­dimensional then µ1µ

−1
2 (z) = z−pz̄−q and V = Bf (µ1, µ2). If V ⊥ is finite dimensional

then µ1µ
−1
2 (z) = zpz̄q . Since the orthogonal complement of Bf(µ1, µ2) is Bs(µ1, µ2) we must have

V = Bs(µ1, µ2).

We shall now show that Bf (µ1, µ2) is invariant when µ1µ
−1
2 (z) = z−pz̄−1. It will follow from

duality that Bs(µ1, µ2) is invariant when µ1µ
−1
2 (z) = zpz̄q . Every irreducible finite­dimensional

representation π of A determines a representation π of GC. If π acts on X there is a nonzero vector v0
in X such that

π

((
z x
0 z−1

))
v0 = zmz̄nv0

for all z in C× and all x in C. v0 is determined up to a scalar factor and m and n are non­negative

integers. Moreover there is a quasi­character ω0 of C× such that

π

((
a 0
0 a

))
= ω0(a)I

Thus

π

((
z1 x
0 z2

))
v0 = ω1(z1)ω2(z2) v0

where ω1ω
−1
2 (z) = zmz̄n. π is determined up to equivalence by ω1 and ω2 so we write π = κ(ω1, ω2).

As long as ω1ω
−1
2 (z) = zmz̄n with non­negative integers m and n the representation κ(ω1, ω2) exists.

By the Clebsch–Gordan formula the restriction of κ(ω1, ω2) or its contragredient to SU(2,C) breaks up
into the direct sum of the representations ρi with |m− n| ≤ i ≤ m+ n and 1 ≡ m+ n (mod2). Let π

be κ(ω1, ω2) and let π̃, the contragredient representation, act on X̃ . To each vector ṽ in X̃ we associate
the function

ϕ(g) = 〈v0, π̃(g)ṽ〉

on GC. The map ṽ → ϕ is linear and injective. Moreover π̃(g)ṽ → ρ(g)ϕwhile

ϕ

((
z1 x
0 z2

)
g

)
= ω−1

1 (z1)ω
−1
2 (z2)ϕ(g)

so that if µ1 = ω−1
1 α

−1/2
C

and µ2 = ω−1
2 α

1/2
C

the function ϕ belongs to B(µ1, µ2). As we vary ω1 and
ω2 the quasi­characters µ1 and µ2 vary over all pairs such that µ1µ

−1
2 (z) = z−pz̄−q with p ≥ 1 and

q ≥ 1.
We have still to prove the two lemmas. Suppose V is a proper finite­dimensional subspace of

B(µ1, µ2). The representation of A on V is certainly a direct sum of irreducible representations each

occurring with multiplicity one. Let V ′ be an irreducible subspace of V and let Ṽ ′ be the dual space of
V ′. Let λ be the linear functional λ : ϕ → ϕ(e) on V ′. If π is the representation of A or of GC on V ′

then

π̃

((
z1 x
0 z2

))
λ = µ−1

1 (z1)µ
−1
2 (z2) (z1z̄1z

−1
2 z−1

2 )−
1
2 λ
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Thus if ω1 = µ−1
1 α

−1/2
C

and ω2 = µ−1
2 α

1/2
C

the representation π̃ is κ(ω1, ω2). It follows immediately
that µ1µ

−1
2 is of the form µ1µ

−1
2 (z) = z−pz̄−q with p ≥ 1 and q ≥ 1 and that V ′ and therefore V is

Bf (µ1, µ2).
To prove the second lemma we regard g as the real Lie algebra of 2 × 2 complex matrices. Then

a =

{(
a 0
0 a

) ∣∣ a ∈ C

}

is the centre of g and

u =

{(
ia b
−b̄ −ia

) ∣∣ a ∈ R, b ∈ C

}

is the Lie algebra of SU(2,C). If

g =

{(
a b
b̄ −a

) ∣∣ a ∈ R, b ∈ C

}

then u ⊕ g is the Cartan decomposition of the Lie algebra of the special linear group. The space

gC = g ⊗R C is invariant under the adjoint action of u on gC. Moreover u acts on gC according to the

representation ρ2. One knows that ρ2 ⊗ ρn is equivalent to ρn+2 ⊕ ρn ⊕ ρn−2 if n ≥ 2, that ρ2 ⊗ ρ1 is
equivalent to ρ3 ⊕ ρ1 and, of course, that ρ2 ⊗ ρ0 is equivalent to ρ2. The map of gC ⊗ B(µ1, µ2, ρn)
into B(µ1, µ2) which sends X ⊗ f to ρ(X)f commutes with the action of u. Thus ρ(X)f is contained
in

B(µ1, µ2, ρn+2) ⊕ B(µ1, µ2, ρn)⊕ B(µ1, µ2, ρn−2).

It is understood that B(µ1, µ2, ρ`) = 0 if ` < 0.

Now let V be a proper invariant subspace of B(µ1, µ2). Let n0 be the smallest non­negative

integer n for which V contains B(µ1, µ2, ρn). If n ≥ n0 set

V (n) =
∑

n≥k≥n0
k≡n0 (mod 2)

B(µ1, µ2, ρk)

If V contains every V (n) there is nothing to prove so assume that there is a largest integer n1 for which

V contains V (n1). All we need do is show that V (n1) is invariant under g. It is invariant under a and
u by construction so we need only verify that if X lies in gC then ρ(X) takes V (n1) into itself. It is

clear that ρ(X) takes V (n1 − 2) into V (n1) so we have only to show that it takes B(µ1, µ2, ρn1
) into

V (n1). Take f in B(µ1, µ2, ρn1
) and let ρ(X)f = f1 + f2 with f1 in V (n1) and f2 in B(µ1, µ2, ρn1+2).

Certainly f2 lies in V . Since

V ∩ B(µ1, µ2, ρn1+2)

is either 0 or B(µ1, µ2, ρn1+2) and since, by construction, it is not B(µ1, µ2, ρn1+2) the function f2 is 0.

The first three assertions of the theorem are now proved and we consider the remaining ones.
We make use of the fact that D1, D2, J1 and J2 generate the centre of A as well as a result of Harish­

Chandra to be quoted later. Suppose π and π′ are two irreducible representations of A which are
constituents of ρ(µ1, µ2) and ρ(µ′

1, µ
′
2) respectively. Assume π and π′ contain the same representations

of the Lie algebra of SU(2,C) and are associated to the same homomorphism of the centre of A into

C. Comparing the scalars π(J1) and π(J1) with π′(J1) and π′(J2) we find that µ1µ2 = µ′
1µ

′
2. Let
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µ1µ
−1
2 (z) = (zz̄)s−

a+b
2 zaz̄b and let µ′1µ

′
2
−1

(z) = (zz̄)s
′− a′+b′

2 za
′

z̄b
′

. Comparing π(D1) and π(ν2)
with π′(D1) and π′(D2) we see that

(
s+

a− b

2

)2

=
(
s′ +

a′ − b′

2

)2

and (
s+

b− a

2

)2
=
(
s′ +

b′ − a′

2

)2

.

These relations will hold if µ1µ
−1
2 = µ′

1µ
′
2
−1

or µ−1
1 µ2 = µ′

1µ
′
2
−1

and therefore, when µ1µ2 = µ′
1µ

′
2,

(µ1, µ2) = (µ′
1, µ

′
2) or (µ1, µ2) = (µ′

2, µ
′
1). If neither of these alternatives hold we must have

s =
a′ − b′

2
, s′ =

a− b

2
,

or

s =
b′ − a′

2
, s′ =

b− a

2
.

Since µ1µ2 = µ′
1µ

′
2 the integers a + b and a′ + b′ must have the same parity. Let µ = µ1µ

−1
2 and

µ′ = µ′
1µ

′
2
−1

. In the first case µµ′ is of the form µµ′(z) = z2p and µµ′
−1

is of the form z̄2q and in the

second µµ′(z) = z̄2p while µµ′
−1

(z) = z2q . Since {µ1, µ2} is not {µ′1, µ
′
2} neither p nor q is 0. In the

first case µ = zpz̄q and µ′ = zpz̄−q and in the second µ = zq z̄p while µ′ = z−q z̄p.
In conclusion we see that π and π′ contain the same representations of the Lie algebra ofSU(2,C)

and are associated to the same homomorphism of the centre of A into C if and only if one of the following
alternatives holds.

(i) For some pair of quasi­characters ν1 and ν2 we have {π, π′} = {π(ν1, ν2), π(ν1, ν2)} or {π, π′} =
{π(ν1, ν2), π(ν2, ν1)}.

(ii) For some pair of quasi­characters ν1 and ν2 we have {π, π′} = {σ(ν1, ν2), σ(ν1, ν2)} or {π, π′} =
{σ(ν1, ν2), σ(ν2, ν1)}.

(iii) For some pair of quasi­characters ν1 and ν2 with ν1ν
−1
2 (z) = zpz̄q where p ≥ 1, q ≥ 1 we have

{π, π′} = {σ(ν1, ν2), π(ν ′1, ν
′
2)} where ν1ν2 = ν′1ν

′
2 and ν′ν′2

−1
(z) is either zpz̄−1 or z−pz̄q .

(iv) For some pair of quasi­characters ν1 and ν2 with ν1ν
−1
2 (z) = z−pz̄−q where p ≥ 1, q ≥ 1 we

have {π, π′} = {σ(ν1, ν2), π(ν ′1, ν
′
2)} where ν1ν2 = ν′1ν

′
2 and ν′1ν

′
2
−1

(z) is either zpz̄−q or z−pz̄q .
The remaining assertions are now all consequences of a theorem of Harish­Chandra which, in

the special case of interest to us, we may state in the following manner.

Lemma 6.2.3. If π is an irreducible admissible representation of A there exists a pair of quasi-
characters µ1 and µ2 such that ρ(µ1, µ2) and π contain at least one irreducible representation of
the Lie algebra of SU(2,C) in common and are associated to the same homomorphism of the centre
of A into C. When this is so π is a constituent of ρ(µ1, µ2).

As before χ⊗ π(µ1, µ2) is π(χµ1, χµ2) and χ⊗ σ(µ1, µ2) is σ(χµ1, χµ2). If

π

((
a 0
0 a

))
= ω0(a)I

then π̃ = ω−1
0 ⊗ π.
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Theorem 6.3. Let π be an infinite dimensional irreducible admissible representation of HC and let
ψ be a non-trivial additive character of C. There is exactly one space W (π, ψ) of functions on GC

which satisfies the following three conditions.
(i) Every function W in W (π, ψ) satisifies

W

((
1 x
0 1

)
g

)
= ψ(x)W (g).

(ii) The functions in W (π, ψ) are continuous and W (π, ψ) is invariant under the operators ρ(f)
for f in HC. Moreover the representation of HC on W (π, ψ) is equivalent to π.

(iii) If W is in W (π, ψ) there is a positive number N such that

W

((
t 0
0 1

))
= O(|t|N )

as |t| → ∞.

Since every π is of the form π = π(µ1, µ2) the existence is rather easy to prove. If Φ is in S(C2)
let

θ(µ1, µ2,Φ) =

∫

C×

Φ(t, t−1)µ1(t)µ
−1
2 (t) d×t

We let W (µ1, µ2, ψ) be the space of functions on GC of the form

W (g) = WΦ(g) = µ1(detg) |detg|
1/2
C

θ(µ1, µ2, r(g)Φ)

where Φ in S(C2) is SU(2,C)­finite under the action defined by r. It is clear that W (µ1, µ2, ψ) =
W (µ2, µ1, ψ) and that W (µ1, µ2, ψ) is invariant under right translations by elements of HC and of A.

The existence ofW (π, ψ)will, as before, be a consequence of the following analogue of Lemma 5.13.1.

Lemma 6.3.1 Suppose µ1µ
−1
2 (t) = (tt̄)s−

a+b
2 tat̄b with Re s > −1. Then there is a bijection A of

W (µ1, µ2, ψ) with B(µ1, µ2) which commutes with the action of HC.

As before A associates to WΦ the function

fΦ∼(g) = µ1(detg) |detg|
1/2
C

z
(
µ1µ

−1
2 αC, ρ(g)Φ

∼
)

The proof of course proceeds as before. However we should check that A is surjective. Theorem 6.2

shows that, under the present circumstances, there is no proper invariant subspace of B(µ1, µ2) con­

taining B(µ1, µ2, ρa+b) so that we need only show that at least one nonzero function in B(µ1, µ2, ρa+b)
is of the form fΦ where Φ is in S(C2) and SU(2,C)­finite under right translations.

If
Φ(x, y) = e−2π(xx̄+yȳ)ȳayb

then, since a+ b = 0, Φ transforms under right translations by SU(2,C) according to ρa+b so we need

only check that fΦ is not 0. Proceeding according to the definition we see that

fΦ(e) =

∫

C×

Φ(0, t)(tt̄)s−
a+b
2 tat̄b d×t

=

∫

C×

e−2πtt̄(tt̄)1+s+
a+b
2 d×t.
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Apart from a constant which depends on the choice of Haar measure this is

(2π)−s−
a+b
2 Γ
(
1 + s+

a+ b

2

)

and is thus not 0.
Just as in the previous paragraph W (µ1, µ2, ψ) is spanned by functions WΦ where Φ is of the

form

Φ(x, y) = e−2π(xx̄+uūyȳ)xpx̄qymȳn

where p, q, m, and n are integers. u is determined by the relation ψ(z) = e4πiRe uz . We can show that

WΦ

((
t 0
0 1

))

decreases exponentially as |t| → ∞.

To prove the uniqueness we will use a differential equation as in the previous chapter. This time
the equations are a little more complicated. Suppose W1(π, ψ) is a space of functions satisfying the

first two conditions of the theorem. We regard ρn as acting on the space Vn of binary forms of degree

n according to the rule

ρn

((
a b
c d

))
ϕ(x, y) = ϕ(ax+ cy, bx+ dy)

If
ϕ(x, y) =

∑

|k|≤n
n
2

−k∈Z

ϕkx
n
2 +kx

n
2 −k

then ϕk is called the kth coordinate of ϕ. On the dual space Ṽn we introduce the dual coordinates.

If ρn is contained in π there is an injectionA of Vn intoW1(π, ψ) which commutes with the action

of SU(2,C). Let Φ(g) be the function on GC with values in Ṽn defined by

〈ϕ,Φ(g)〉 = Aϕ(g).

It is clear that W1(π, ψ) is determined by Φ which is in turn determined by W1(π, ψ) up to a scalar
factor. The function Φ(g) is determined by the function

ϕ(t) = Φ

((
t

1
2 0
0 t−

1
2

))

on the positive real numbers. If ϕk(t) is the kth coordinate of ϕ(t) and if π is a constituent of ρ(µ1, µ2)
the differential equations

ρ(D1)Φ =
1

2

{(
s+

a− b

2

)2

− 1
}
Φ

ρ(D2)Φ =
1

2

{(
s+

b− a

2

)2

− 1
}
Φ

may, if our calculations are correct, be written as

1

2

[
t
d

dt
+ k − 1

]2
ϕk − t2

|u|2

2
ϕk +

(n
2

+ k
)
tiuϕk−1 =

1

2

(
s+

a− b

2

)2

ϕk

1

2

[
t
d

dt
− k − 1

]2
ϕk − t2

|u|2

2
ϕk −

(n
2
− k
)
tiūϕk+1 =

1

2

(
s+

b− a

2

)2

ϕk.
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We have set ϕk = 0 if |k| ≥ n/2. Recall that ψ(z) = e4πiRe uz . These equations allow one to solve for
all ϕk in terms of ϕn/2 or ϕ−n/2.

For k = n
2 the second equation may be written as

1

2

d2ϕn/2

dt2
+

(
−

1

2
−
n

2

)
1

t

dϕ

dt

n/2

+

{
−
|u|2

2
+

(n2 + 1)2

2t2

}
ϕn/2 =

(
s−

b− a

2

)2

ϕn/2. (∗)

If we have two independent solutions of this equation their Wronskian W (t) is a non­trivial solution

of the equation
dW

dt
=

(n+ 1)

t
W

and therefore a non­zero multiple of tn+1. Since we already have shown the existence of a solution of
(∗) which decreases exponentially we see that there cannot be another solution which is bounded by a

power of t as t→ ∞. The uniqueness of the space W (π, ψ) follows
Every irreducible admissible representation of HC is of the form π = π(µ1, µ2). Moreover

π(µ1, µ2) = π(µ′
1, µ

′
2) if and only if {µ1, µ2} = {µ′

1, µ
′
2}. Thus we may set

L(s, π) = L(s, µ1)L(s, µ2)

and

ε(s, π, ψ) = ε(s, µ1, ψ) ε(s, µ2, ψ).

Then

L(s, π̃) = L(s, µ−1
1 )L(s, µ−1

2 ).

The local functional equation which is proved just as in the real case read as follows.

Theorem 6.4. Let π be an infinite-dimensional irreducible admissible representation of HC. Let ω
be the quasi-character of C× defined by

π

((
a 0
0 a

))
= ω(a)I

for a in C×. If W is in W (π, ψ) the integrals

Ψ(g, s,W ) =

∫

C×

W

((
a 0
0 1

)
g

)
|a|

s−1/2
C

d×a,

Ψ̃(g, s,W ) =

∫

C×

W

((
a 0
0 1

)
g

)
|a|

s−1/2
C

ω−1(a) d×a

converge absolutely in some right half-plane. Set

Ψ(g, s,W ) = L(s, π)Φ(g, s,W ),

Ψ̃(g, s,W ) = L(s, π̃) Φ̃(g, s,W ).

The functions Φ(g, s,W ) and Φ̃(g, s,W ) can be analytically continued to the whole complex plane
as holomorphic functions of s. For a suitable choice of W the function Φ(e, s,W ) is an exponential
function of s. The functional equation

Φ̃(wg, 1 − s,W ) = ε(s, π, ψ)Φ(g, s,W )

is satisfied. Moreover, if W is fixed |Ψ(g, s,W )| remains bounded as g varies over a compact subset
of GC and s varies in a vertical strip of finite width from which discs about the poles of L(s, π)
have been removed.

The following lemma can be verified by an explicit computation. The first assertion may also be
proved by the method of Lemma 5.16.
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Lemma 6.5 If σ = σ(µ1, µ2) and π = π(µ1, µ2) are defined then

L(1 − s, σ̃) ε(s, σ, ψ)

L(s, σ)
=
L(1 − s, π̃) ε(s, π, ψ)

L(s, π)

and the quotient
L(s, χ⊗ σ)

L(s, χ⊗ π)

is the product of a constant, a polynomial, and an exponential. Moreover the polynomial is of
positive degree for some choice of the quasi-character χ.

We verify the last assertion. There is no harm in supposing that σ = π(ν1, ν2) and that χµ1(z) =
za+pz̄b+q , χµ2(z) = zaz̄b, χν1(z) = za+pz̄b, and χν2(z) = zazb+q . p ≥ 1 and q ≥ 1 are integers.
Varying χ is equivalent to varying a and b through all the integers. If m1 is the largest of a + p and

b+ q and m2 is the largest of a and b while n1 is the largest of a+ p and b and n2 is the largest of a and
b+ q the quotient

L(s, χ⊗ σ)

L(s, χ⊗ π)

differs from
Γ(s+ n1) Γ(s+ n2)

Γ(s+m1) Γ(s+m2)

by a constant times an exponential. It is clear that n1 and n2 are both greater than or equal to m2 and
that either n1 or n2 is greater than or equal to m1. Thus the quotient is a polynomial. If p ≥ q choose a
and b so that b+ q > a ≥ b. Then n1 = m+ 1 and n2 > m2 so that the quotient is of positive degree.
If q ≥ p choose a and b so that a+ p > b ≥ a. Then n2 = m1 and n1 > m2.

Lemma 6.6. Let π and π′ be two infinite-dimensional irreducible representations of HC. Suppose
there is a quasi-character ω of C× such that

π

((
a 0
0 a

))
= ω(a)I

and

π′

((
a 0
0 a

))
= ω(a)I

for all a in C×. If

ε(s, χ⊗ π′, ψ)
L(1 − s, χ−1 ⊗ π̃′)

L(s, χ⊗ π′)
= ε(s, χ⊗ π, ψ)

L(1 − s, χ−1 ⊗ π̃)

L(s, χ⊗ π)

for all quasi-characters χ then π and π′ are equivalent.

Let π = π(µ1, µ2) and let π′ = (µ′
1, µ

′
2). We let

µi(z) = (zz̄)si

{
z

(zz̄)1/2

}ai
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and

µ′
i(z) = (zz̄)s

′
i

{
z

(zz̄)1/2

}ai

with ai and a′i in Z. By assumptions s1 + s2 = s′1 + s′2 and a1 + a2 = a′1 + a′2. Choose

χ(z) =

{
z

(zz̄)1/2

}n

with n in Z. The quotient on the right has the same zeros and poles as

Γ(1 − s− s1 + |n+a1

2
|)

Γ(s+ s1 + |n+a1

2
|)

·
Γ(1 − s− s2 + |n+a2

2
|)

Γ(s+ s2 + |n+a2

2
|)

.

A pole of the numerator can cancel a pole of the denominator if and only if there are two

non­negative integers ` and m such that

s1 − s2 = 1 + `+m+
∣∣n+ a1

2

∣∣+
∣∣n+ a2

2

∣∣

or

s2 − s1 = 1 + `+m+
∣∣n+ a1

2

∣∣+
∣∣n+ a2

2

∣∣.

This can happen only if µ1µ
−1
2 is of the form µ1µ

−1
2 (z) = zpz̄q or µ1µ

−1
2 (z) = z−pz̄−q where p ≥ 1

and q ≥ 1 are integers. Since π(µ1, µ2) is infinite­dimensional it cannot be of either these forms and no
poles cancel.

Consequently for every integer n, {s1 + |n+a1

2
|, s2 + |n+a2

2
|} = {s′1 + |

n+a′1
2

|, s′2 + |
n+a′2

2
|}. This

can happen only if s1 = s′1, a1 = a′1, s2 = s′2, and a2 = a′2 or s1 = s′2, a1 = a′2, s2 = s′1, and a2 = a′1.
Thus π and π′ are equivalent.

The following proposition is an easy consequence of these two lemmas.

Proposition 6.7. Suppose π and π′ are two irreducible admissible representations of HC. Suppose
there is a quasi-character ω of C∗ such that

π

((
a 0
0 a

))
= ω(a)I

and

π′

((
a 0
0 a

))
= ω(a)I.

If L(s, χ⊗ π) = L(s, χ⊗ π′), L(s, χ−1 ⊗ π̃) = L(s, χ−1 ⊗ π̃′) and

ε(s, χ⊗ π, ψ) = ε(s, χ⊗ π′, ψ)

for all quasi-characters χ the representations π and π′ are equivalent.
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§7. Characters. If F is a non­archimedean local field and π is an admissible representation of GF the
operator π(f) is of finite rank for every f in HF and therefore ha a trace Trπ(f). In this paragraph we

prove that if π is irreducible there is a locally integrable function χπ on Gf such that

Trπ(f) =

∫

GF

f(g)χπ(g) dg.

Although Trπ(f) depends on the choice of the Haar measure the function χπ does not.

The following simple lemma shows that χπ determines the class of π.

Lemma 7.1 If {π1, · · · , πp} is a set of inequivalent irreducible admissible representations of HF the
set of linear forms Tr π1,Tr π2, · · · ,Tr πp is linearly independent.

Let πi act on Vi and let ξ be an elementary idempotent such that none of the spaces πi(ξ)Vi,
1 ≤ i ≤ p, are 0. Let π̄i be the representation of ξHF ξ on the finite dimensional space πi(ξ)Vi = Vi(ξ).

Suppose π̄i and π̄j are equivalent. Then there is an invertible linear map A from Vi(ξ) to Vj(ξ) which
commutes with the action of ξHF ξ. Choose a non­zero vector vi in Vi(ξ) and let vj = Avi. We are

going to show that πi and πj are equivalent. It is enough to show that, for any f in HF , πi(f)vi = 0
if and only if πj(f)vj = 0. But πi(f)vi = 0 if and only if πi(ξ ∗ h)πi(f)vi = 0 for all h in HF . Since
πi(ξ ∗ h)πi(f)vi = πi(ξ ∗ h ∗ f ∗ ξ)vi and ξ ∗ h ∗ f ∗ ξ is in ξHF ξ the assertion follows.

Thus the representations π̄1, · · · , π̄p are inequivalent. Using this we shall show that the linear
forms Tr π̄1, · · · ,Tr π̄p on ξHF ξ are linearly independent. The lemma will then be proved. Take h in

ξHF ξ. Since π̄i is irreducible and finite­dimensional Tr π̄i(hf) = 0 for all f in ξHF ξ if and only if
π̄i(h) = 0. Suppose we had h1, · · · , hp in ξHF ξ so that for at least one i the operator π̄i(hi) was not 0
while

p∑

i=1

Tr π̄i(hif) = 0

for all f in ξHF ξ. There must then be at least two integers j and k such that π̄j(hj) 6= 0 and

π̄k(hk) 6= 0. Since π̄j and π̄k are not equivalent we can find an h in ξHF ξ such that π̄j(h) = 0 while

π̄k(h) is invertible. Replacing hi by hihwe obtain a relation of the same type in which the number of i
for which π̄i(hi) = 0 has been increased. By induction we see that no such relation is possible. Since

ξHF ξ contains a unit the required independence follows.
For most of these notes the existence of χπ is irrelevant. It is used only toward the end. The

reader who is more interested in automorphic forms than in group representations will probably want

to take the existence of χπ for granted and, for the moment at least, skip this paragraph. To do so will
cause no harm. However he will eventually have to turn back to read the first few pages in order to

review the definition of the Tamagawa measure.
Choose a non­trivial additive character ψ of F . If X is an analytic manifold over F and ω is a

differential form of highest degree on X we can associate to ω a measure on X which is denoted by
|ω|F or sometimes simply by ω. If X = F and ω = dx is the differential of the identity application

the measure |ω|F = dx is by definition the Haar measure on F which is self­dual with respect to ψ. In

general if p belongs to X and x1, · · · , xn are local coordinates near p so that

ω = a(x1, · · · , xn) dx1 ∧ · · · ∧ dxn

then, if f is a continuous real­valued functions with support in a small neighborhood of p,

∫

X

f |ω|F =

∫
f(x1, · · · , xb) |a(x1, · · · , xb)| dx1 · · · dxn.
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The absolute value |a(x1, · · · , xn)| is the normalized absolute value in the fieldF . To prove the existence
of the measure ω one has to estabish the usual formula for a change of variable in a multiple integral.

For this and other facts about these measures we refer to the notes of Weil [12].
If G is an algebraic group over F then GF is an analytic space. If ω is a left­invariant form of

highest degree on GF the measure |ω|F is a Haar measure on GF . It is called the Tamagawa measure.

It depends on ω and ψ.
If M is the algebra of 2 × 2 matrices over F the additive group of M is an algebraic group. If a

typical element of M is

x =

(
a b
c d

)

then

µ = da ∧ db ∧ dc ∧ dd

is an invariant form of highest degree and |µ| = dx is the additive Haar measure which is self­dual

with respect to the character ψM (x) = ψF
(
τ(x)

)
if τ is the trace of x.

On the multiplicative group G of M we take the form ω(x) = (detx)−2µ(x). The associated
Haar measure is

|ω(x)| = |detx|−2
F dx = |x|−1

M dx.

An element of G is said to be regular if its eigenvalues are distinct. The centralizer in GF of a

regular element in GF is a Cartan subgroup of GF . Such a Cartan subgroup BF is of course abelian.

There seems to be no canonical choice for the invariant forms onBF . However the centralizer ofBF in
MF is an algebra E of degree two over F . It is either isomorphic to the direct sum of F with itself or it

is a separable quadratic of F . BF is the multiplicative group ofE. In the first paragraph we introduced
a map ν from E to F . Once a form µE on E which is invariant for the additive group has been chosen

we can set µB(x) = ν(x)−1µE(x). µb is an invariant form on BF . The associated measure is invariant
under all automorphisms of E over F . We should also recall at this point that two Cartan subgroups

BF and B′
F are conjugate in GF if and only if the corresponding algebras are isomorphic.

Once µE and therefore µB has been chosen we can introduce on BF \ GF which is also an
analytic manifold the form ωB which is the quotient of ω by µB . Then

∫

GF

f(g)ω(g) =

∫

BF \GF

{∫

BF

f(bg)µB(b)

}
ωB(g).

The centre of the algebra of MF is isomorphic to F and the centre ZF of GF is isomorphic to F×. On
F× we have the form x−1 dx. We take µZ to be the corresponding form on ZF . µ0

B will be the quotient

of µB by µZ and ω0 will be the quotient of ω by µZ . The corresponding integration formulae are

∫

BF

f(b)µB(b) =

∫

Zf\BF

{∫

ZF

f(zb)µZ(z)

}
µ0
B(b)

and ∫

GF

f(G)ω(g) =

∫

ZF \GF

{∫

ZF

f(zg)µZ(z)

}
ω0(g).

If g belongs to GF its eigenvalues α1 and α2 are the roots of the equation

X2 − τ(g)X + ν(g) = 0
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and
(α1 − α2)

2

α1α2
=

{τ(g)}2 − 4ν(g)

ν(g)

belongs to F . Set

δ(g) =

∣∣∣∣
(α1 − α2)

2

α1α2

∣∣∣∣
F

.

Since g is regular if and only if δ(g) 6= 0 the set ĜF of regular elements is open inGF and its complement
has measure zero.

There are two more integration formulae that we shall need. Their proof proceeds as for
archimedean fields. Choose a system S of representatives of the conjugacy classes of Cartan sub­

groups of GF . Then

∫

GF

f(g)ω(g) =
∑

BF ∈S

1

2

∫

BF

δ(b)

{∫

BF \GF

f(g−1bg)ωB(g)

}
µB(b) (7.2.1)

∫

ZF \GF

f(g)ω0(g) =
∑

BF ∈S

1

2

∫

ZF \BF

δ(b)

{∫

BF \GF

f(g−1bg)ωB(g)

}
µ0
B(b) (7.2.2)

if f is an integrable function on GF or ZF \ GF . Notice that the sum on the right is not necessarily

finite. Let B̂F = BF ∩ ĜF and let

B̂GF = {g−1bg
∣∣ b ∈ B̂F , g ∈ GF }.

Then ĜF is the disjoint union ⋃

BF ∈S

B̂GF .

There is a simple lemma to be verified.

Lemma 7.2 (i) For any Cartan subgroup BF the set B̂GF is open.

(ii) The set ĜF is open.
(iii) The set G̃F of g in GF whose eigenvalues do not belong to F is open.

The second statement is a consequence of the first. If BF corresponds to the separable quadratic

extensionE then B̂GF is the set of matrices with distinct eigenvalues in E and ifBF splits and therefore

corresponds to the direct sum of F with itself, B̂GF is the set of matrices with distinct eigenvalues in F .

Thus the first assertion is a consequence of the following lemma which is a form of Hensel’s lemma or
of the implicit function theorem.

Lemma 7.2.1 Let E be a separable extension of F . Assume the equation

Xp + a1X
p−1 + · · · + ap = 0

with coeficients in F has a simple root λ in E. Given ε > 0 there is a δ > 0 such that whenever
b1, · · · , bp are in F and |bi − ai|F < δ for 1 ≤ i ≤ p the equation

Xp + b1X
p−1 + · · · + bp = 0
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has a root µ in E for which |λ− µ|E < ε.

There is no need to prove this lemma. To prove the third assertion we have to show that the set

of matrices with eigenvalues in F is closed. Suppose gn → g and gn has eigenvalues λn and µn in

F . Then λn + µn → τ(g) and λnµn → ν(g). If λn and µn did not remain in a compact subset of F×

then, since their product does, we would have, after passing to a subsequence, |λn| → 0, |µn| → ∞ or

|λn| → ∞, |µn| → 0. In either case λn +µn could not converge. Thus, again passing to a subsequence,
we have λn → λ and µn → µ. λ and µ are the eigenvalues of g.

If the characteristic of F is not two the sets ĜF and G̃F are the same. We now introduce a

function on GF which plays an important role in the discussion of characters. If BF is a split Cartan
subgroup we set c(BF ) = 1 but if BF is not split and corresponds to the quadratic extension E we set

c(BF ) = |$|
t+1
2

F

$ is a generator of pF and pt+1
F is the discriminant of E over F . If g in ĜF belongs to the Cartan

subgroup BF we set

ξ(g) = c(BF )δ−1/2(g).

If g is singular we set ξ(g) = ∞. The factor c(BF ) is important only in characteristic two when there

are an infinite number of conjugacy classes of Cartan subgroups.

Lemma 7.3 The function ξ is locally constant on ĜF and bounded away from zero on any compact
subset of GF . It is locally integrable on ZF \GF and on GF .

It is of course implicit in the satement of the lemma that ξ is constant on cosets of ZF . The two

previous lemmas show that ξ is locally constant on ĜF . To prove the remaining assertions we recall
some facts about orders and modules in separable quadratic extensions of non­archimedean fields.

If E is a separable quadratic extension of F an order R of E is a subring of OE which contains

OF and a basis of E. A module I in E is a finitely generated OF submodule of E which contains a
basis of E. If I is a module the set

{α ∈ E |αI ⊆ I}

is an order RI . It is clear that an order is a module and that RR = R. Two modules I and J are said to

be equivalent if there is an α in E× so that J = αI . Then RI = RJ .
Suppose the module I is contained on OE and contains 1. Since I/OF is a torsion­free OF

module the module I has a basis of the form {1, δ}. Since δ is integral δ2 belongs to I . Therefore I is
an order and RI = I . Since any module is equivalent to a module which contains 1 and lies in OE the

collection of modules I for which RI = R forms, for a given order R, a single equivalence class.

As observed any order has a basis, over OF , of the form {1, δ}. The absolute values of the
numbers δ occurring in such bases are bounded below. A basis {1, δ} is said to be normal if δ has

the smallest possible absolute value. It is easily seen, by considering the ramified and unramified
extensions separately, that if {1, δ} is normal

R = OF + δOE.

Thus R determines and is determined by |δ|E . It is easily seen that if E/F is unramified |δ|E is any
number of the form |$E|

n
E with n ≥ 0. $E is a generator of pE . We set n = ω(R). If E/F is ramified,

|δ|E is any number of the form |$E |
2n+1
E with n ≥ 0. We set ω(R) = n. In the ramified case

[E× : F×(UE ∩R)] = 2|$F |
−ω(R)
F .
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In the unramified case
[E× : F×(UE ∩R)] = |$F |

−ω(R)
F (1 + |$F |F )

unless ω(R) = 0 and then
[E× : F×(UE ∩R)] = 1.

It is clear that R′ contains R if and only if ω(R′) ≤ ω(R). Thus ω(R)+ 1 is the number of orders
which contain R. If γ belongs to OE but not to OF let R(γ) be the order with basis {1, γ} and let

ω(γ) = ω
(
R(γ)

)
.

Lemma 7.3.1 Let γ̄ be the conjugate of γ in E and let

|(γ − γ̄)2|
1/2
F = |$F |

m(γ)
F .

If pt+1
E is the discriminant of E and γ belongs to OK but not to OF then

m(γ) = ω(γ) +
t+ 1

2
.

Let {1, δ} be a normal basis of R(γ). Then γ = a+ bδ with a and b in OF . Moreover δ = c+ dγ
with c and d in OF . Thus γ = (a+ bc) + bdγ so that a+ bc = 0. and bd = 1. Therefore b is a unit and

|γ − γ̄| = |δ − δ̄|. We can thus replace γ by δ. Suppose first that E/F is unramified so that t+ 1 = 0.

We take δ = ε$n
F where n = ω

(
R(γ)

)
and ε is a unit of OE . Since

δ − δ̄ = (ε− ε̄)$n
F

we have only to show that ε − ε̄ is a unit. ε is not congruent to an element of OF modulo pE and
therefore {1, ε} determines a basis of OE/pE . Since the Galois group acts faithfully on OE/pE the

number ε− ε̄ is not in pE .

If E/F is ramified we may take δ = $n
F$E with n = ω(δ). It is well­known that

|$E −$E | = |$E |
t+1
E

Thus

|(δ − δ̄)2|
1/2
F = |δ − δ̄|

1/2
E = |$F |

n
F |$K |

t+1
2

K = |$F |
n+ t+1

2

F

The lemma follows.
There are two more lemmas to be proved before we return to the proof of Lemma 7.3.

Lemma 7.3.2 Let C be a compact subset of ZF \ GF and let χC be the characteristic function of
C and of its inverse image in GF . There is a constant c such that for every b in GF which is
contained in an anisotropic Cartan subgroup

∫

ZF \GF

χC(g−1bg)ω0(g) ≤ cξ(b).

The assertion is trivial unless b is regular. Then the assumption is that its eigenvalues are distinct
and do not lie in F . Any h in GF can be written as

g1

(
$p
F

$q
F

)
g2
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where g1 and g2 belongs to GL(2, OF ) and p ≤ q. The numbers $p
F and $q

F are the elementary
divisors of h. Let Tr be the set of all those h for which q − p ≤ r. Tr is the inverse image of a compact

subset T ′
r of ZF \ GF . If r is sufficiently large C is contained in T ′

r . Thus we may replace χC and χr
the characteristic function of T ′

r .

If h belongs toGL(2, OF ) then h−1g−1bgh belongs to Tr if and only if g−1bg belongs to Tr. Thus

the integral is the product of the measure ofGL(2, OF )∩ZF \GL(2, OF ) by the number of right cosets
of ZF GL(2, OF ) whose elements g are such that g−1bg belong to Tr. If H is such a coset and BF is

the Cartan subgroup containing b then for any b′ in BF the coset b′H has the same property. Thus the
integral equals

measure
(
GL(2, OF ) ∩ ZF \GL(2, OF )

)∑
[BF g GL(2, OF ) : ZF GL(2, OF )].

The sum is over a set of representatives of the cosets in BF \GF/GL(2, OF ).
Let BF correspond to the separable quadratic extension E. Choose a basis of OE over OF . It

will also be a basis of E over F . By means of this basis we identify GF with the group of invertible
linear transformations of E over F . GL(2, OF ) is the stabilizer of OE . Every γ in E× determines a

linear transformation bγ : x→ γx ofE. The set of all such linear transformations is a Cartan subgroup
conjugate to BF and with no loss of generality we may assume that it is BF . Choose γ so that b = bγ .

Every module is of the form gOE with g in GF . Moreover g1OE and g2OE are equivalent if

and only if g1 and g2 belong to same double coset in BF \ GF /GL(2, OF ). Thus there is a one­to­
one correspondence between the collection of double cosets and the collection of orders of E. Let

BF g GL(2, OF ) correspond to the order R. The index

[BF g GL(2, OF ) : ZF GL(2, OF )]

is equal to
[BF : BF ∩ ZF g GL(2, OF )g−1]

Two elements b1 and b2 inBF belong to the same coset ofBF ∩ZF g GL(2, OF )g−1 if and only if there

is a z in ZF and an h in GL(2, OF ) such that

b1g = b2zgh

This can happen if and only if
b1gOE = b2zgOE .

Let I = gOE and let bi = bγi
. If we identify ZF and F× so that z may be regarded as an element of

F× the last relation is equivalent to

γ1I = γ2zI

or γ−1
1 γ2z ∈ R ∩ UE . Thus

[BF g GL(2, OF ) : ZFGL(2, OF )] = [E× : F×(R ∩ UE)].

Let |detb|F = |γ|K = |$F |
m
F . Let $p

F and $q
F with p ≤ q be the elementary divisors of g−1bg.

Certainly p + q = m. The matrix g−1bg belongs to Tr if and only if q − p = m − 2p ≤ r. If s is the

integral part of r−m2 this is so if and only if $s
F g

−1bg has integral coefficients, that is if and only if

$s
F g

−1bg OE ⊆ OE
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or $s
F γ ∈ R.

Our integral is therefore equal to

measure
(
GL(2, OF ) ∩ ZF \GL(2, OF )

) ∑

$s
F
γ∈R

[E× : F×(R ∩ UE)]. (∗)

The sum is over all orders of E which contains $sFγ. $s
Fγ does not lie in F . If it does not lie in OK

the sume is zero. If it lies in OK then $s
Fγ belongs to R if and only if ω(R) ≤ ω($s

Fγ). In this case the

expression (∗) is bounded by

2 measure
(
GL(2, OF ) ∩ ZF \GL(2, OF )

) ∑

0≤k≤ω($s
F
γ)

|$F |
−k
F .

This in turn is bounded by a constant, which is independent of BF and r, times

|$F |
−ω($s

F γ)
F

We have c(BF ) = |$F |
t+1
2

F , m($s
Fγ) = s+m(γ) ≤ r−m

2 +m(γ), and

δ(b)1/2 =
|(γ − γ̄)2|

1/2
F

|γγ̄|
1/2
F

= |$F |
−m/2
F |$F |

m(γ)
F .

To prove the lemma we have only to show that

−m(γ) +
m

2
+
t+ 1

2
+ ω($s

Fγ)

is bounded above by a constant which depends only on r. By the previous lemma

ω($s
Fγ) = m($s

Fγ) −
t+ 1

2

so that

−m(γ) +
m

2
+
t+ 1

2
+ ω($s

Fγ) ≤
r −m

2
+
m

2
=
r

2
.

Suppose the Cartan subalgebra BF corresponds to the algebra E. Once the measure µE on E
has been chosen we can form the measure µB on BF and the measure ωB on BF \GF . Once µE and
therefore µB and ωB are chosen we let n(BF ) be that constant which makes n(BF )µE self­dual with

respect to the character x→ ψ
(
τ(x)

)
on E.
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Lemma 7.3.3 If r is a non-negative integer there is a constant dr such that for any Cartan subgroup
BF and any b in BF ∫

BF \GF

χr(g
−1bg)ωB(g) ≤ drn(BF ) δ(b)−1/2.

We may again suppose that b belongs to B̂F . If BF is anisotropic the left side is equal to

1

measure(ZF \BF )

∫

ZF \GF

χr(g
−1bg)ω0(g).

Suppose BF corresponds to the quadratic extension E. If E/F is unramified

measure(Zf \BF ) =
1

n(BF )
(1 + |$F |)

because n(BF )µE assigns the measure 1 to OE . If E/F is ramified n(BF )µE assigns the measure

|$F |
t+1
2 to OE and

measure(ZF \BF ) =
2

n(BF )
|$F |

t+1
2 =

2

n(BF )
c(BF )

In these cases the assertion is therefore a consequence of the previous lemma.

If the inequality of the lemma is true for one Cartan subgroup it is true for all conjugate subgroups.
To complete the proof we have to verify it whenBF is the groupAF of diagonal matrices. Since we are

now dealing with a fixed Cartan subgroup the choice of Haar measure on BF \ GF is not important.
MoreoverGL(2, OF )Tr GL(2, OF ) = Tr so that, using the Iwasawa decomposition and the associated

decomposition of measures, we may take the itnegral to be

∫

F

χr

((
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

))
dx

if

b =

(
α 0
0 β

)

The argument in the integrand is

(
α 0
0 β

)(
1
(
1 − β

α

)
x

0 1

)

Changing the variables in the integral we obtain

1∣∣1− β
α

∣∣

∫

F

χr

((
α 0
0 β

)(
1 x
0 1

))
dx.

Let |α| = $F |
`, |β| = |$F |

m, and |x| = |$F |
n. With no loss of generality we may suppose |α| ≥ |β|.

If n ≥ 0 the elementary divisors of (
α 0
0 β

)(
1 x
0 1

)
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are $`
F and $m

F so that it is in Tr if and only if m − ` ≤ r. If n < 0 its elementary divisors are $`+nF

and $m−n
F so that it is in Tr if and only if m− `− 2n ≤ r. Thus the integral is at most

measure{x
∣∣ |x| ≤ |$F |

m−`−r
2 }

which is, apart from a factor depending on the choice of the Haar measure, |$F |
m−`−r

2 . Since

|$F |
m−`−r

2 =
∣∣β
α

∣∣ 12 |$F |
− r

2

and ∣∣ β
α

∣∣ 12
∣∣1 − β

α

∣∣ = δ(b)−
1
2

the lemma follows.
We return to Lemma 7.3 and prove first that ξ is bounded away from zero on each compact

subset C . In other words we show that there is a positive constant c such that ξ(h) ≥ c on C . There is
a z in ZF such that every matrix in zC has integral entries. Since ξ(zh) = ξ(h) we may as well assume

that every matrix in C itself has integral entires. There is a constant c1 > 0 such that

|deth|
1/2
F ≥ c1

on C and a constant c2 such that
|τ(h)2 − 4ν(h)|1/2 ≤ c2

on C . τ and ν are the trace and determinant of h. Thus

δ−1/2(h) ≥
c1
c2

on C . ξ(h) is certainly bounded away from 0 on the singular elements and the preceding inequality
shows that it is bounded away from 0 on the regular elements inC which lie in a split Cartan subalgebra.

Suppose h is regular and lies in the anisotropic Cartan subgroup BF . LetBF correspond to the fieldE
and let h have eigenvalues γ and γ̄ in E. Then

|(γ − γ̄)2|
− 1

2

F c(BF ) = |$F |
−m(γ) |$F |

t+1
2 = |$F |

−ω(γ)

Since ω(γ) ≥ 0 we have ξ(h) ≥ c1.

The function ξ is certainly measurable. It is locally integrable in GF if and only if it is locally

integrable on ZF \GF . Let C be a compact set in ZF \GF . We have to show

∫

ZF \GF

χC(g) ξ(g)ω0(g)

is finite. As usual it will be enough to show that

∫

ZF \GF

χr(g) ξ(g)ω
0(g)
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is finite for every non­negative integer r. According to formula (7.2.2) this integral is the sum of

1

2

∫

ZF \AF

ξ(a) δ(a)

{∫

AF \GF

χr(g
−1ag)ωA(g)

}
µ0
A(a)

and
1

2

∑

BF ∈S′

∫

ZF \BF

ξ(b) δ(b)

{∫

BF \GF

χr(g
−1bg)ωB(g)

}
µ0
B(b).

It is easy to see that there is a compact setC0 in ZF \AF such that χr(g
−1ag) = 0 for all g unless

the projection of a lies in C0. Thus the first integral need only be taken over C0. The inner integral is

at most drn(AF ) δ(a)−1/2. Since ξ(a) δ(a) δ(a)−1/2 = 1 on AF the first integral causes no trouble. We

can also use Lemma 7.3.3 to see that the sum over S′, which is by the way a set of representatives for
the conjugacy classes of anisotropic Cartan subgroups, is less than or equal to

1

2

∑

BF ∈S′

drn(BF )c(BF )

∫

ZF \BF

µ0
B(b).

If the characteristic is not two this sum is finite and there is no problem.
In general if BF corresponds to the field E and ptE+1

F is the discriminant of E we have c(BF ) =

|$F |
tE+1

2 and

n(BF )

∫

ZF \BF

µ0
B(b) ≤ 2|$F |

(tE+1)/2

To complete the proof we have to show that

∑

E

|$F |
tE+1

is finite if F has characteristic 2. The sum is over all separable quadratic extensions of F . Let M(t) be

the number of extensions E for which tE = t. Associated to any such E is a quadratic character of F×

with conductor pt+1
F . Thus

M(t) ≤ [F× : (F×)2(1 + pt+1
F )] = 2[UF : U2

F (1 + pt+1
F )]

if t ≥ 0. Of course M(−1) = 1. Any element of UF is congruent modulo 1 + pt+1
F to an element of the

form
a0 + a1$F + · · · + at$

t
F .

Such a number is a square if ai = 0 for i odd. Thus

M(t) = 0(|$F |
− t+1

2 )

and the series converges.

We can now begin the study of characters.
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Proposition 7.4 The character of an absolutely cuspidal representation exists as a locally integrable
function whose absolute value is bounded by a multiple of ξ. It is continuous on ĜF ∪ G̃F .

If the character χπ of π exists and χ is a quasi­character of F× then the character of π′ = χ ⊗ π
also exists and χπ′(g) = χ(detg)χπ(g). Thus the proposition has only to be proved for unitary

representations π. π is then square integrable and we can make use of the following lemma for which,
although it is well­known, we provide a proof.

Lemma 7.4.1 Let f belong to HF and let u be a vector of length one in the space on which the
absolutely cuspidal unitary representation π acts. Then

Trπ(f) = d(π)

∫

ZF \GF

{∫

GF

f(h)
(
π(g−1hg)u, u

)
dh

}
dg

if d(π) is the formal degree of π.

Let Q be the operator

π(f) =

∫

GF

f(h)π(h) dh.

Let {vi} be an orthonormal basis of the space on which π acts. All but a finite number of the coefficients

Qij = (Qvi, vj)

are zero. We have (
π(g−1)Qπ(g)u, u

)
=
(
Qπ(g)u, π(g)u

)

The right side equals ∑

i

(
Qπ(g)u, vi

)(
vi, π(g)u

)

which in turn equals ∑

i

∑

j

(
π(g)u, vj

)
Qji
(
vi, π(g)u

)

In both series there are only a finite number of non­zero terms. Thus

∫

ZF \GF

(
π(g−1)Qπ(g)u, u

)
dg =

∑

i,j

Qji

∫

ZF \GF

(
π(g)u, vj

)(
vi, π(g)u

)
dg

The integrals on the right exist because the representation is square­integrable. Applying the Schur
orthogonality relations we see that the right side is equal to

1

d(π)

∑

i,j

Qij(vi, vj) =
1

d(π)

∑

i

Qii =
1

d(π)
Trπ(f).

Since (
π(g−1)Qπ(g)u, u

)
=

∫

GF

f(h)
(
π(g−1)π(h)π(g)u, u

)
dh

the lemma follows.
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Observe that the integral of the lemma is an iterated and not a double integral. It is the limit as
r approaches infinity of ∫

T ′
r

{∫

GF

f(h)
(
π(g−1hg)u, u

)
dh

}
dg

Since T ′
r is compact this integral is absolutely convergent and equals

∫

GF

f(h)

{∫

T ′
r

(
π(g−1hg)u, u

)
dg

}
dh.

To prove the first part of the proposition we show that the sequence of functions

ϕr(h) =

∫

T ′
r

(π(g−1hg)u, u) dg

is dominated locally by a multiple of ξ and converges almost everywhere on GF . We shall set

χπ(h) = d(π) lim
r→∞

ϕr(h)

whenever the limit exists.
When proving the second part of the proposition we shall make use of the following lemma.

Lemma 7.4.2 Let C1 be a compact subset of G̃F and let C2 be a compact set in GF . The image in
ZF \GF of

{g ∈ GF
∣∣ g−1C1g ∩ ZFC2 6= 0}

is compact.

The set is clearly closed so we have only to show that it is contained in some compact set. We

may suppose that GL(2, OF )C2GL(2, OF ) = C2. Let

g =

(
α x
0 1

)(
β 0
0 β

)
h

with h in GL(2, OF ). Then

g−1C1g ∩ ZFC2 6= 0

if and only if (
α x
0 1

)−1

C1

(
α x
0 1

)
∩ ZFC2 6= 0.

We have to show that this condition forces α to lie in a compact subset of F× and x to lie in a compact
subset of F . Since

det(g−1cg) = detc

we may replace ZF C2 by the compact set

C3 = {h ∈ ZFC2

∣∣deth ∈ detC1}.
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Let (
a b
c d

)

be a typical element of C1. The entry c is never 0 on C1 and therefore its absolute value is bounded
below, (

α x
0 1

)−1(
a b
c d

)(
α x
0 1

)
=

(
a− xc y
cα cx+ d

)
.

The number y is of no interest. The matrix on the right cannot lie in C3 unless |cx + d| is bounded

above by some number depending on C3. Since |d| is bounded above and |c| is bounded below x is
forced to lie in some compact set Ω of F . If C4 is the compact set

{

(
1 −x
0 1

)
h

(
1 x
0 1

) ∣∣x ∈ Ω, h ∈ C1}

we have finally to show that if

(
α−1 0
0 1

)
C4

(
α 0
0 1

)
∩ C3 6= 0

then α is forced to lie in a compact subset of F×. We now let

(
a b
c d

)

be a typical element of C4. On C4 both |b| and |c| are bounded blow. Since

(
α 0
0 1

)(
a b
c d

)(
α−1 0
0 1

)
=

(
a b/α
cα d

)

and all matrix entries are bounded above in absolute value on C3 the absolute value |α| must indeed
be bounded above and below.

If π acts on V then for any u in V the support of the function (π(g)u, u) has been shown, in the

second paragraph, to be compact modulo ZF . Let C be its compact image in ZF \ GF . Let C1 be a
compact subset of GF . By the previous lemma the set of g in GF such that

(
π(g−1hg)u, u

)
6= 0

for some h inC1 has an image inZF \GF which is contained in a compact setC2. Therefore the integral

∫

ZF \GF

(
π(g−1hg)u, u

)
dg =

∫

C2

(
π(g−1hg)u, u

)
dg

is convergent for h in C1. Moreover if r is large enough T ′
r contains C2 and

ϕr(h) =

∫

Zf\GF

(
π(g−1hg)u, u

)
dg.

Therefore the sequence{ϕr} converges uniformly on any compact subset ofG̃F and its limitd−1(π)χπ(h)

is continuous on G̃F . We may state the following proposition.



Chapter 1 134

Proposition 7.5 If h belongs to G̃F then

∫

ZF \GF

(
π(g−1hg)u, u

)
dg

exists and is equal to d−1(π)χπ(h).

Since
|
(
π(g)u, u

)
| ≤ χC(g)

it follows from Lemma 7.3.2 that, for some constant c,

|ϕr(h)| ≤ cξ(h)

on G̃F . The set ĜF − G̃F is ÂGF which is open. To complete the proof of Proposition 7.4 we show that

on the intersection of ÂGF with a compact subset of GF the sequence {ϕr} is dominated by a multiple

of ξ and that it converges uniformly in a compact subset of ÂGF .

Let C3 be a compact subset of GF . Any h in ÂF may be written in the form

h = h−1
1

(
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)
h1

where h1 belongs to GL(2, OF ) and α 6= β. In C3 ∩ ÂGF the absolute values of α and β are bounded

above and below. IfC3 is contained in ÂGF the absolute value of 1− β
α is also bounded above and below

on C3. Since (
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)
=

(
α 0
0 β

)(
1
(
1 − β

α

)
x

0 1

)

the absolute value of x will be bounded above.

Since GL(2, OF )TrGL(2, OF ) = Tr the integral which defines ϕr(h) is equal to

∫

T ′
r

(
π(g−1h′g)u, u

)
dg

if

h′ =

(
1 −x
0 1

)(
α 0
0 β

)(
1 x
0 1

)

and we may as well assume that h itself is of this form. We are going to show that there is a constant c
such that

|ϕr(h)| ≤ c
∣∣1 −

β

α

∣∣−1

for all r and all such h and that the sequence {ϕr} converges uniformly if x remains in a compact subset

of F and α, β and 1 − β
α remain in a compact subset of F×. Then the proof of the proposition will be

complete.

The stabilizer of u is some open subgroup U of GL(2, OF ). Let h1, · · · , hp be a set of coset
representatives for GL(2, OF )/U and let ui = π(hi)u. apart from an unimportant factor coming from

the Haar measure ϕr(h) is given by
p∑

i=1

ϕir(h)



Chapter 1 135

with

ϕir(h) =

∫ (
π

((
γ γx1

0 1

)
h

(
γ γx1

0 1

))
ui, ui

)
dx1 d

×γ.

The integral is taken over the set of all those γ and x1 for which

(
γ γx1

0 1

)

belongs to Tr . Since

(
γ γx1

0 1

)−1

h

(
γ γx1

0 1

)
=

(
α 0
0 β

)(
1
(
1 − β

α

)
(γ−1x+ x1)

0 1

)

we can change variables in the integral to obtain

∣∣1 −
β

α

∣∣−1
∫ (

π

((
α 0
0 β

)(
1 γ−1

(
1 − β

α

)
x+ x1

0 1

))
ui, ui

)
dx1 d

×γ. (7.4.3)

The integration is now taken over all those x1 and γ for which

(
γ γ

(
1 − β

α

)−1
x1

0 1

)
(7.4.4)

is in Tr .
Let |1 − β

α
| = |$F |

t, |γ| = |$F |
m, and |x| = |$F |

n. Let $p
F and $q

F be the elementary divisors

of the matrix (7.4.4). We now list the possibilities for p and q together with the condition that the matrix

belong to Tr , that is that q − p be at most r.
(a) m ≥ 0, −t+m+ n ≥ 0, p = 0, q = m : 0 ≤ m ≤ r
(b) m ≥ 0, −t+m+ n ≤ 0, p = −t+m+ n, q = n− t : −r ≤ m+ 2n− 2t
(c) m ≤ 0, −t+m+ n ≤ m, p = −t+m+ n, q = n− t : −r ≤ m+ 2n− 2t
(d) m ≤ 0, −t+m+ n ≥ m, p = m, q = 0 : −r ≤ m ≤ 0.

These conditions amount to the demand −r ≤ m ≤ r and that 2n ≥ 2t− r −m. On the other hand
we know that there is an integer s such that

∫

|x|≤|$F |j
π

((
1 x1

0 1

))
ui dx = 0

for 1 ≤ i ≤ p if j ≤ s.

Thus if |γ| = |$F |
m the integral

∫ (
π

((
α 0
0 β

)(
1 γ−1

(
1 − β

α

)x+x1

1
0 1

))
ui, ui

)
dx1

taken over all x1 for which (
γ γ

(
1 − β

α

)
x1

0 1

)

is in Tr is zero if 2t− r−m ≤ 2s. Therefore in (7.4.3) we need only take the integral over those γ and x

for which |γ| = |$F |
m with 0 ≤ mr ≤ 2(t− s) and |x| ≤ |$F |

t−m+r
2 . We should also have m ≤ r but
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since we are about to replace the integrand by its absolute value that does not matter. For each such γ
the integration with respect to x gives a result which is bounded in absolute value by a constant times

|$F |
t−m+r

2 . Integrating with respect to γ we obtain a result which is bounded in absolute value by a
constant times

|$F |
t

2(t−s)−1∑

k=0

|$F |
− k

2 ≤ |$f |
s

∞∑

k=0

|$F |
k
2

The right side depends on neither r nor t.

The value of |1 − β
α
|ϕir(h) is

∫ (
π

((
α 0
0 β

))
π

((
1 $r

Fγ
−1
(
1 − β

α

)
x+ x1

0 1

))
ui, ui

)
dx1 d

×γ.

The integration is taken over those γ and x1 for which |γ| = |$F |
m with 0 ≤ m < 2(t − s) and

|x| ≤ |$F |
t−m

2 . Of course |1 − β
α | = |$F |

t. Since we are now interested in a set of α and β on which
t takes only a finite number of values we may as well assume it is constant. Then the integral is taken

over a fixed compact subset of F × F×. The integrand converges uniformly on this set uniformly in

the α, β and x under consideration as r approaches infinity.
We have still to prove the existence of the character of a representation which is not absolutely

cuspidal. Most of them are taken care of by the next proposition.

Proposition 7.6 Let µ1 and µ2 be a pair of quasi-characters of F×. Let χµ1,µ2
be the function which

is 0 on ĜF ∩ G̃F , undefined on the singular elements, and equal to

{µ1(α)µ2(β) + µ2(β)µ1(α)}

∣∣∣∣
αβ

(α− β)2

∣∣∣∣
1/2

at an element of g of ÂGF with eigenvalues α and β. Then χµ1,µ2
is continuous on ĜF and is

dominated in absolute value by some multiple of ξ. Moreover if π = ρ(µ1, µ2)

Trπ(f) =

∫

GF

χµ1,µ2
(g) f(g) dg

for all f in HF .

Only the last assertion requires verification. Since the absolute value of χµ1,µ2
is bounded by a

multiple of ξ the function χµ1,µ2
is locally integrable. Suppose f belongs to HF . When applied to the

function χµ1,µ2
f the relation (7.2.1) shows that

∫

GF

χµ1,µ2
(g) f(g) dg (7.6.1)

is equal to

1

2

∫

AF

δ(a)

{∫

AF \GF

χµ1,µ2
(g−1ag) f(g−1ag) dg

}
da.
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Since χµ1,µ2
is a class function this may be written as

1

2

∫

AF

{µ1(α)µ2(β) + µ2(α)µ1(β)}

∣∣∣∣
(α− β)2

αβ

∣∣∣∣
1/2

{∫

AF \GF

f(g−1

(
α 0
0 β

)
g) dg

}
da

if

a =

(
α 0
0 β

)
.

Since a is conjugate to (
β 0
0 α

)

we have ∫

AF \GF

f

(
g−1

(
α 0
0 β

)
g

)
dg =

∫

AF \GF

f

(
g−1

(
β 0
0 α

)
g

)
dg.

Thus (7.6.1) is equal to

∫

AF

µ1(α)µ2(β)

∣∣∣∣
(α− β)2

αβ

∣∣∣∣
1/2
{∫

AF \GF

f

(
g−1

(
α 0
0 β

)
g

)
dg

}
da. (7.6.2)

As long as the measure on AF \ GF is the quotient of the measure on GF by that on AF the

choice of Haar measure on AF and GF is not relevant. Thus we may write (7.6.2) as

∫

AF

µ1(α)µ2(β)

∣∣∣∣
(α− β)2

αβ

∣∣∣∣
1/2 (

f

(
k−1n−1

(
α 0
0 β

)
nk

)
dk dn

}
da.

The inner integral is taken over GL(2, OF ) ×NF . If

n =

(
1 x
0 1

)

then

n−1

(
α 0
0 β

)
n =

(
α 0
0 β

)(
1
(
1 − β

α

)
x

0 1

)

Changing variables in the last integral we obtain

∫

AF

µ1(α)µ2(β)
∣∣α
β

∣∣1/2)
{∫

f

(
k−1

(
α 0
0 β

)
nk

)
dk dn

}
da. (7.6.3)

To evaluate Tr π(f) we observe that if ϕ belongs to B(µ1, µ2) then, if k1 is in GL(2, OF )

π(f)ϕ(k1) =

∫

GF

ϕ(k1g) f(g) dg.

Replacing g by k−1
1 g and writing the integral out in terms of the Haar measure we have chosen we

obtain ∫

GL(2,OF )

ϕ(k1)

{∫
f(k−1

1

(
α 0
0 β

)
nk2)µ1(α)µ2(β) |

α

β
|1/2 da dn

}
dk2.
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The inner integral is taken over AF ×NF . We have of course used the relation

ϕ

((
α 0
0 β

)
nk2

)
= µ1(α)µ2(β) |

α

β
|1/2ϕ(k2).

If

K(k1, k2) =

∫
f

(
k−1
1

(
α 0
0 β

)
nk2

)
µ1(α)µ2(β)

∣∣α
β

∣∣1/2 da dn

then

π(f)ϕ(k1) =

∫

GL(2,OF )

K(k1, k2)ϕ(k2) dk2.

B(µ1, µ2) may be regarded as a space of functions on GL(2, OF ). Then π(f) is the integral

operator with kernel K(k1, k2). It is easily seen that this operator, when allowed to act on the space
of all GL(2, OF )­finite functions on GL(2, OF ), has range in B(µ1, µ2). Thus the trace of π(f) is the

same as the trace of the integral operator which is of course

∫

GL(2,OF )

K(k, k) dk.

When written out in full this integral becomes (7.6.3).

Theorem 7.7 Let π be an irreducible admissible representation of HF . There is a function χπ which
is continuous on GF and locally bounded in absolute value of ĜF by a multiple of ξ such that

Tr π(f) =

∫

GF

χπ(g) f(g) dg

for all f in HF .

The theorem has only to be verified for the one­dimensional and the special representations. If π
is a one­dimensional representation associated to the quasi­character χ we may take χπ(g) = χ(detg).

χπ is locally bounded and therefore, by Lemma 7.3, locally bounded by a multiple of ξ.
Suppose π1, π2 and π3 are three admissible representations of F on space V1, V2, and V3

respectively. Suppose also that there is an exact sequence

0 → V1 → V2 → V3 → 0

of HF ­modules. If f is in HF all the operators π1(f), π2(f) and π3(f) are of finite rank so that

Trπ2(f) = Tr π1(f) + Trπ3(f).

Thus if χπ1
and χπ2

exist so does χπ3
. Applying this observation to π3 = σ(µ1, µ2), π2 = ρ(µ1, µ2),

and π1 = π(µ1, µ2) we obtain the theorem.

If F is taken to be the real or complex field Theorem 7.7 is a special case of a general and difficult
theorem of Harish­Chandra. The special case is proved rather easily however. In fact Proposition 7.6

is clearly valid for archimedean fields and Theorem 7.7 is clearly valid for archimedean fields if π is
finite­dimensional. There remains only the special representations and these are taken care of as before.
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§8. Odds and ends In this paragraph various facts which will be used in the discussion of the constant
term in the Fourier expansion of an automorphic form are collected together. If H is a locally compact

abelian group a continuous complex­valued function f on H will be called H­finite or simply finite if
the space spanned by the translates of f is finite dimensional.

Let H be a group of the form

H = H0 × Zm × Rn

where H0 is compact. We regard Zm × Rn as a subgroup of Rm+n. The projection

ξi : h = (h0, x1, · · · , xm+n) → xi

may be regarded as a function on H with values in R. If p1, · · · , pm+n is a sequence of non­negative

integers and χ is a quasi­character we may introduce the function

χ
m+n∏

i=1

ξpi

i

on H .

Lemma 8.1 For any sequence p1, · · · , pm+n and any quasi-character χ the function χ
∏m+n
i=1 ξpi

i is
continuous and finite. These functions form a basis of the space of continuous finite functions on
H.

If χ is a fixed quasi­character of H and p is a non­negative integer let V (χ, p) be the space

spanned by the functions χ
∏m+n
i=1 ξpi

i with 0 ≤ pi ≤ p. Since it is finite­dimensional and invariant

under translations the first assertion of the lemma is clear.
To show that these functions are linearly independent we shall use the following simple lemma.

Lemma 8.1.1 Suppose E1, · · · , Er are r sets and F1, · · ·Fr are linearly independent sets of complex-
valued functions on E1, · · · , Er respectively. Let F be the set of functions

(x1, · · · , xr) → f1(x1) f2(x2) · · · fr(xr)

on E1 × · · · ×Er. Here fi belongs to Fi. Then F is also linearly independent.

Any relation ∑

f1,···,fr

a(f1, · · · , fr) f1(x1) · · · fr(xr) ≡ 0

leads to

∑

fr





∑

f1,···,fr−1

a(f1, · · · , fr) f1(x1) · · · fr−1(xr−1)



 fr(xr) ≡ 0

As Fr is linearly independent this implies that

∑

f1,···fr−1

a(f1, · · · , fr) f1(x1) · · · fr−1(xr−1) ≡ 0

and the lemma follows by induction.

To show that the functions χ
∏m+n
i=1 ξpi

i span the space of continuous finite functions we use
another simple lemma.
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Lemma 8.1.2. Let H1 and H2 be two locally compact abelian groups and let H = H1 × H2. Then
every continuous finite function f on H is a finite linear combination of the form

f(x, y) =
∑

i

λi ϕi(x)ψi(y)

where the ϕi and ψi are continuous functions on H1 and H2 respectively.

Let V be any finite dimensional space of continuous functions on H . We associate to any point

ξ in H the linear functional f → f(ξ) on V . Since no function but zero is annihilated by all these
functionals we can choose ξ1, · · · , ξp so that the corresponding functionals form a basis of the dual of

V . Then we can choose a basis f1, · · · , fp of V so that fi(ξj) = δij .
Now suppose V is invariant under translations. It could for example be the space spanned by

the translates of a single finite continuous function. The space V1 of functions ϕ on H1 defined by
ϕ(x) = f(x, 0) with f in V is finite dimensional and translation invariant. Therefore the functions

in it are finite and of course continuous. We define V2 in a similar manner. If f is in V the function

h→ f(g + h) is, for any g in H , also in V . Thus

f(g + h) =
∑

i

λi(g) fi(h).

Since
λi(g) = f(g + ξi)

the function λi belongs to V . If ϕi(x) = λi(x, 0) and ψi(y) = fi(0, y) then

f(x, y) =
∑

ϕi(x)ψi(y)

as required.
These two lemmas show that we need prove the final assertions of Lemma 8.1 only for H

compact, H = Z, or H = R.

Suppose H is compact. If we have a non­trivial relation

r∑

i=1

ai χi(h) ≡ 0

we may replace h be g + h to obtain

r∑

i=1

ai χi(g)χi(h) ≡ 0.

If such a relation holds we must have r ≥ 2 and at least two coefficients say a1 and a2 must be different

from zero. Choose g so that χ1(g) 6= χ2(g). Multiplying the first relation by χ1(g) and subtracting the
second relation from the result we obtain a relation

r∑

i=2

bi χi(h) ≡ 0.
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Since b2 = {χ1(g)−χ2(g)}a2 the new relation is non­trivial. The independence of the quasi­characters
can therefore be proved by induction on r.

To prove that when H is compact the quasi­characters span the space of finite continuous
functions we have just to show that any finite­dimensional space V of continuous functions which is

translation invariant is spanned by the quasi­characters it contains. Choose a basis {fi} of V as before

and let
ρ(g) fi =

∑
λij(g) fj.

We saw that the functions λij(g) are continuous. Thus the action of H on V by right translations is
continuous and V is the direct sum of one­dimensional translation invariant spaces. Each such space

is easily seen to contain a character.

When applied to a locally compact abelian group the argument of the previous paragraph leads
to weaker conclusions. We can then find subspaces V1, · · · , Vr of V and quasi­characters χ1, · · · , χr of

H such that

V =
r∑

i=1

⊕Vi

and, for every h in H ,
{ρ(h)− χi(h)}

dimVi

annihilates Vi. Now we want to take H equal to Z or R. Then H is not the union of a finite number
of proper closed subgroups. Suppose µ1, · · · , µ2 are quasi­characters of H and for every h in H the

operator
s∏

i=1

{ρ(h)− µi(h)} (8.1.3)

on V is singular. Then for every h in H there is an i and a j such that µi(h) = χj(h). If

Hij = {h |µi(h) = χj(h)}

then Hij is a closed subgroup of H . Since the union of these closed subgroups is H there must be an

i and a j such that Hij = H and µi = χj . If the operator (8.1.3) were zero the same argument would
show that for every j there is an i such that µi = χj .

If µ is a quasi­character ofH , now taken to be Z or R, we let V (µ, p) be the space spanned by the
functions µ ξi, with 0 ≤ i ≤ p. ξ is the coordinate function on H . It is clear that V (µ, p) is annihilated

by {ρ(h)− µ(h)}p+1 for all h in H . Suppose µ, µ1, · · · , µ2 are distinct and

V = V (µ, p)
s∑

i=1

V (µi, pi)

is not zero. Decomposing V as above we see that χ1, · · · , χr must all be equal to µ on one hand and

on the other that every µi is a χj . This is a contradiction. Thus if there is any non­trivial relation at all

between the functions χ ξi where χ is any quasi­character and i is a non­negative integer there is one
of the form

p∑

i=0

ai µ ξ
i = 0.

Since the polynomial
∑p

i=0 ai ξ
i would then have an infinite number of zeros this is impossible.
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To prove the functions χ ξi span the space of finite continuous functions we have only to show
that if χ is a given quasi­character and V is a finite­dimensional space of continuous functions which is

invariant under translations and annihilated by {ρ(h)− χ(h)}dimV for all h in H then every function
in V is the product of χ and a polynomial. Since we can always multiply the functions in V by χ−1

we may as well suppose that χ is trivial. We have only to observe that any function f annihilated by

the operator {ρ(h) − 1}n for all h in H is a polynomial of degree at most n. This is clear if n = 1 so

by induction we can assume that ρ(h)f − f is a polynomial
∑n−1
i=0 ai(h) ξ

i. We can certainly find a

polynomial f ′ of degree n such that

ρ(1)f ′ − f ′ =
n−1∑

i=0

ai(1) ξi

and we may as well replace f by f − f ′. The new f satisfies ρ(1)f = f . It is therefore bounded.

Moreover ρ(h)f−f is a bounded polynomial function and therefore a constant c(h). c(h) is a bounded

function of h and satisfies c(h1 + h2) = c(h1) + c(h2). It is therefore zero and the new f is a constant.
Lemma 8.1 is now completely proved. Although it is trivial it is important to the notes and we

thought it best to provide a proof. We might as well prove Lemma 2.16.4 at the same time. Let B be
the space of all functions f on Z such that for some n0 depending on f we have f(n) = 0 for n < n0.

Let A0 be the space of functions on Z which vanish outside a finite set. Z acts on B and on A0 by
right translations and therefore it also acts on B̄ = B/A0. In particular let D = ρ(1). We have merely

to show that if P is a polynomial with leading coefficient 1 then the null space of P (D) in B̄ is finite

dimensional. If

P (X) =
r∏

i=1

(X − αi)
pi

the null space of P (D) is the direct sum of the null spaces of the operators (D − αi)
pi . The null space

of (D − α)p is the image in B̄ of the functions in B which are zero to the left of 0 and of the form

n→ αnQ(n)

to the right of 0. Q is a polynomial of degree at most p.
Lemma 8.1 is certainly applicable to the direct product of a finite number of copies of the

multiplicative group of a local field F . If H = (F×)n any finite continuous function on H is a linear
combination of functions of the form

f(x1, · · · , xn) =

n∏

i=1

{χi(xi) (log |xi|F )ni}.

Let B = BF be the space of continuous functions f on GF which satisfy the following three

conditions.

(i) f is finite on the right under the standard maximal compact subgroup K of GF .
(ii) f is invariant on the left under NF .

(iii) f is AF ­finite on the left.
BF is invariant under left translations by elements of AF . If f is in BF let V be the finite­dimensional

space generated by these left translates. Choose g1, · · · , gp inGF so that the linear functions ϕ→ ϕ(gi)
are a basis of the dual of V and let f1, · · · , fp be the dual basis. If a is AF we may write

f(a, g) =

p∑

i=1

θi(a) fi(g).



Chapter 1 143

Then
θi(a) = f(agi)

so that

θi(ab) =

p∑

j=1

θj(a) fj(bgi).

Thus the functions θi are continuous and finite. We may write them in the form

θi(a) =
∑

cim,n,µ,ν µ(α1) ν(α2) (log |α1|)
m (log |α2|)

n

if

a =

(
α1 0
0 α2

)
.

The sum is over all quasi­characters µ and ν of F× and all non­negative integers m and n. Of course
only a finite number of the coefficients cim,n,µ,ν are different from zero.

We may replace µ by α
1/2
F µ and ν by α

−1/2
F ν in the sum. Thus if

fm,n,µ,ν =

p∑

i=1

cim,n,µ,ν fi

we have

f(ag) =

∣∣∣∣
α1

α2

∣∣∣∣
1/2∑

µ(α1) ν(α2) (log |α1|)
m (log |α2|)

n fm,n,µ,ν(g). (8.2)

Let M be a non­negative integer and S a finite set of pairs of quasi­characters of F×. B(S,M) will be
the sset of f in for which the sum in (8.2) need only be taken over thosem,n, µ, ν for whichm+n ≤M
and (µ, ν) belong to S. Observe that the functions fm,n,µ,ν are determined by f . B is the union of the

spaces B(S,M); if S consists of the single pair (µ1, µ2) we write B(µ1, µ2,M) instead of B(S,M). If
f is in (µ1, µ2,M)

f(ag) =

∣∣∣∣
α1

α2

∣∣∣∣
1/2

µ1(α1)µ2(α2)
∑

(log |a1|)
m (log |a2|)

n fm,n(g).

The space B(µ1, µ2, 0) is just B(µ1, µ2).
The functions fm,n,µ,ν are uniquely determined and by their construction belong to the space

spanned by left translates of f by elements of AF . Thus if f belongs to B(S,M) so do the functions
fm,n,µ,ν . We want to verify that f0,0,µ,ν belongs to B(µ, ν,M). If

b =

(
β1 0
0 β2

)

and we replace a by ab in the relation (8.2) we find that

∣∣∣∣
α1

α2

∣∣∣∣
1/2∑

µ(α1) ν(α2) (log |α1|)
m (log |α2|)

n) fm,n,µ,ν
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is equal to

∣∣∣∣
α1β1

α2β2

∣∣∣∣
1/2∑

µ(α1β1) ν(α2β2)(log |α1| + log |β2|)
m (log |α2| + log |β2|)

n fm,n,µ,ν(g).

Fix b and g are regard this equality as an identity in the variable a. Because of Lemma 8.1 we can

compare the coefficients of the basic finite functions. The coefficient of µ(α1)ν(α2) on one side is
f0,0,µ,ν(bg). On the other it is

∣∣∣∣
β1

β2

∣∣∣∣
1/2 ∑

m+n≤M

µ(β1) ν(β2) (log |β1|)
m (log |β2|)

n fm,n,µ,ν(g).

The resulting identity is the one we wanted to verify.

Taking a = 1 in (8.2) we see that

f(g) =
∑

(µ,ν)∈S

f0,0,µ,ν(g).

Therefore
B(S,M) =

∑

(µ,ν)∈S

B(µ, ν,M).

The sum is direct.
It is fortunately possible to give a simple characterization of B.

Proposition 8.3 Let ϕ be a continuous function on GF . Assume ϕ is K-finite on the right and
invariant under NF on the left. Then ϕ belongs to B if and only if the space

{ρ(ξf)ϕ
∣∣ f ∈ HF}

is finite dimensional for every elementary idempotent in HF .

We have first to show that if ϕ belongs to B

{ρ(ξf)ϕ
∣∣ f ∈ HF}

is finite dimensional. ϕ belongs to some B(S,M). Both B and B(S,M) are invariant under right
translations by elements of HF . Thus we have only to show that the range of ρ(ξ) as an operator on

B(S,M) is finite dimensional. This is tantamount to showing that any irreducible representation of K
occurs with finite multiplicity in the representation of B(S,M).

Let σ be such a representation and let V be the space of continuous functions on K which

transform according to σ under right translations. V is finite dimensional. If f is in B(S,M) we may
write

f(ag)

∣∣∣∣
α1

α2

∣∣∣∣
1/2∑

µ(α1) ν(α2) (log |α1|)
m) (log |α2|)

n fm,n,µ,ν(g)

The restriction of fm,n,µ,ν to K lies in V . Call this restriction f̄m,n,µ,ν . Moreover f is determined by its

restriction to AFK . Thus

f →
∑

(µ,ν)∈S
m+n≤M

⊕f̄m,n,µ,ν
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is an injection of the space of functions under consideration into the direct sum of a finite number of
copies of V .

The converse is more complicated. Suppose ϕ is K­finite on the right, invariant under NF on
the left, and the space

{ρ(ξf)ϕ
∣∣ f ∈ HF}

is finite dimensional for every elementary idempotent ξ. Choose ξ so that ρ(ε)ϕ = ϕ. There is actually

a function f in ξHF ξ such that ρ(f)ϕ = ϕ. If F is non­archimedean ξ is itself a function so this is clear.

If F is archimedean we observe that if f1 is an approximation to the δ­function then ρ(f1)ϕ is close to
ϕ. Then if f ′1 = ξ ∗ f1 ∗ ξ the function f ′1 is in ξHF ξ and ρ(f ′1)ϕ is also close to ϕ. The existence of

f then follows from the fact that ρ(ξHF ξ)ϕ is finite dimensional. This argument was used before in
Paragraph 5.

Take F to be archimedean. Then ϕ must be an infinitely differentiable function on GF . Let Z be

the centre of the universal enveloping algebra of the Lie algebra of GF . If Z is in Z then

ρ(Z)ϕ = ρ(Z) ρ(f)ϕ = ρ(Z ∗ f)ϕ

and Z ∗ f is still in ξHF ξ. Thus ϕ is also Z­finite. For the rest of the proof in the archimedean case we

refer to Chapter I of [11].
Now take F non­archimedean. We may replace ξ by any elementary idempotent ξ′ for which

ξ′ξ = ξ. In particular if we choose n to be a sufficiently large positive integer and letK′ be the elements
of K which are congruent to the identity modulo pn we may take

ξ =
∑

ξi

where the sum is over all elementary idempotents corresponding to irreducible representations of K
whose kernel containsK′. Notice that n is at least 1. Then ξHF ξ is the space of functions onGF which
are constant on double cosets of K′.

Let V be the space spanned by the functions ρ(k)ϕ with k in K . It is finite dimensional and all

the functions in V satisfy the same conditions as ϕ. Let ϕi, 1 ≤ i ≤ p, be a basis of V . If k belongs to
K we may write

ϕ(gk) =

p∑

i=1

θi(k)ϕk(g)

and ϕ is determined by the functions θi and the restrictions of the functions ϕi to AF . To show that ϕ
is AF ­finite on the left we have merely to show that the restriction of each ϕi to AF is finite. We may
as well just show that the restriction of ϕ to AF is finite.

Suppose f is in ξHF ξ and ρ(f)ϕ = ϕ. If a is in ZF then

λ(a)ϕ = ρ(a−1)ϕ = ρ(δa−1 ∗ f)ϕ

if δa−1 is the δ­function at a−1. Since δa−1 ∗ f is still in ξHF ξ the function ϕ is certainly ZF ­finite and

so is its restriction ϕ̄ to AF . If α and β are units and α ≡ β ≡ 1(mod pn) then

λ

((
α 0
0 β

))
ϕ̄ = ϕ̄.
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Thus the translate of ϕ̄ by the elements ofAf ∩K span a finite dimensional space and if$ is a generator
of p we have only to show that the translates of ϕ̄ by the group

H =

{(
$p 0
0 1

) ∣∣∣ p ∈ Z

}

span a finite­dimensional space. Suppose the span W of

{
λ

((
$p 0
0 1

))
ϕ̄
∣∣∣ p ≤ 0

}

is finite dimensional. Then

λ

((
$−1 0

0 1

))

maps W into itself and annihilates no vector but zero so that it has an inverse on W which must be

λ

((
$ 0
0 1

))
.

Thus W is invariant under H and ϕ̄ is finite.
To show that W is finite dimensional we show that if

a =

(
$−p 0

0 1

)

with p > 0 there is a function fa in ξHF ξ such that

λ(a)ϕ̄ = ϕ̄′

if ϕ′ = ρ(fa)ϕ. There is an f in ξHF ξ such that

ϕ(g) =

∫

GF

ϕ(gh) f(h) dh

for all g in GF . Thus if b belongs to AF

λ(a) ϕ̄(b) = ϕ(a−1b) =

∫

GF

ϕ(ba−1h) f(h) dh.

If f1(h) = f(ah) the integral is equal to

∫

GF

ϕ(bh) f1(h) dh.

If f1 were in ξHF ξ we would be done. Unfortunately this may not be so. However f1(hk) =
f1(h) if k belongs to K ′. If

k =

(
α β
γ δ

)
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then

f1(kh) = f

((
α $−pβ
$pγ δ

)
ah

)
.

Thus f1(kh) = f1(h) if α ≡ δ ≡ 1 (mod pn), γ ≡ 0 (mod pn), and β ≡ 0 (mod pn+p). Set

f2(h) =

∫

pn/pn+p

f1

((
1 x
0 1

)
h

)
dx

where the Haar measure is so chosen that the measure of the underlying space pn/pn+p is 1. Since
ϕ(bnh) = ϕ(bh) for all n in NF

λ(a) ϕ̄(b) =

∫

GF

ϕ(bh) f2(h) dh.

We show that f2 lies in ξHF ξ.

Certainly f2(hk) = f2(h) if k is in K ′. Moreover, because of its construction, f2(kh) = f2(h) if

k =

(
α β
0 δ

)

with α ≡ δ ≡ 1 (mod pn) and β ≡ 0 (mod pn). Since every element of K ′ is a product

(
1 0
γ 1

)(
α β
0 δ

)

where both terms lie in K′ we have only to show that f2 is invariant under the first factor. If

k =

(
1 0
γ 1

)

with γ ≡ 0 (modpn) and

k1(x) =

(
1 0
0 1 + xγ

)( 1
1+xγ 0
−γ

1+xγ
1

)

then

k1(x)

(
1 x
0 1

)
k =

(
1 x

1+xγ
0 1

)
.

Moreover if x is in OF
f1
(
k1(x)g

)
= f1(g).

Thus f2(kg) which is given by ∫

pn/pn+p

f1

((
1 x
0 1

)
kh

)
dx

is equal to ∫

pn/pn+p

f1

((
1 x

1+xγ
0 1

)
h

)
dx.
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Since the map x→ x
1+xγ is a one­to­one map of the finite set pn/pn+p onto itself it is measure preserving

and the above integral is equal to f2(h).

Analyzing the above proof one sees that in the non­archimedean case the left translates of ϕ̄ are
contained in the space X obtained by restricting the functions in ρ(ξHF ξ)ϕ to AF . Thus if Y is the

space of the functions on K/K′ the left translates of ϕ by elements of AF are contained in the space of
functions on NF \GF of the form

ϕ′(ak) =
∑

θi(k)ϕi(a)

with θi in Y and ϕi in X .

In the archimedean case Y is the space of continuous functions θ onK for which θ∗ξ = ξ∗θ = θ.
It is again finite dimensional. X is defined in the same way. In this case there are a finite number of

invariant differential operators D1, · · · ,Dr on AF such that the left translates of ϕ by elements of AF
are contained in the space of functions NF \GF of the form

ϕ′(ak) =
∑

θi(k)ϕi(a)

with θi in Y and ϕi in
∑r

j=1DjX .
There is a corollary of these observations. Let F1, · · · , Fn be a finite collection of local fields. Let

Gi = GFi
, Ni = NFi

, Ai = AFi
, and let Ki be the standard maximal compact subgroup of Gi. We set

G =
∏n
i=1Gi, N =

∏n
i=1Ni and so on. If Hi = HFi

we let H = ⊗iHi. H may be regarded as an
algebra of measures on G.

Corollary 8.4 Let ϕ be a continuous function on N \G which is K-finite on the right. If for every
elementary idempotent ξ in H the space

{ρ(ξf)ϕ | f ∈ H}

is finite dimensional ϕ is A-finite on the left.

If ϕ satisfies the conditions of the lemma so does any left translate by an element of A. Thus we
need only show that ϕ is Ai­finite on the left for each i. If g is in G we write g = (gi, ĝi) where gi is in

Gi and ĝi is in Ĝi =
∏
j 6=iGj . We may suppose that there is a ξ′ of the form ξ′ = ⊗iξ

′
i where ξ′i is an

elementary idempotent of Hi such that ρ(ξ′)ϕ = ϕ. By means of the imbedding f → f ⊗
∏
j 6=i ξ

′
j the

algebra Hi becomes a subalgebra of H. The left translates of ϕ by Ai all lie in the space of functions of

the form

ϕ(aiki, ĝ1) =
∑

j

θj(ki)ϕ(ai, ĝ1)

where θj lie in a certain finite dimensional space determined by ξ′i and the ϕj lie in the space obtained

by restricting the functions in ρ(ξiHi)ϕ toAi× Ĝi or, in the archimedean case, the space obtained from
this space by applying certain invariant differential operators. ξi is a certain elementary idempotent

which may be different from ξ′i.
With the odds taken care of we come to the ends.
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Proposition 8.5 Let B(µ, ν,∞) =
⋃
M≥0 B(µ, ν,M). If an irreducible admissible representation π

of HF is a constituent of the representation ρ(µ, ν,∞) on B(µ, ν,∞) it is a constituent of ρ(µ, ν).

There are two invariant subspaces V1 and V2 of B(µ, ν,∞) such that V1 contains V2 and π is
equivalent to the representation on HF on V1/V2. Choose M so that V1 ∩ B(µ, ν,M) is not contained

in V2. Since π is irreducible

V1 = V2 +
(
V1 ∩ B(µ, ν,M)

)

and
V1/V2 = {V2 +

(
V1 ∩ B(µ, ν,M)

)
}/V2

is isomorphic as an HF module to

V1 ∩ B(µ, ν,M)/V2 ∩ B(µ, ν,M)

so that we may as well suppose that V1 is contained in B(µ, ν,M).
Given π we choose M as small as possible. If M = 0 there is nothing to prove so assume M is

positive. If ϕ is in B(µ, ν,M) we can express

ϕ

((
α1 0
0 α2

)
g

)

as ∣∣∣∣
α1

α2

∣∣∣∣
1/2

µ(α1) ν(α2)
∑

m+n≤M

(log |α1|)
m (log |α2|)

n ϕm,n(g)

We can express

ϕ

((
α1 0
0 α2

)(
β1 0
0 β2

)
g

)

in two ways because the second factor can be absorbed into the first or the third. One way we obtain
∣∣∣∣
α1

α2

∣∣∣∣
1/2

µ(α1) ν(α2)
∑

m+n≤M

(log |α1|)
m(log |α2|)

n ϕm,n

((
β1 0
0 β2

)
g

)

and the other way we obtain
∣∣∣∣
α1β1

α2β2

∣∣∣∣
1/2

µ(α1β1) ν(α2β2)
∑

m+n≤M

(log |α1| + log |β1|)
m (log |α2| + log |β2|)

nϕm,n(g).

On comparing coefficients we see that if m+ n = M

ϕm,n

((
β1 0
0 β2

)
g

)
=

∣∣∣∣
β1

β2

∣∣∣∣
1/2

µ(β1) ν(β2)ϕm,n(g)

so that ϕm,n is in B(µ, ν). Consider the map

ϕ→
⊕

m+n=M

ϕm,n

of V1 into ⊕

m+n=M

B(µ, ν).

Its kernel is V1 ∩B(µ, ν,M − 1). Since V2 + (V1 ∩B(µ, ν,M − 1)) cannot be V1 the image of V2 is not

the same as the image of V1. Since the map clearly commutes with the action of HF the representation

π is a constituent of
⊕

m+n=M ρ(µ, ν).
Proposition 8.5 is now a consequence of the following simple lemma.
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Lemma 8.6 Suppose π is an irreducible representation of an algebra H. Suppose ρ is a representa-
tion of H of which π is a constituent and that ρ is the direct sum of the representations ρλ, λ ∈ Ω.
Then π is a constituent of at least one of the ρλ.

Let ρλ act on Xλ and let ρ act on X the direct sum of Xλ. Supose that Y1 and Y2 are invariant

subspaces of X and that the representation on the quotient Y1/Y2 is equivalent to π. There is a finite
subset Λ0 of Λ such that

Y1 ∩ (
∑

λ∈Λ0

Xλ)

is not contained in Y2. We may as well replace Y1 by Y1∩ (
∑
λ∈Λ0

Xλ) and Y2 by Y2 ∩ (
∑
λ∈Λ0

Xλ) and
suppose that Λ is finite. If Λ = {λ1, · · · , λp} we have only to show that π is a constituent of ρλ1

or of

ρλ2
⊕ · · · ⊕ ρλp

for we can then use induction. Thus we may as well take p = 2. If the projections of Y1

and Y2 on Xλ1
are not equal we can replace Y1 and Y2 by these projections to see that π is a constituent

of ρλ1
. If they are equal Y1 = Y2 + (Y1 ∩Xλ2

) and we can replace Y1 and Y2 by Y1 ∩Xλ2
and Y2 ∩Xλ2

to see that π is a constituent of ρλ2
.
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Chapter II: Global Theory

§9. The global Hecke algebra. Let F be a global field, that is, an algebraic number field of finite

degree over the rationals or a function field in one variable over a finite field. A will be the adèle ring of

F . Before studying the representations of GL(2,A) or, more precisely, the representations of a suitable
group algebra of GL(2,A) we introduce some simple algebraic notions.

Let {Vλ |λ ∈ Λ} be a family of complex vector spaces. Suppose that for all but a finite number
of λ we are given a non­zero vector eλ in Vλ. Let V 0 be the set of all x =

∏
λ xλ in

∏
λ Vλ such that

xλ = eλ for al but a finite number of λ. Let C be the free vector space with complex coefficients over

V 0 and let D be the subspace generated by vectors of the form

{
(aYµ + bZµ) ×

∏

λ6=µ

xλ
}
− a

{
yµ ×

∏

λ6=µ

xλ
}
− b

{
zµ ×

∏

λ6=µ

xλ
}
.

a and b belong to C and µ is any element of Λ. The quotient of C by D is called the tensor product of
the Vλ with respect to the family eλ and is written

V = ⊗eλ
Vλ

or simply ⊗Vλ. It has an obvious universal property which characterizes it up to isomorphism. The

image of
∏
xλ in V is written ⊗xλ.

If Λ′ is a subset of Λ with finite complement we may form the ordinary tensor product

⊗λ∈Λ−Λ′Vλ

and we may form

⊗λ∈Λ′Vλ

with respect to the family eλ. Then ⊗λ∈ΛVλ is canonically isomorphic to

{
⊗λ∈Λ−Λ′

}
⊗
{
⊗λ∈Λ′ Vλ

}

If S is a finite subset of Λ let
VS = ⊗λ∈SVλ

If S is so large that eλ is defined for λ not in S let ϕS be the map of VS into V which sends ⊗λ∈Sxλ to

{⊗λ∈Sxλ} ⊗ {⊗λ6∈Seλ}. If S′ contains S there is a unique map ϕS,S′ of VS into VS′ which makes

VS
ϕS,S′

−−−−−→ V ′
S

ϕS↘ ↙ϕS′

V

commutative. If we use these maps to form the inductive limit of the spaces VS we obtain a space

which the layman is unable to distinguish from V .

Suppose that for every λ we are given a linear map Bλ of Vλ into itself. If Bλ eλ = eλ for all but a
finite number of λ there is exactly one linear transformation B of ⊗Vλ such that

B : ⊗xλ → ⊗Bλ xλ
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B is denoted by ⊗Bλ.
For example if Aλ, λ ∈ Λ is a family of associative algebras, which may or may not have a unit,

and if, for almost all λ, ξλ is a given idempotent of Aλ one may turn

A = ⊗ξλ
Aλ

into an algebra in such a way that

(⊗aλ)(⊗bλ) = ⊗(aλ bλ).

Let Vλ, λ ∈ Λ, be an Aλ module. If for almost all λ a vector eλ such that ξλeλ = eλ is given we

may turn V = ⊗eλ
Vλ into an A = ⊗ξλ

Aλ module in such a way that

(⊗aλ)(⊗xλ) = ⊗(aλ xλ)

Suppose the family {eλ} is replaced by a family {e′λ} but that, for all but a finite number ofλ, e′λ = αλ eλ
where αλ is a non­zero scalar. Suppose for example that e′λ = αλ eλ if λ is not in the finite set S. There
is a unique map of ⊗eλ

Vλ to ⊗e′
λ
Vλ which sends

{
⊗λ∈S xλ

}
⊗
{
⊗λ6∈S xλ

}

to {
⊗λ∈S xλ

}
⊗
{
⊗λ6∈S αλ xλ

}

It is invertible and commutes with the action ofA. Moreover apart from a scalar factor it is independent

of S.
Now suppose F is a global field. A place of F is an equivalence class of injections, with dense

image, of F into a local field. If λ1 takes F into F1 and λ2 takes F into F2 they are equivalent if there

is a topological isomorphism ϕ of F1 with F2 such that λ2 = ϕ ◦ λ1. The symbol for a place will be v.
If v contains the imbedding λ1 and a belongs to F we set |a|v = |λ1(a)|. To be definite we let Fv be

the completion of F with respect to the absolute value a→ |a|v . v is archimedean or non­archimedean
according to the nature of Fv. Non­archimedean places will sometimes be denoted by p.

If GF = GL(2, F ) we set

Gv = GFv
= GL(2, Fv).

Kv will be the standard maximal compact subgroup ofGv. thenGA = GL(2,A) is the restricted direct

product of the groups Gv with respect to the subgroups Kv.
If v is non­archimedean we set Ov = OFv

and Uv = UFv
. Ov is the ring of integers of Fv and Uv

is the group of units of Ov. Suppose M ′ is a quaternion algebra over F . Let M ′
v = M ′

Fv
= M ′ ⊗F Fv.

For almost all v the algebra M ′
v is split, that is, there is an isomorphism

θv : M ′
v →M(2, Fv)

whereM(2, Fv) is the algebra of 2×2 matrices over Fv. For every place v at whichM ′
v is split we want

to fix such an isomorphism θv. LetB be a basis of M over F and let Lv be theOv module generated in

Mv by B. We may and do choose θv so that for almost all v

θv(Lv) = M(2, Ov).
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If B′ is another basis and {θ′v} a family of isomorphism associated to B′ then for every place v at
which M ′

v splits there is a gv in GL(2, Fv) such that

θ′v θ
−1
v = gv a g

−1
v

for all a in M(2, Fv). Moreover gv belongs to Kv for all but a finite number of v.
Suppose the family of isomorphisms θv has been chosen. If M ′

v is split we define a maximal

compact subgroup K′
v of G′

v, the group of invertible elements of M ′
v, by the condition

θv(K
′
v) = Kv.

If M ′
v is not split we set

K ′
v = {x ∈M ′

v

∣∣ |ν(x)|v = 1}.

This group is compact. In any case K′
v is defined for all v. Since many of the constructions to be made

depend on the familyK′
v which in turn depends on the family of θv it is very unfortunate that the family

of θv is not unique. We should really check at every stage of the discussion that the constructions are,

apart from some kind of equivalence, independent of the initial choice of θv. We prefer to pretend that
the difficulty does not exist. As a matter of fact for anyone lucky enough not to have been indoctrinated

in the functorial point of view it doesn’t. We do however remark that any two choices of the family of
K ′
v lead to the same result for almost all v. G′

A
is the restricted direct product of the groups G′

v with

respect to the subgroups K′
v.

We have now to introduce the Hecke algebras H and H′ of GA and G′
A

. Let Hv be HFv
. If

M ′
v is split G′

v isomorphic, by means of θv , to Gv and we let H′
v be the algebra of measures on G′

v

corresponding to Hv. Suppose M ′
v is not split. If v is non­archimedean H′

v is the algebra of measures
defined by the locally constant compactly supported functions on G′

v. If v is archimedean H′
v will

be the sum of two subspaces, the space of measuures defined by infinitely differentiable compactly

supported functions onG′
v which areK′

v­finite on both sides and the space of measures onK′
v defined

by the matrix coeffients of finite­dimensional representations of K′
v.

Let εv and ε′v be the normalized Haar measures on Kv and K ′
v. εv is an elementary idempotent of

Hv and ε′v is an elementary idempotent of H′
v . We set

H = ⊗εv
Hv

and
H

′ = ⊗ε′vH
′
v

If S is the finite set of places at which M ′
v does not split we may write

H =
{
⊗v∈S Hv

}
⊗
{
⊗v 6∈S Hv

}
= Hs ⊗ Ĥs

and
H

′ =
{
⊗v∈S H

′
v

}
⊗
{
⊗v 6∈S H

′
v

}
= H

′
s ⊗ Ĥ

′
s

By construction, if M ′
v is split, Hv and H′

v are isomorphic in such a way that εv and ε′v correspond.

Using these isomorphism we may construct an isomorphism of Ĥs and Ĥ′
S . We may also write

GA =
{ ∏

v∈S

Gv
}
×
{∏

v 6∈S

Gv
}

= GS × ĜS
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and
G′

A =
{∏

v∈S

G′
v

}
×
{∏

v 6∈S

G′
v

}
= G′

S × Ĝ′
S.

The second factor is in both cases a restricted direct product. There is an isomorphism θ : Ĝ′
S → Ĝs

defined by

θ
( ∏

v 6∈S

g′v
)

=
∏

v 6∈S

θv(g
′
v)

We will interpret ĤS and Ĥ′
S as algebras of measures on ĜS and Ĝ′

S and then the isomorphism between

them will be that associated to θ.

We can also interpret the elements of H and H
′ as measures on GA and G′

A
. For example any

element of H is a linear combination of elements of the form f = ⊗vfv. Let T be a finite set of places

and suppose that fv = εv for v not in T . If T ′ contains T , on the group

GA(T ′) =
{ ∏

v∈T ′

Gv
}
×
{ ∏

v 6∈T ′

Kv

}

we can introduce the product of the measures fv. Since GA is the union of these groups and the

measures on them are consistent we can put the measure together to form a measure f on GA. If each

fv is the measure associated to a function then f is also. Such measures form a subalgebra H1 and H.
The notion of an elementary idempotent of H or H′ is defined in the obvious way. If ξ is an

elementary idempotent of H there is another elementary idempotent ξ1 of the form ξ1 = ⊗vξv where
ξv is an elementary idempotent of Hv and ξv = εv for almost all v so that ξ1ξ = ξ.

We shall now discuss the representations of H. A representation π of H on the vector space V
over C will be called admissible if the following conditions are satisifed

(i) Every w in V is a linear combination of the form
∑
π(fi)wi with fi in H1.

(ii) If ξ is an elementary idempotent the range of π(ξ) is finite dimensional.
(iii) Let v0 be an archimedean place. Suppose that for each v an elementary idempotent ξv is given

and that ξv = εv for almost all v. Let ξ = ⊗vξv. If w is in V the map

fv0 → π
(
fv0 ⊗

{
⊗v 6=v0 ξv

})
w

of ξv0Hv0ξv0 into the finite dimensional space π(ξ)V is continuous.
Suppose that an admissible representation πv of HV on Vv is given for each v. Assume that for

almost all v the range of πv(εv) is not zero. Assume also that the range of πv(εv) has dimension one

when it is not zero. As we saw in the first chapter this supplementary condition is satisified if the
representations πv are irreducible. Choosing for almost all v a vector ev such that πv(εv) ev = ev we

may form V = ⊗ev
Vv. Let π be the representation ⊗vπv on V . Because of the supplementary condition

it is, apart from equivalence, independent of the choice of the ev.

π will be admissible. To see this observe first of all that condition (i) has only to be verified for
vectors of the form w = ⊗v wv . Suppose wv = ev when v is not in the finite set T which we suppose

contains all archimedean places. If v is not in T let fv = εv so that wv = π(fv)wv. If v is in T let

wv =
∑

πv(f
i
v)w

i
v.

Then
w =

{
⊗v∈T

∑
πv(f

i
v)w

i
v

}
⊗
{
⊗v 6∈T π(fv)wv

}
.
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Expanding the right hand side we obtain the desired relation. The second condition has only to be
verified for elementary idempotents of the form ξ = ⊗vξv. Then

π(ξ)V = ⊗π(ξv)Vv

Since π(ξv)Vv is finite dimensional for all v and π(ξv)Vv = π(εv)Vv , which has dimension one, for

almost all v the right side is finite dimensional. The last condition results from the admissibility of πv0 .
π cannot be irreducible unless each πv is. Suppose however that each πv is irreducible. If ξv is an

elementary idempotent of Hv and if πv(ξv) 6= 0 we have a representation πξv
of ξv Hv ξv on πv(ξv)Vv.

Since it is irreducible πξv
determines a surjective map

πξv
: ξv Hv ξv → L(ξv)

if L(ξv) is the ring of linear transformations of V (ξv) = πv(ξv)Vv. To show that π is irreducible we
have only to show that for every elementary idempotent of the form ξ = ⊗v ξv the representation of

ξHξ on V (ξ) = π(ξ)V is irreducible. Suppose that ξv = εv if v is not in T . Then

V (ξ) = ⊗vV (ξv)

is isomorphic to ⊗v∈TV (ξv). The full ring of linear transformations of this space is

⊗v∈TL(ξv)

and therefore the full ring of linear transformations of V (ξ) is

{
⊗v∈T L(ξv)

}
⊗
{
⊗v 6∈T πv(εv)

}
.

This is the image under π of {
⊗v∈T ξv Hv ξv

}
⊗
{
⊗v 6∈T εv

}

which is contained in ξHξ.
An admissible representation equivalent to one constructed by tensor products is said to be

factorizable.

Proposition 9.1 Every irreducible admissible representation of H is factorizable. The factors are
unique up to equivalence.

Suppose π is such a representation. Let I be the set of elementary idempotents of the form ξ = ⊗ξv
for which π(ξ) is not 0. I is certainly not empty. Let V (ξ) = π(ξ)V if V is the space on which π acts. If

ξ and ξ′ are elementary idempotents we write ξ ≤ ξ′ if ξ′ξ = ξ. Then ξ ξ′ will also equal ξ. If ξ = ⊗ξv
and ξ′ = ⊗ξ′v then ξ ≤ ξ′ if and only if ξv ξ

′
v = ξ′v ξv = ξv for all v. If ξ ≤ ξ′ and ξ belongs to I so does

ξ′. ξHξ is a subalgebra of ξ′Hξ′. Let ι(ξ′, ξ) be the corresponding injection and let L(ξ) and L(ξ′) be

the spaces of linear transformations of V (ξ) and V (ξ′). There is exactly one map

ϕ(ξ′, ξ) : L(ξ) → L(ξ′)

which makes

ξHξ
ι(ξ′,ξ)
−−−−→ ξ′ H ξ′

πξ

y πξ′

y

L(ξ)
ϕ(ξ′,ξ)
−−−−→ L(ξ′)
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commutative.
There is a map of ξvHvξv into ξHξ which sends fv to fv ⊗ {⊗w 6=vξw}. Composing this map with

πξ we obtain a map πvξ of ξvHvξv onto a subalgebra Lv(ξ) of L(ξ). L(ξ) and Lv(ξ) have the same unit,
namely πξ(ξ). If v 6= w the elements of Lv(ξ) commute with those of Lw(ξ). If we form the tensor

product of the algebras Lv(ξ) with respect to the family of units there is a map from ⊗vLv(ξ) to L(ξ)
which sends ⊗vλv to

∏
v λv . Moreover we may identify ⊗v ξvHvξv and ξHξ. Since the diagram

⊗v ξv Hvξv −→ ξH ξ

⊗v π
v
ξ

y πξ

y

⊗v Lv(ξ) −→ L(ξ)

is commutative the bottom arrow is surjective.

Lemma 9.1.1 The algebras Lv(ξ) are simple and the map ⊗vLv(ξ) → L(ξ) is an isomorphism.

To show that Lv(ξ) is simple we need only show that the faithful Lv(ξ)­module V (ξ) is spanned
by a family of equivalent irreducible submodules. Let M be any irreducible submodule. Then the

family {TM} where T runs over the image of 1v ⊗ {⊗w 6=vLw(ξ)} spans V (ξ) and each TM is 0 or
equivalent toM because T commutes with the elements ofLv(ξ). 1v is the unit ofLv(ξ). We have only

to show that ⊗vLv(ξ) ↪→ L(ξ). Since ⊗vLv(ξ) is the inductive limit of ⊗v∈TLv(ξ), where T is a finite

set, we have only to show that the map is injective on these subalgebras. As they are tensor products
of simple algebras they are simple and the map is certainly injective on them.

If ξ ≤ ξ′ there is a commutative diagram

⊗v ξv Hv ξv
ι(ξ′,ξ)
−−−−→ ⊗v ξ

′
v Hv ξ

′
vy

y
⊗v Lv(ξ) ⊗v Lv(ξ

′)y
y

L(ξ)
ϕ(ξ′,ξ)
−−−−→ L(ξ′)

Moreover if ιv(ξ
′, ξ) is the imbedding of ξvHvξv into ξ′vHvξ

′
v then ι(ξ′, ξ) = ⊗vιv(ξ

′, ξ). We want
to verify that a horizontal arrow ⊗vϕv(ξ

′, ξ) can be inserted in the middle without destroying the

commutativity. To do this we have only to show that if fv is in ξvHvξv and therefore in ξ′vHvξ
′
v then

πvξ (fv) = 0 if and only if πvξ′(fv) = 0. Let U = πvξ (fv) and let T = πvξ′(fv). If

E = πξ′
(
ξ′v ⊗

{
⊗w 6=v ξw

})

then

TE = πξ′
(
fv ⊗

{
⊗w 6=v ξw

})

is determined by its restriction to V (ξ) and that restriction is U .
It is clear that if S is a sufficiently large finite set the map ⊗w∈SLw(ξ′) → L(ξ′) is an isomorphism.

We suppose that S contains v. E belongs to the image M of 1v ⊗ {⊗w 6=vLw(ξ′)}. Since M is simple

and E is not 0 there are Ai, Bi 1 ≤ i ≤ r in M such that

r∑

i=1

AiE Bi = 1
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Thus
T =

∑

i

T AiE Bi =
∑

i

Ai T E Bi

and T = 0 if and only if U = 0.
Since the necessary compatibility conditions are satisifed we can take inductive limits, over I , to

the left and right. The inductive limit of the ξHξ is H and that of the ξvHvξv is Hv. Let Lv be that of

Lv(ξ) and L that of L(ξ). There is a map πv : Hv → Lv and, for almost all v, πv(εv) = µv is not zero.
We have a commutative diagram

⊗Hv −→ H

⊕πv

y
y

⊗Lv −→ L

in which the rows are isomophisms. Moreover L acts faithfully on V and the representation of H on V
can be factored through L.

IfA is an algebra with a minimal left ideal J then any faithful irreducible representation of A on a

vector spaceX is equivalent to the representation on J . In fact we can choose x0 in X so that Jx0 6= 0.

The map j → jx0 of J toX gives the equivalence. Thus to prove that π is factorizable it will be enough
to show that L has a minimal left ideal, that the representation of L on this minimal left ideal is a tensor

product of representations σv of Lv , and that σv ◦ π
v is admissible.

Suppose A is a simple algebra and J is a left ideal in A. If a in A is not 0 and aJ = 0 then

AaAJ = AJ = 0. If J is not 0 this is impossible. Suppose e is an idempotent of A and A1 = eAe. Let
J1 be a minimal left ideal of A1 and let J = AJ1. If J were not minimal it would properly contain a

non­zero ideal J ′. J ′ ∩ A1 would have to be 0. Since Je = J we must have eJ = eJe = 0. Since this

is a contradiction J is minimal. Suppose for example that A is the union of a family {Aλ} of matrix
algebras. Suppose that for each λ there is an idempotent eλ in A such that Aλ = eλAeλ and that given

λ1 and λ2 there is a λ3 such that Aλ3
contains Aλ1

and Aλ2
. Then A is certainly simple and, by the

preceding discussion, contains a minimal left ideal.

The algebras L and Lv satisfy these conditions. In fact, speaking a little loosely, L is the union of

the L(ξ) and Lv is the union of Lv(ξ). Choose ξ so that V (ξ) 6= 0 and let Jv be a minimal left ideal
in Lv(ξ). Since Lv(ξ) is one­dimensional for almost all v the ideal Jv = Lv(ξ) for almost all v. Thus

J = ⊗Jv exists and is a minimal left ideal of L(ξ). Thus LJ = ⊗LvJv. LJ is a minimal left ideal of L
and LvJV is a minimal left ideal of Lv. The representation of L on LJ is clearly the tensor product of

the representations σv of Lv on LvJV .

Thus π is equivalent to the tensor product of the representations πv = σv ◦π
v. The representations

πv are irreducible. Since it is easily seen that a tensor product ⊗πv is admissible only if each factor is

admissible we may regard the first assertion of the proposition as proved.
If π is an admissible representation of H on V and v is a place we may also introduce a represen­

tation of Hv on V which we still call π. If u is in V we choose ξ = ⊗wξw so that π(ξ)u = u. Then if f
belongs to Hv we set

π(f)u = π
(
f ξv ⊗

{
⊗w 6=v ξw

})
u

The second part of the proposition is a consequence of the following lemma whose proof is immediate.
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Lemma 9.1.2 Suppose π = ⊗wπw. Then the representation π of Hv is the direct sum of represen-
tations equivalent to πv.

Let Sa be the set of archimedean primes. One can also associate to an admissible representation

π of H on V a representation of ĜSa
, the group formed by the elements of GA whose components at

every archimedean place are 1, on V . If v is archimedean one can associate to π a representation of Av,
the universal enveloping algebra of the Lie algebra of Gv , on V . Finally π determines a representation

of the group ZA of scalar matrices in GL(2,A). If π is irreducible there is a quasi­character η of I the
group of idèles such that

π

((
a 0
0 a

))
= η(a) I

for all a in I . If πv is associated to ηv and π = ⊗vπv then π is associated to the quasi­character η defined

by

η(a) =
∏

v

ηv(av).

One may define the contragredient of π and the tensor product of π with a quasi­character of I . All the

expected formal relations hold. In particular π̃ is equivalent to η−1 ⊗ π if π is irreducible.
The above discussion applies, mutatis mutandis, to the algebra H′. The next proposition, which

brings us a step closer to the theory of automorphic forms, applies to H alone.

Proposition 9.2 Let π = ⊗πv be an irreducible admissible representation of H. Suppose that πv is
infinite dimensional for all v. Let ψ be a non-trivial character A/F . There is exactly one space
W (π, ψ) of continuous functions on GA with the following properties:

(i) If W is in W (π, ψ) then for all g in GA and all x in A

W

((
1 x
0 1

)
g

)
= ψ(x)W (g)

(ii) W (π, ψ) is invariant under the operators ρ(f), f ∈ H, and transforms according to the repre-
sentation π of H. In particular it is irreducible under the action of H.

(iii) If F is a number field and v an archimedean place then for each W in W (π, ψ) there is a real
number N such that

W

((
a 0
0 1

))
= O

(
|a|N

)

as a→ ∞ in F×
v .

In the last assertion F×
v is regarded as a subgroup of I . Fv is a subgroup of A and the restriction

ψv of ψ to Fv is non­trivial. Thus for each place v the spaceW (πv, ψv) is defined and we may suppose

that πv acts on it. Moreover for almost all v the largest ideal of Fv on which ψv if trivial is Ov and
πv contains the trivial representation of Kv. Thus by Proposition 3.5 there is a unique function ϕ0

v in

W (πv, ψv) such that ϕ0
v(gv kv) = ϕ0

v(gv) for all kv in Kv and ϕ0
v(I) = 1. Then ϕ0

v(kv) = 1 for all kv in
Kv. π acts on

⊗ϕ0
v
W (πv, ψv)

If g is in GA and ⊗ϕv belongs to this space then ϕv(gv) = 1 for almost all v so that we can define a

function ϕ on GA by

ϕ(g) =
∏

v

ϕv(gv).
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The map ⊗ϕv → ϕ extends to a map of ⊗W (πv, ψv) into a spaceW (π, ψ) of functions onGA. W (π, ψ)
certainly has the required properties. We have to show that it is characterized by these properties.

Suppose M is another space with these properties. There is an isomorphism T of ⊗W (πv, ψv)
and M which commutes with the action of H. All we have to do is show that there is a constant c such

that if ϕ = ⊗ϕv then

Tϕ(g) = c
∏

v

ϕv(gv).

Let S be a finite set of places and let

WS = ⊗v∈SW (πv, ψv)

and

ŴS = ⊗v 6=SW (πv, ψv).

Then
⊗W (πv, ψv) = WS ⊗ ŴS .

We first show that if S is given there is a function cS on ĜS × ŴS such that if

f = T
({

⊗v∈S ϕv
}
⊗ ϕ

)

with ϕ in ŴS then

f(gh) = cS(h, ϕ)
∏

v∈S

ϕv(gv)

if g is in GS and h is in ĜS .
Suppose that S consists of the single place v. If ϕ belongs to ŴS and h belongs to ĜS associate to

every function ϕv in W (πv, ψv) the function

ϕ′
v(gv) = f(gvh)

on Gv. f is T (ϕv ⊗ ϕ). By construction, if ϕv is replaced by ρ(fv)ϕv with fv in Hv the function ϕ′
v is

replaced by ρ(fv)ϕ
′
v. Moreover if x is in Fv

ϕ′
v

((
1 x
0 1

)
gv

)
= ψv(x)ϕ

′
v(gv).

Since any conditions on rates of growth can easily be verified we see that the functions ϕ′v are either all
zero or they fill up the space W (πv, ψv). In both cases the map ϕv → ϕ′

v is a map of W (πv, ψv) into

itself which commutes with the action of Hv and therefore consists merely of multiplication by a scalar
cS(h, ϕ).

Now suppose that S′ is obtained by adjoining the place w to S and that our assertion is true for S.

Take h in ĜS′ and ϕ in ŴS′ . If

f = T
({

⊗v∈S′ ϕv
}
⊗ ϕ

)

then, for g in GS , and gw in Gw,

f(g gwh) = cS(gwh, ϕw ⊗ ϕ)
∏

v∈S

ϕv(gv).
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The argument used before shows that for a given h and ϕ the function

gw → cS(gwh, ϕw ⊗ ϕ)

is a multiple cS′(h, ϕ) of ϕw.

To prove the existence of cwe obseve first that if S is the disjoint union of S1 and S2 we may write

any h1 in ĜS1
as h1 = h

∏
v∈S2

hv with h in ĜS . Suppose ϕ1 = {⊗v∈S2
ϕv} ⊗ ϕ with ϕ in ŴS is in

ŴS1
. Then

cS1
(h1, ϕ1) =

{ ∏

v∈S2

ϕv(hv)
}
cS(h, ϕ) (9.2.1)

because the right hand side has all the properties demanded of the left. If S1 is large enough that ϕ0
v

exists for v not in S1 then, by its definition, cS1
(h,⊗v 6∈S1

ϕ0
v) has a constant c(S1) on

∏

v 6∈S1

Kv

The formula (9.2.1) shows that c(S) = c(S1) if S contains S1. We take c to be the common value of

these constants. Given ϕ = ⊗ϕv and g =
∏
gv we choose S so that ϕv = ϕ0

v and gv ∈ Kv for v not in
S. Then

T ϕ(g) = c
( ∏

v 6∈S

gv,⊗v 6∈Sϕv
) ∏

v∈S

ϕv(gv)

= c
∏

v

ϕv(gv).

We observed that if πv is finite dimensional the space W (πv, ψv) cannot exist if v is non­

archimedean or real. Although we neglected to mention it, the argument used for real field also
shows that W (πv, ψv) cannot exist if v is complex. The proof of Proposition 9.2 can therefore be used,

with minor changes, to verify the next proposition.

Proposition 9.3 If π = ⊗πv is given and if one of the representations πv is finite dimensional there
can exist no space W (π, ψ) satisfying the first two conditions of the previous proposition.

An admissible representation π of H on the space V is said to be unitary if there is a positive

definite hermitian form (v1, v2) on V such that, if f∗(g) = f̄(g−1),
(
π(f)v1, v2

)
=
(
v1, π(f∗)v2

)

for all f in H.

Lemma 9.4 If π is unitary and admissible then V is the direct sum of mutually orthogonal invariant
irreducible subspaces.

The direct sum of the lemma is to be taken in the algebraic sense. We first verify that if V1 is an

invariant subspace and V2 is its orthogonal complement then V = V1 ⊕ V2. Certainly V1 ∩ V2 = 0. Let

ξ be an elementary idempotent and let V (ξ), V1(ξ), V2(ξ) be the ranges of π(ξ) in V , V1, and V2. let
V ⊥

1 (ξ) be the range of 1 − π(ξ) acting on V1. Then V (ξ) and V ⊥
1 (ξ) are orthogonal and

V1 = V1(ξ)⊕ V ⊥
1 (ξ).

Thus V2(ξ) is just the orthogonal complement of V1(ξ) in V (ξ). Since V (ξ) is finite dimensional

V (ξ) = V1(ξ)⊕ V2(ξ).

Since every element of V is contained in some V (ξ) we have V = V1 + V2.
To complete the proof we shall use the following lemma.
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Lemma 9.4.1 If π is a unitary admissible representation of H on the space V then V contains a
minimal non-zero invariant subspace.

Choose an idempotent ξ so that V (ξ) = π(ξ)V 6= 0. Since V (ξ) is finite dimensional amongst
all the non­zero subspaces of it obtained by intersecting it with an invariant subspace of V there is

a minimal one N . Let M be the intersection of all invariant subspaces containing N . If M is not
irreducible it is the direct sum of two orthogonal invariant subspaces M1 and M2. Then

N = M ∩ V (ξ) = π(ξ)M = π(ξ)M1 ⊕ π(ξ)M2

The right side is {
M1 ∩ V (ξ)} ⊕ {M2 ∩ V (ξ)

}

so that one of M1 ∩ V (ξ) and M2 ∩ V (ξ) is N . Then M1 or M2 contains M . This is a contradiction.
LetA be the set consisting of families of mutually orthogonal invariant, and irreducible subspaces

of V . Each member of the family is to be non­zero. Let {Vλ} be a maximal family. Then V = ⊕λVλ. If

not let V1 = ⊕λVλ. The orthogonal complement of V1 would be different from zero and therfore would
contain a minimal non­zero invariant subspace which when added to the family {Vλ} would make it

larger.
If T is a finite set of places most of the results of this paragraph are valid for representations π of

ĤT . For example π is factorizable and W (π, ψ) exists as a space of functions on ĜT .
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§10. Automorphic Forms. In this paragraph F is still a global field. We shall begin by recalling a
simple result from reduction theory. If v is a place of A and a is in A then |a|v is the absolute value of

av the vth component of a. If a is in I

|a| =
∏

v

|a|v

Lemma 10.1 There is a constant c0 such that if g belongs to GA there is a γ in GF for which

∏

v

max{|c|v, |d|v} ≤ c0|detg|
1
2

if

γ g =

(
a b
c d

)

If F is a number field let OF be the ring of integers in F and if F is a function field take any

transcendental element x of F over which F is separable and let OF be the integral closure in F of the

ring generated by 1 and x. A place v will be called finite if |a|v ≤ 1 for all a in OF ; otherwise it will be
called infinite. If S is a finite set of places which contains all the infinite places let

A(S) = {a ∈ A
∣∣ |a|v ≤ 1 if v 6= S}

I(S) = {a ∈ I
∣∣ |a|v = 1 if v 6= S}

Then A = F + A(S) and if S is sufficiently large I = F×I(S). We first verify that if I = F×I(S) then

GA = GF GA(S)

where GA(S) = GL
(
2,A(S)

)
. If v is not in S then v is non­archimedean and we can speak of ideals of

Fv. Any element of GA may be written as a product

g =

(
α β
0 γ

)(
a b
c d

)

in which the second factor belongs to

K =
∏

v

Kv

and therefore toGA(S). It will be sufficient to show that the first factor is inGF GA(S). If α = α1α2 and

γ = γ1γ2 with α1 and γ1 in F× and α2 and γ2 in I(S)

(
α β
0 γ

)
=

(
α1 0
0 γ1

)(
1 β/α1γ2

0 1

)(
α2 0
0 γ2

)

The first factor is in GF and the third in GA(S). Since β
α1γ2

belongs to F + A(S) the second factor is in

GF GA(S) and the assertion follows.

There is certainly a u in OF such that |u|v < 1 at all finite places in S. Enlarging S if necessary we
may assume that a finite place v belongs to S if and only if |u|v < 1. Then

F ∩ A(S) =
{ x

um
∣∣x ∈ OF , m ∈ Z

}
.
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We identify the prime ideals of OF with the places corresponding to them. By the theory of rings of
quotients the proper ideals of F ∩ A(S) are the ideals of the form

(
F ∩ A(S)

) ∏

p6∈S

pmp

Since I = F×I(S) every such ideal is principal. Thus F ∩ A(S) is a principal ideal domain.

To prove the lemma we show that there is a constant c0 such that if g belongs to GA(S) there is a γ
in GF∩A(S) such that ∏

v∈S

max{|c|v, |d|v} ≤ c0|detg|
1
2

if

γ g =

(
a b
c d

)
.

Fix a Haar measure on the additive group A(S). This determines a measure on A(S) ⊕ A(S).

The group L =
(
F ∩ A(S)

)
⊕
(
F ∩ A(S)

)
is a discrete subgroup of A(S) ⊕ A(S) and the quotient

A(S)⊕A(S)/L is compact and has finite measure c1. If g belongs toGA(S) the latticeLg is also discrete

and the quotient A(S) ⊕ A(S)/Lg has measure c1|detg|.
Suppose (m,n) = (µ, ν)g belongs to Lg. If a 6= 0 belongs to F ∩ A(S) then

∏

v∈S

max{|am|v, |an|v} =
( ∏

v∈S

|a|v
)( ∏

v∈S

max{|c|v, |d|v}
)
.

Since
1 =

∏

v

|a|v =
( ∏

v∈S

|a|v
)( ∏

v 6=S

|a|v
)

the product
∏
v∈S |a|v is at least 1 and

∏

v∈S

max{|am|v, |an|v} ≥
∏

v∈S

max{|m|v, |n|v}.

Let R be a positive number and consider the set

E =
{
(m,n) ∈ Lg

∣∣ ∏

v∈S

max{|m|v, |n|v} ≤ R
}
.

The previous inequality shows that if I contains a non­zero element of Lg it contains one (m,n) =
(µ, ν)g for which µ and ν are relatively prime. Then we may choose κ and λ in F ∩ A(S) so that
κν − λµ = 1. If

γ =

(
κ λ
µ ν

)

then γ belongs to GF ∩ A(S) and if

γg =

(
a b
c d

)
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then c = m and d = n so that ∏

v∈S

max{|c|v, |d|v} ≤ R.

To prove the lemma we have to show that there is a constant c0 such that if g is in GA(S) and

R = c0|detg|
1
2 the setE is not reduced to {0}. We will show in fact that there is a constant c2 such that

for all g there is a non­zero vector (m,n) in Lg with

sup
v∈S

max{|m|v, |n|v} ≤ c2|detg|
1
2s

if s is the number of elements in S. There is certainly a positive constant c3 such that the measure of

{
(m,n) ∈ A(S) ⊕ A(S)

∣∣ sup
v∈S

max{|m|v, |n|v} ≤ R
}

is, for any choice of R, at least c3R
2s. Choose c2 so that

c2 > 2
(c1
c3

) 1
2s .

If Lg contained no non­zero vector satisfying the desired inequality the set

{
(m,n) ∈ As ⊕ AS

∣∣ sup
v∈S

max{|m|v, |n|v} ≤
c2
2
|detg|

1
2s

}

would intersect none of its translates by the elements of Lg. Therefore its measure would not be

changed by projection on A(S)⊕ A(S)/Lg and we would have

c1 ≤ c3
(c2

2

)2s

which is impossible.

Choose some place v of F which is to be archimedean if F is a number field. If c is any positive
constant there is a compact set C in I such that

{a ∈ I
∣∣ |a| ≥ c}

is contained in
{ab

∣∣ a ∈ F×
v , |a| ≥ c, b ∈ C}

If ω1 is a compact subset of A, ω2 a compact subset of I , and c a positive constant we may introduce

the Siegel domain S = S(ω1, ω2, c, v) consisting of all

g =

(
1 x
0 1

)(
a 0
0 a

)(
bb1 0
0 1

)
k

with x in ω1, a in I , b in ω2, b1 in F×
v with |b1| ≥ c, and k in K . Then ZAS = S. If we use the Iwasawa

decomposition of GA to calculate integrals we easily see that the projection of S on ZA \GA has finite

measure. Moreover it follows readily from the previous lemma that, for a suitable choice of ω1, ω2, and

c,
GA = GF S.
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Thus ZA GF \GA has finite measure.
Let ϕ be a continuous function on GF \GA. If it is ZA­finite the space V spanned by the functions

ρ(a)ϕ, a ∈ ZA, is finite dimensional. We may choose a finite set of points g1, · · · , gp and a basis
ϕ1, · · · , ϕp of V so that ϕi(gj) = δij . Then

ρ(a)ϕ =

p∑

i=1

λi(a)ϕi.

Since λi(a) = ϕ(agi) the function λi are continuous and finite as functions on ZA or ZF \ ZA. Since
ZF \ ZA is isomorphic to F× \ I it satisfies the hypothesis of Lemma 8.1 and λi is a finite linear

combination of functions of the form

λi

((
α 0
0 α

))
= χ(a) (log |α|)m

where χ is a quasi­character of F× \ I .
A continuous function ϕ on GF \GA which is ZA­finite will be called slowly increasing if for any

compact set Ω in GA and any c > 0 there are constants M1 and M2 such that

∣∣ϕ
((

a 0
0 1

)
g

) ∣∣ ≤M2 |a|
M1

for g in Ω, a in I , and |a| ≥ c. If such an inequality is valid, with suitable choice of M2, for any M1 we
will say, for lack of a better terminology, that ϕ is rapidly decreasing.

Suppose ϕ is a continuous function on GF \ GA. Assume it is K­finite on the right and that for
every elementary idempotent ξ in H the space

{ρ(ξf)ϕ
∣∣ f ∈ H}

is finite dimensional. An argument used more than once already shows that there is a ξ and an f in

ξH1ξ such that ρ(f)ϕ = ϕ. If a belongs to ZA

ρ(a)ϕ = ρ(δa ∗ f)ϕ

so that ϕ is ZA­finite. Thus we can make the following definition.

Definition 10.2 A continuous function ϕ on GF \GA is said to be an automorphic form if

(i) It is K­finite on the right
(ii) For every elementary idempotent ξ in H the space

{ρ(ξf)ϕ
∣∣ f ∈ H}

is finite dimensional.
(iii) If F is a number field ξ is slowly increasing.

We observe, with regret, in passing that there has been a tendency of late to confuse the terms

automorphic form and automorphic function. If not the result it is certainly the cause of much misun­

derstanding and is to be deplored.
Let A be the vector space of automorphic forms. If ϕ is in A and f is in H then ρ(f)ϕ is in A so

that H operates on A. A continuous function on ϕ on GF \GA is said to be cuspidal if
∫

F\A

ϕ

((
1 x
0 1

)
g

)
dx = 0

for all g inGA. An automorphic form which is cuspidal is called a cusp form. The space A0 of cusp
forms is stable under the action of H.
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Proposition 10.3 Let F be a function field and let ϕ be a function on GF \ GA. If ϕ satisfies the
following three conditions it is a cusp form.

(i) ϕ is K-finite on the right.
(ii) ϕ is cuspidal.

(iii) There is a quasi-character η of F× \ I such that

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I.

If ξ is an elementary idempotent of H there is an open subgroup K′ of K such that ξ is invariant

under translations on either side by the elements of K′. Therefore the functions ρ(ξf)ϕ are invariant
under right translations. To prove the proposition we show that if K′ is a given open subgroup of K
and η is a given quasi­character of F× \ I then the space V of all continuous functions ϕ on GF \GA

which are cuspidal and satisfy ϕ(gk) = ϕ(g) for all k in K′ as well as

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in F× \ I is finite­dimensional.

We shall show that there is a compact setC inGA such that the support of everyϕ in V is contained

in GFZZC . Then the functions in V will be determined by their restrictions to C . Since C is contained
in the union of a finite number of left translates of K′ they will actually be determined by their values

on a finite set and V will be finite dimensional.
Choose a Siegel domain S = S(ω1, ω2, c, v) so that GA = GFS. If

S′ =

{(
1 x
0 1

)(
bb1 0
0 1

)
k
∣∣x ∈ ω1, b ∈ ω2, b1 ∈ F×

v , |b1| ≥ c, k ∈ K

}

we have just to show that the support in S′ of every ϕ in V is contained in a certain compact set which

is independent of ϕ. In fact we have to show the existence of a constant c1 such that ϕ vanishes on

(
1 x
0 1

)(
bb1 0
0 1

)
k

as soon as |b1| ≥ c1. Let k1, · · · , kn be a set of representatives of the cosets of K/K ′ and let ϕi(g) =
ϕ(gki). If k belongs to kiK

′ then ϕ(gk) = ϕi(g) and it will be enough to show that there is a constant

c2 such that, for 1 ≤ i ≤ n,

ϕi

((
1 x
0 1

)(
a 0
0 1

))
= 0

if x belongs to A and |a| > c2. It is enough to show this for a single, but arbitrary, ϕi. Since ϕi satisifes

the same hypothesis as ϕ, perhaps with a different group K′, we just prove the corresponding fact for
ϕ.

We use the following lemma which is an immediate consequnce of the theorem of Riemann–Roch

as described in reference [10] of Chapter I.
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Lemma 10.3.1 Let X be an open subgroup of A. There is a constant c2 such that A = F + aX if a
belongs to I and |a| > c2.

Let X be the set of all y for which (
1 y
0 1

)

belongs to K′. Since

ϕ

((
1 ay
0 1

)(
a x
0 1

))
= ϕ

((
a x
0 1

)(
1 y
0 1

))

we have

ϕ

((
1 z
0 1

)(
a x
0 1

))
= ϕ

((
a x
0 1

))

if z is in aX . The equation also holds for z in F and therefore for all z in A if |a| > c2. Then

ϕ

((
a x
0 1

))
=

1

measure(F \ A)

∫

F\A

ϕ

((
1 z
0 1

)(
a x
0 1

))
dz

which by assumption is zero.

There is a corollary.

Proposition 10.4 Suppose ϕ is a cusp form and for some quasi-character η of F × \ I

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I. Then ϕ is compactly supported modulo GF \ ZA. Moreover the function

a→ ϕ

((
a 0
0 1

))

on F× \ I is compactly supported.

The first assertion has just been verified. We know moreover that there is a constant c such that

ϕ

((
a 0
0 1

))

is 0 for |a| ≥ c. If

w =

(
0 1
−1 0

)

and ϕ′(g) = ϕ(gw) then ϕ′ is also a cusp form. Since

ϕ

((
a 0
0 1

))
= ϕ

(
w−1

(
1 0
0 a

)
w

)
= η(a)ϕ

((
a−1 0
0 1

))

there is also a constant c1 such that it vanishes for |a| ≤ c1.
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Proposition 10.5 Let F be a function field and η a quasi-character of F× \I. Let A0(η) be the space
of cusp forms ϕ for which

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I. The representation of H on A0(η) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

The proof of Proposition 10.3 showed that the representation π of H on A0(η) is admissible. Let

η′(α) = |η(α)|−1η(α). The map ϕ→ ϕ′ is an isomorphism of A0(η) with A0(η
′) which replaces π by

η1 ⊗ π if η1(α) = |η(α)|−1/2. Thus we may as well suppose that η is a character. Then if ϕ1 and ϕ2

belong to A0(η) the function ϕ1ϕ2 is a function on GF ZA \GA. Since it has compact support we may
set

(ϕ1, ϕ2) =

∫

GF ZA\GA

ϕ1(g)ϕ2(g)dg.

It is easily seen that (
ρ(f)ϕ1, ϕ2

)
=
(
ϕ1, ρ(f

∗)ϕ2

)

so that, by Lemma 9.4,π is the direct sum of irreducible admissible representations. Sinceπ is admissible

the range of π(ξ) is finite dimensional for all ξ so that no irreducible representation occurs an infinite

number of times.
The analogue of this proposition for a number field is somewhat more complicated. If ϕ is a

continuous function on GA, if v is a place of F , and if fv belongs to Hv we set

ρ(fv)ϕ =

∫

Gv

ϕ(ghv) fv(hv) dhv.

Since fv may be a measure the expression on the right is not always to be taken literally. If v is
archimedean and if the function ϕ(hgv) on Gv is infinitely differentiable for any h in GA then for any

X in Av the universal enveloping algebra of Gv, we can also define ρ(X)ϕ. If S is a finite set of places
we can in a similar fashion let the elements of

Hs = ⊗v∈SHv

or, if every place in S is archimedean,
AS = ⊗v∈SAv

act on ϕ. It is clear what an elementary idempotent in HS is to be. If S = Sa is the set of archimedean

places we set Ha = HS .

Proposition 10.6 Suppose F is a number field. A continuous function ϕ on GF \GA is a cusp form
if it satisfies the following five conditions.

(i) ϕ is K-finite on the right.
(ii) ϕ is cuspidal.

(iii) There is a quasi-character η of F× \ I such that

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I.
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(iv) For any elementary idempotent ξ in Ha the space

{ρ(ξf)ϕ
∣∣ f ∈ Ha}

is finite dimensional.
(v) ϕ is slowly increasing.

There is a ξ in Ha such that ρ(ξ)ϕ = ϕ. Because of the fourth condition ϕ transforms according
to a finite dimensional representation of ξHaξ and the usual argument shows that there is a function
f in Ha such that ρ(f)ϕ = ϕ.

Since ϕ is invariant under right translations by the elements of an open subgroup of
∏
v 6∈Sa

Kv

this implies in turn the existence of another function f in H such that ρ(f)ϕ = ϕ. From Theorem 2 of

[14] one infers that ϕ is rapidly decreasing.
As before we may assume that η is a character. Then ϕ is bounded and therefore its absolute value

is square integrable on GF ZA \ GA which has finite measure. Let L2(η) be the space of measurable

functions h on GF \GA such that

h

((
a 0
0 a

)
g

)
= η(a)h(g)

for all g in GA and all a in I and ∫

GFZA\GA

|h(g)|2 dg <∞.

According to a theorem of Godement (see reference [11] to Chapter I) any closed subspace of L2(η)
which consists entirely of bounded functions is finite dimensional.

What we show now is that if ξ is an elementary idempotent of H the space

V = {ρ(ξf)ϕ
∣∣ f ∈ H}

is contained in such a closed subspace. The functions in V itself certainly satisfy the five conditions

of the proposition and therefore are bounded and in L2(η). Replacing ξ by a larger idempotent if

necessary we may suppose that ξ = ξa ⊗ ξ̂a where ξa is an elementary idempotent in Ha. There is
a two­sided ideal a in ξaHaξa such that ρ(f)ϕ = 0 if f belongs to a. The elements of a continue

to annihilate V and its closure in L2(η). Approximating the δ­function as usual we see that there is

a function f1 in Ha and a polynomial P with non­zero constant term such that P (f1) belongs to a.
Therefore there is a function f2 in Ha such that f2 − 1 belongs to a. To complete the proof of the

proposition we have merely to refer to Theorem 2 of [14] once again.
For a number field the analogue to Proposition 10.4 is the following.

Propositon 10.7 Suppose ϕ is a cusp form and for some quasi-character η of F × \ I

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I. Then for any real number M1 there is a real number M2 such that∣∣∣∣ϕ
((

a 0
0 a

))∣∣∣∣ ≤M2 |a|
M1

for all a in I. Moreover the absolute value of ϕ is a square integrable on GFZA \GA.

We need another corollary of Proposition 10.6. To prove it one has just to explain the relation
between automorphic forms on GA and GR, which is usually assumed to be universally known, and

then refer to the first chapter of reference [11] to Chapter I. It is perhaps best to dispense with any

pretence of a proof and to rely entirely on the reader’s initiative. We do not however go so far as to
leave the proposition itself unstated.
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Proposition 10.8 Let Zv be the centre of Av and let I be an ideal of finite codimension in Z =
⊗v∈Sa

Zv. Let ξ be an elementary idempotent of H and η a quasi-character of F× \ I. Then the
space of infinitely differentiable functions ϕ on GF \GA which satisfy the following five conditions
is finite dimensional.

(i) ϕ is cuspidal.
(ii) ρ(ξ)ϕ = ϕ.

(iii) If a is in I then

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g).

(iv) ρ(X)ϕ = 0 for all X in I

(v) ϕ is slowly increasing.

Proposition 10.9 Let η be a quasi-charcter of F× \ I and let A0(η) be the space of cusp forms ϕ for
which

ϕ

((
a 0
0 a

)
g

)
= ϕ(g)

for all a in I. The representation of H on A0(η) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

Every element of A0(η) is annihilated by some ideal of finite codimension in Z. If I is such an

ideal let A0(η,I) be the space of functions in A0(η) annihilated by I. It is enough to prove the first
part of the proposition for the space A0(η,I). Then one may use the previous proposition and argue

as in the proof of Proposition 10.5. To show that every representation occurs with finite multiplicity
one combines the previous proposition with the observation that two functions transforming under the

same representation of H are annihilated by the same ideal in Z.

H acts on the space A. An irreducible admissible representation π of H is a constituent of the
representation on A or, more briefly, a constituent of A if there are two invariant subspaces U and V of

A such that U contains V and the action on the quotient space U/V is equivalent to π. A constituent
of A0 is defined in a similar fashion. The constituents of A0 are more interesting than the constituents

of A which are not constituents of A0.

Theorem 10.10 Let π = ⊗πv be an irreducible admissible representation of H which is a constituent
of A but not of A0. Then there are two quasi-characters µ and ν of F× \ I such that for each place
v the representation πv is a constituent of ρ(µv, νv).

µv is the restriction of µ to F×
v . Let B be the space of all continuous functions ϕ on GA satisfying

the following conditions.

(i) For all x in A

ϕ

((
1 x
0 1

)
g

)
= ϕ(g).

(ii) For all α and β in F×

ϕ

((
α 0
0 β

)
g

)
= ϕ(g).

(iii) ϕ is K­finite on the right.
(iv) For every elementary idempotent ξ in H the space

{ρ(ξf)ϕ
∣∣ f ∈ H}

is finite dimensional.
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Lemma 10.10.1 A continuous function ϕ on GA which satisfies the first three of these conditions
satisfies the fourth if and only if it is AA-finite on the left.

A is the group of diagonal matrices. Since ϕ is a function on AF \GA it is AA finite if and only if
it is AF \AA finite. If it is AF \AA finite there is a relation of the form

ϕ(ag) =
∑

i

λi(a)ϕi(g)

where the λi are finite continuous functions on AF \ AA. Since AF \ AA is isomorphic to the direct
product of F× \ I with itself it is a group to which Lemma 8.1 can be applied. Thus there is a unique

family ϕm,n,µ,ν of functions on GA such that

ϕ

((
a1 0
0 a2

)
g

)
=

∣∣∣∣
a1

a2

∣∣∣∣
∑

µ(a1) ν(a2) (log |a1|)
m (log |a2|)

n ϕm,n,µ,ν(g)

The functions ϕm,n,µ,ν also satisfy the first three conditions. Moreover there is a finite set S of pairs

(µ, ν) and a non­negative integerM such that ϕm,n,µ,ν is 0 if (µ, ν) does not belong to S orm+n > M .

Given S and M let B(S,M) be the space of continuous functions f on GA which satisfy the first
three conditions and for which

f

((
a1 0
0 a2

)
g

)

can be expanded in the form

∣∣∣∣
a1

a2

∣∣∣∣
1
2 ∑

µ(a1) ν(a2) (log |a1|)
m (log |a2|)

n fm,n,µ,ν(g)

where the sum is taken only over the pairs (µ, ν) in S the pairs (m,n) for which m+n ≤M . B(S,M)
is invariant under H. To show that if ϕ is AF \ AA finite it satisfies the fourth condition we show that

the range of ρ(ξ) on B(S,M) is finite dimensional.
A function f in B(S,M) is determined by the restriction of the finitely many functions fm,n,µ,ν to

K . If f is in the range of ρ(ξ) these resrictions lie in the range of ρ(ξ) acting on the continuous functions

on K . That range is finite dimensional.
We have also to show that if ϕ satisifes the fourth condition it is AA finite. The space V spanned

by the right translates of ϕ by the elements of K is finite dimensional and each element in it satisfies
all four conditions. Let ϕ1, · · · , ϕp be a basis of V . We can express ϕ(gk) as

p∑

i=1

λi(k)ϕi(g).

Because of the Iwasawa decomposition GA = NAAAK it is enough to show that the restriction of each
ϕi to AA is finite. Since ϕi satisfies the same conditions as ϕwe need only consider the restriction of ϕ.

Since ϕ is K finite there is a finite set S of places such that ϕ is invariant under right translations
by the elements of

∏
v 6∈S Kv. Let

IS =
∏

v∈S

F×
v .
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We regard IS as a subgroup of I . If we choose S so large that I = F×I(S) then every element α of I is
a product of α = α1α2α3 with α1 in F×, α2 in IS , and α3 in I(S) such that its component at any place

in S is 1. If β in I is factored in a similar fashion

ϕ

((
α 0
0 β

))
= ϕ

((
α2 0
0 β2

))
.

Thus we need only show that the restriction of ϕ to

AS =
{(α 0

0 β

) ∣∣α, β ∈ IS
}

is finite. This is a consequence of Corollary 8.4 since the restriction of ϕ to GS clearly satisfies the
conditions of the corollary.

The next lemma explains the introduction of B.

Lemma 10.10.2 If π is a constituent of A but not of A0 then it is a constituent of B.

If ϕ belongs to A the functions

ϕ0(g) =
1

measure(F \ A)

∫

F\A

ϕ

((
1 x
0 1

)
g

)
dx

belongs to B. The map ϕ→ ϕ0 commutes with the action of H and its kernel is A0. Suppose U and V
are two invariant subspaces of A and π occurs on the quotient of U by V . Let U0 be the image of U and

V0 be the image of V in B. Since π is irreducible there are two possibilities. Either U0 6= V0 in which
case π is equivalent to the representation on U0/V0 and is a constituent of B or U0 = V0. In the latter

case
U = V + U ∩ A0

and π is equivalent to the representation on

U ∩ A0/V ∩ A0

which is precisely the possibility we have excluded.

Lemma 10.10.3 If π is a constituent of B then there is a pair of quasi-characters µ, ν and a
non-negative integer M such that π is a constituent of B(µ, ν,M).

If S consists of the single pair (µ, ν) then, by definition, B(µ, ν,M) = B(S,M). Suppose π occurs
on the quotient of U by V . Choose the finite set S of pairs of quasi­characters and the non­negative

integer M so that U ∩ B(S,M) is different from V ∩ B(S,M). Then π occurs on the quotient of
U ∩ B(S,M) by V ∩ B(S,M) and we may as well assume that U is contained in B(S,M). The

argument used in the eighth paragraph in an almost identical context shows that

B(S,M) = ⊕(µ,ν)∈SB(µ, ν,M)

so that the lemma is a consequence of Lemma 8.6.

The next lemma is proved in exactly the same way as Proposition 8.5
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Lemma 10.10.4 If π is a constituent of B(µ, ν,M) for some M then it is a constituent of B(µ, ν) =
B(µ, ν, 0).

Let µv and νv be the restrictions of µ and ν to F×
v . For almost all v the quasi­characters µv and νv

are unramifed and there is a unique function ϕ0
v in B(µv, νv) such that ϕ0

v(gvkv) = ϕ0
v(gv) for all kv in

Kv while ϕ0
v(e) = 1. We can form

⊗ϕ0
v
B(µv, νv)

There is clearly a linear map of this space into B(µ, ν) which sends ⊗ϕv to the function

ϕ(g) =
∏

v

ϕv(gv)

It is easily seen to be surjective and is in fact, although this is irrelevant to our purposes, an isomorphism.
In any case an irreducible constituent of B(µ, ν) is a constituent of ⊗vρ(µv, νv).

With the following lemma the proof of Theorem 10.10 is complete.

Lemma 10.10.5 If the irreducible admissible representation π = ⊗vπv is a constituent of ρ = ⊗ρv,
the tensor product of admissible representations which are not necessarily irreducible, then, for each
v, πv is a constituent of ρv.

As in the ninth paragraph π and ρ determine representations π and ρ of Hv. The new π will be a
constituent of the new ρ. By Lemma 9.12 the representation π of Hv is the direct sum of representations

equivalent to πv . Thus πv is a constituent of π and therefore of ρ. Since ρ is the direct sum of
representations equivalent to ρv, Lemma 8.6 shows that πv is a constituent of ρv.

The considerations which led to Proposition 8.5 and its proof will also prove the following propo­

sition.

Proposition 10.11 If π is an irreducible constituent of the space A0 then for some quasi-character
η it is a constituent of A0(η).

Observe that if π is a constituent of A0(η) then

π

((
a 0
0 a

))
= η(a) I

for all a in I . There are two more lemmas to be proved to complete the preparations for the Hecke

theory.

Lemma 10.12 Suppose there is a continuous function ϕ on GA with the following properties.
(i) ϕ is K finite on the right.

(ii) For all α and β in F× and all x in A

ϕ

((
α x
0 β

)
g

)
= ϕ(g).

(iii) There is a quasi-character η of F× \ I such that

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I.
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(iv) There is a finite set S of non-archimedean places such that the space

V = ρ(ĤS)ϕ

transforms under ĤS according to the irreducible admissible representation π = ⊗v 6∈Sπv.
Then V is a subspace of B and there are two quasi-characters µ and ν of F × \ I such that πv

is a constituent of ρ(µv, νv) for all v not in S.

If one observes that there is a finite set T of places which is disjoint from S such that I = F×IT
one can proceed as in Lemma 10.10.1 to show that ϕ is A­finite on the right. Thus there is a finite set R
of pairs of quasi­characters and a non­negative integer M such that V is contained in B(R,M). The

same reduction as before shows that π is a constituent of the representation ofĤS on some B(µ, ν) and

that πv is a constituent of ρ(µv, νv) if v is not in S.

Lemma 10.13 Let ϕ be a continuous function on GF \GA. If ϕ satisfies the four following conditions
it is an automorphic form.

(i) ϕ is K finite on the right.
(ii) There is a quasi-character η of F× \ I such that

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I.
(iii) There is a finite set S of non-archimedean places such that ρ(ĤS)ϕ transforms according to

an irreducible admissible representation of ĤS.
(iv) If F is a number field ϕ is slowly increasing.

We have to show that for every elementary idempotent ξ in H the space ρ(ξH)ϕ is finite dimen­

sional. If f is a continuous function on GF \GA let

f0(g) =
1

measure(F \ A)

∫

F\A

f

((
1 x
0 1

)
g

)
dx.

The map f → f0 commutes with the action of H or of ĤS . Consquently ϕ0 satisfies the conditions
of the previous lemma and belongs to a space B(R,M) invariant under H on which ρ(ξ) has a finite

dimensional range.
We need only show that

V = {f ∈ ρ(ξH)ϕ
∣∣ f0 = 0}

is finite dimensional. If F is a function field then, by Proposition 10.3, V is contained in A0(η).

More precisely it is contained in the range of ρ(ξ), as an operator on A0(η), which we know is finite

dimensional. Suppose F is a number field. Since every place of S is non­archimedean the third
condition guarantees that ϕ is an eigenfunction of every element of Z. In particular there is an ideal I of

finite codimension in Z which annihilates ϕ and therefore every element of ρ(ξH)ϕ. By Proposition 10.6
the space V is contained in A0(η) and therefore in A0(η,I). By Proposition 10.8 the range of ρ(ξ) in

A0(η,I) is finite dimensional.
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§11. Hecke theory. The preliminaries are now complete and we can broach the central topic of these
notes. Let ψ be a non­trivial character of F \ A. For each place v the restriction ψv of ψ to Fv is

non­trivial. Let π = ⊗vπv be an irreducible admissible representation of H. The local L­functions
L(s, πv) and the factors ε(s, πv, ψv) have all been defined. Since for almost all v the representation πv
contains the trivial representation of Kv and Ov is the largest ideal on which ψv is trivial almost all of

the factor ε(s, πv, ψv) are identically 1 and we can form the product

ε(s, π) =
∏

v

ε(s, πv, ψv).

In general it depends on ψ. Suppose however that

π

((
a 0
0 a

))
= η(a)I

and that η is trivial on F×. If ψ is replaced by the character x→ ψ(αx) with α in F× then ε(s, πv, ψv)
is multiplied b ηv(α)|α|2s−1

v so that ε(s, π) is multiplied by

∏

v

ηv(α) |α|2s−1
v = η(α)|α|2s−1 = 1

The product ∏

v

L(s, πv)

does not converge and define a function L(s, π) unless π satisfies some further conditions.

Theorem 11.1 Suppose the irreducible admissible representation π = ⊗πv is a constituent of A.
Then the infinite products defining L(s, π) and L(s, π̃) converge absolutely in a right half-plane and
the functions L(s, π) and L(s, π̃) themselves can be analytically continued to the whole complex
plane as meromorphic functions of s. If π is a constituent of A0 they are entire. If F is a number
field they have only a finite number of poles and are bounded at infinity in any vertical strip of
finite width. If F is a function field with field of constants Fq they are rational functions of q−s.
Finally they satisfy the functional equation

L(s, π) = ε(s, π)L(1− s, π̃).

Observe that if π = ⊗vπv then π̃ = ⊗vπ̃v. Consider first a representation π which is a constituent
of A but not of A0. There are quasi­characters µ and ν ofF×\I such that πv is a constituent of ρ(µv, µv)
for all v. Since πv has to contain the trivial representation of Kv for all but a finite number of v it is
equal to π(µv, νv) for almost all v.

Consider first the representation π′ = ⊗vπ(µv, νv). Recall that

L
(
s, π(µv, νv)

)
= L(s, µv)L(s, νv)

L
(
s, π̃(µv, νv)

)
= L(s, µ−1

v )L(s, ν−1
v )

and
ε
(
s, π(µv, νv), ψv

)
= ε(s, µv, ψv) ε(s, νv, ψv)
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If χ is any quasi­character of F× \ I the product

∏

v

L(s, χv)

is known to converge in a right half plane and the funtion L(s, χ) it defines is known to be analytically

continuable to the whole plane as a meromorphic function. Moreover if

ε(sχ) =
∏

v

ε(s, χv, ψv)

the functional equation

L(s, χ) = ε(s, χ)L(1− s, χ−1)

is satisifed. Since

L(s, π′) = L(s, µ)L(s, ν)

and
L(s, π̃′) = L(s, µ−1)L(s, ν−1)

they too are defined and meromorphic in the whole plane and satisfy the functional equation

L(s, π′) = ε(s, π′)L(1 − s, π̃′).

The other properties of L(s, π′) demanded by the lemma, at least when π′ is a constituent of A, can be

inferred from the corresponding properties of L(s, µ) and L(s, ν) which are well known.
When πv is not π(µv, µv) it is σ(µv, νv). We saw in the first chapter that

L
(
s, σ(µv, νv)

)

L
(
s, π(µv, νv)

)

is the product of a polynomial and an exponential. In particular it is entire. If we replace π(µv, νv) by

πv we change only a finite number of the local factors and do not disturb the converge of the infinite
product. If S is the finite set of places v at which πv = σ(µv, νv) then

L(s, π) = L(s, π′)
∏

v∈S

L
(
s, σ(µv, νv)

)

L
(
s, π(µv, νv)

)

and therefore is meromorphic with no more poles that L(s, π′). ForL(s, π̃) the corresponding equation

is

L(s, π̃) = L(s, π̃′)
∏

v∈S

L
(
s, σ(µ−1

v , ν−1
v )
)

L
(
s, π(µ−1

v , ν−1
v )
) .

The functional equation of L(s, π) is a consequence of the relations

L
(
s, σ(µv, νv)

)

L
(
s, π(µv, νv)

) =
ε
(
s, σ(µv, νv), ψv

)
L
(
1 − s, σ(µ−1

v , ν−1
v )
)

ε
(
s, π(µv, νv), ψv

)
L
(
1 − s, π(µ−1

v , ν−1
v )
)
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which were verified in the first chapter. It also follows from the form of the local factors that L(s, π)
and L(s, π̃) are rational functions of q−s when F is a function field. If F is a number field L(s, π) is

bounded in vertical strips of finite width in a right half­plane and, because of the functional equation,
in vertical strips in a left half­plane. Its expression in terms of L(s, π′) prevents it from growing very

fast at infinity in any vertical strip of finite width. The Phrágmen–Lindelöf principle implies that it is

bounded at infinity in any such strip.
Now suppose π is a constituent of A0. It is then a constituent of A0(η) if

π

((
a 0
0 a

))
= η(a) I

for a in I . Since the representation of H in A0(η) is the direct sum of invariant irreducible subspaces

there is an invariant subspace U of A0(η) which transforms according ot π. Let ϕ belong to U . If g is

in GA

ϕg(x) = ϕ

((
1 x
0 1

)
g

)

is a function on F \ A. Since ϕg is continuous it is determined by its Fourier series. The constant term

is
1

measureF \ A

∫

F\A

ϕ

((
1 x
0 1

)
g

)
dx

which is 0 because ϕ is a cusp form. If ψ is a given non­trivial character of F \ A the other non­trivial
characters are the functions x→ ψ(αx) with α in F×. Set

ϕ1(g) =
1

measureF \ A

∫

F\A

ϕ

((
1 x
0 1

)
g

)
ψ(−x) dx.

Since ϕ is a function on GF \GA.

ϕ1

((
α 0
0 1

)
g

)
=

1

measureF \ A

∫

F\A

ϕ

((
1 x
0 1

)
g

)
ψ(−αx) dx

if α belongs to F×. Thus, formally at least,

ϕ(g) = ϕg(e) =
∑

α∈F×

ϕ1

((
α 0
0 1

)
g

)
.

In any case it is clear that ϕ1 is not 0 unless ϕ is.
Let

U1 = {ϕ1

∣∣ϕ ∈ U}.

Since the map ϕ → ϕ1 commutes with the action of H the space U1 is invariant and transforms
according to π under right translation by H. Moreover

ϕ1

((
1 x
0 1

)
g

)
= ψ(x)ϕ1(g)

if x is in A. If F is a number field ϕ is slowly increasing. Therefore if Ω is a compact subset of GA there

is a real number M such that

ϕ1

((
a 0
0 1

)
g

)
= O(|a|M )

as |a| → ∞ for all g in Ω. Propositions 9.2 and 9.3 imply that all πv are infinite dimensional and that

U1 is W (π, ψ). Therefore U1 is completely determined by π and ψ and U is completely determined by
π. We have therefore proved the following curious proposition.
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Proposition 11.1.1 If an irreducible represntation of H is contained in A0(η) it is contained with
multiplicity one.

For almost all v there is in W (πv, ψv) a function ϕ0
v such that ϕ0

v(gvkv) = ϕ0
v(gv) for all kv in Kv

while ϕ0
v(e) = 1. W (π, ψ) is spanned by functions of the form

ϕ1(g) =
∏

v

ϕv(gv) (11.1.2)

where ϕv is in W (πv, ψv) for all v and equal to ϕ0
v for almost all v.

Supposeϕ corresponds to a functionϕ1 of the form (11.1.2). Supposeϕ = ϕ0
v so thatπv contains the

trivial representation of Kv. If εv is the normalized Haar measure on Kv let λv be the homomorphism

of εvHvεv into C associated to πv. If fv is in εvHvεv then

λv(fv)ϕ(g) =

∫

Gv

ϕ(gh) fv(h) dh

and if λ′v is the homomorphism associated to |ηv|
−1/2 ⊗ πv

λ′v(fv) |η(detg)|−
1
2 ϕ(g)

is equal to ∫

Gv

|η(detgh)|−
1
2 ϕ(gh) fv(h) dh.

Since ϕ is a cusp form the function |η(detg)|−1/2 ϕ(g) is bounded and λ′v satisifies the conditions of
Lemma 3.10. Thus if πv = π(µv, νv) both µv and νv are unramified and

|η($v)|
1
2 |$v|

1
2 ≤ |µv($v)| ≤ |η($v)|

1
2 |$v|

− 1
2

|η($v)|
1
2 |$v|

1
2 ≤ |νv($v)| ≤ |η($v)|

1
2 |$v|

− 1
2

if $v is the generator of the maximal ideal of Ov. Consequently the infinite products defining L(s, π)
and L(s, π̃) converge absolutely for Re s sufficiently large.

We know that for any v and any ϕv in W (πv, ψv) the integral

∫

F×
v

ϕv

((
av 0
0 1

)
gv

)
|av|

s− 1
2 d×av

converges absolutely for Re s large enough. Suppose that, for all a in I , |η(a)| = |a|r with r real.

Applying Lemma 3.11 we see that if s+ r > 1
2 and ϕ0

v is defined

∫

F×
v

∣∣∣∣ϕ
0
v

((
av 0
0 1

)
gv

)∣∣∣∣ |av|
s− 1

2 d×av

is, for gv in Kv, at most
1

(
1 − |$v|

s+r− 1
2

)2 .
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Thus if ϕ1 is of the form (11.1.2) the integral

Ψ(g, s, ϕ1) =

∫

I

ϕ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

is absolutely convergent and equal to ∏

v

Ψ(gv, s, ϕv)

for Re s sufficiently large. Since Φ(gv, s, ϕv) is, by Proposition 3.5, equal to 1 for almost all v we can set

Φ(g, s, ϕ1) =
∏

v

Φ(gv, s, ϕv)

so that
Ψ(g, s, ϕ1) = L(s, π)Φ(g, s, ϕ1).

We can also introduce

Ψ̃(g, s, ϕ1) =

∫

I

ϕ1

((
a 0
0 1

)
g

)
η−1(a) |a|s−

1
2 d×a

and show that
Ψ̃(g, s, ϕ1) = L(s, π̃) Φ̃(g, s, ϕ1)

if
Φ̃(g, s, ϕ1) =

∏

v

Φ̃(gv, s, ϕv).

Lemma 11.1.3 There is a real number s0 such that for all ϕ1 in W (π, ψ) the integrals

Ψ(g, s, ϕ1) =

∫

I

ϕ1

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

Ψ̃(g, s, ϕ1) =

∫

I

ϕ1

((
a 0
0 1

)
g

)
η−1(a) |a|s−

1
2 d×a

are absolutely convergent for Re s > s0. The functions Ψ(g, s, ϕ1) and Ψ̃(g, s, ϕ1) can both be
extended to entire functions of s. If F is a number field they are bounded in vertical strips and if
F is function field they are rational functions of q−s. Moreover

Ψ̃(wg, 1 − s, ϕ1) = Ψ(g, s, ϕ1).

We have seen that the first assertion is true for functions of the form (11.1.2). Since they form a
basis of W (π, ψ) it is true in general. To show that

ϕ(g) =
∑

α∈F×

ϕ1

((
α 0
0 1

)
g

)
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we need only show that the series on the right is absolutely convergent. We will do this later on in this
paragraph. At the moment we take the equality for granted. Then, for all ϕ1, Ψ(g, s, ϕ1) which equals

∫

F×\I

{ ∑

α∈F×

ϕ1

((
αa 0
0 1

)
g

)}
|a|s−

1
2 d×a

is equal to ∫

F×\I

ϕ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

for Re s sufficiently large. Also Ψ̃(g, s, ϕ1) is equal to

∫

F×\I

ϕ

((
a 0
0 1

)
g

)
η−1(a) |a|s−

1
2 d×a.

We saw in the previous paragraph that, for a given g and any real number M ,

∣∣∣∣ϕ
((

a 0
0 1

)
g

)∣∣∣∣ = O(|a|M )

as |a| approaches 0 or ∞. Thus the two intregals define entire functions of s which are bounded in

vertical strips. If F is a function field the function

a→ ϕ

((
a 0
0 1

)
g

)

has compact support on F× \ I so that the integral can be expressed as a finite Laurent series in q−s.

The function Ψ̃(wg, 1 − s, ϕ1) is equal to

∫
ϕ

((
a 0
0 1

)
wg

)
η−1(a) |a|

1
2−s d×a.

Since w is in GF the equality ϕ(wh) = ϕ(h) holds for all h in GA and this integral is equal to

∫
ϕ

((
1 0
0 a

)
g

)
η−1(a) |a|

1
2−s d×a.

Since (
1 0
0 a

)
=

(
a 0
0 a

)(
a−1 0
0 1

)

we can change variables in the integral to obtain

∫
ϕ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

which is Ψ(g, s, ϕ1).

If we choose ϕ1 of the form (11.1.2) we see that L(s, π)Φ(g, s, ϕ1) is entire and bounded in vertical
strips of finite width. For almost all v the value of Φ(gv, s, ϕ

0
v) at the identity e is 1 and for such v we
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choose ϕv = ϕ0
v. At the other places we choose ϕv so that Φ(e, s, ϕv) is an exponential eavs with real

av . Then Φ(e, s, ϕ1) is an exponential. Consequently L(s, π) is also entire and bounded in vertical

strips of finite width. If F is a number field Φ(e, s, ϕ1) will be a power of q−s so that L(s, π) will be a
finite Laurent series in q−s. Similar considerations apply to L(s, π̃).

To prove the functional equation we start with the relation

L(s, π)
∏

v

Φ(e, s, ϕv) = L(1 − s, π̃)
∏

v

Φ̃(w, 1 − s, ϕv).

By the local functional equation the right hand side is

L(1 − s, π̃)
∏

v

{
ε(s, πv, ψv)Φ(e, s, ϕv)

}
.

Cancelling the term
∏
v Φ(e, s, ϕv) we obtain

L(s, π) = ε(s, π)L(1− s, π̃).

Corollary 11.2 Suppose π = ⊗vπv is a constituent of A. For any quasi-character ω of F× \ I the
products ∏

v

L(s, ωv ⊗ πv)

and ∏

v

L(s, ω−1
v ⊗ π̃v)

are absolutely convergent for Re s sufficiently large. The functions L(s, ω ⊗ π) and L(s, ω−1 ⊗ π̃)
they define can be analytically continued to the whole complex plane as meromorphic functions
which are bounded at infinity in vertical strips of finite width and have only a finite number of
poles. If F is a function field they are rational functions of q−s. If π is a constituent of A0 they
are entire. In all cases they satisfy the functional equation

L(s, ω ⊗ π) = ε(s, ω ⊗ π)L(1− s, ω−1 ⊗ π̃)

if

ε(s, ω ⊗ π) =
∏

v

ε(s, ωv ⊗ πv, ψv).

If π = ⊗vπv is a constituent of A or A0 and ω is a quasi­character of F× \ I so is ω⊗ π. Moreover

ω ⊗ π = ⊗v(ωv ⊗ πv).
The converses to the corollary can take various forms. We consider only the simplest of these. In

particular, as far as possible, we restrict ourselves to cusp forms.
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Theorem 11.3 Let π = ⊗πv be a given irreducible representation of H. Suppose that the quasi-
character η of I defined by

π

((
a 0
0 a

))
= η(a) I

is trivial on F×. Suppose there is a real number r such that whenever πv = π(µv, νv) the inequalities

|$v|
−r ≤ |µv($v)| ≤ |$v|

r

and
|$v|

−r ≤ |νv($v)| ≤ $v|
r

are satisfied. Then for any quasi-character ω of F× \ I the infinite products

L(s, ω ⊗ π) =
∏

v

L(s, ωv ⊗ πv)

and
L(s, ω−1 ⊗ π̃) =

∏

v

L(s, ω−1
v ⊗ π̃v)

are absolutely convergent for Re s large enough. Suppose L(s, ω⊗ π) and L(s, ω−1 ⊗ π̃) are, for all
ω, entire functions of s which are bounded in vertical strips and satisfy the functional equation

L(s, ω ⊗ π) = ε(s, ω ⊗ π)L(1− s, ω−1 ⊗ π̃)

If the πv are all infinite dimensional π is a constituent of A0.

The absolute convergence of the infinite products is clear. We have to construct a subspace U of
A0 which is invariant under H and transforms according to the representation π. W (π, ψ) transforms

according to π. If ϕ1 belongs to W (π, ψ) set

ϕ(g) =
∑

α∈F×

ϕ1

((
α 0
0 1

)
g

)

We shall see later that this series converges absolutely and uniformly on compact subsets of GA. Thus
ϕ is a continuous function onGA. Since the map ϕ1 → ϕ commutes with right translations by elements

of H we have to show that, for all ϕ1, ϕ is in A0 and that ϕ is not zero unless ϕ1 is.
Since ψ is a character of F \ A

ϕ

((
1 ξ
0 1

)
g

)
= ϕ(g)

for all ξ in F . Thus, for each g,

ϕ

((
1 x
0 a

)
g

)

is a function on F \ A. The constant term of its Fourier expansion is

1

measureF \ A

∫

F\A

ϕ

((
1 x
0 1

)
g

)
dx.
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The integral is equal to
∑

α

∫

F\A

ϕ1

((
1 αx
0 1

)(
α 0
0 1

)
g

)
dx.

A typical term of this sum is

ϕ1

((
α 0
0 1

)
g

)∫

F\A

ψ(αx) dx = 0.

In particular ϕ is cuspidal. Another simple calculation shows that if β belongs to F×

1

measureF \ A

∫

F\A

ϕ

((
1 x
0 1

)
g

)
ψ(−βx) dx

is equal to

ϕ1

((
β 0
0 1

)
g

)
.

Thus ϕ1 is zero if ϕ is.
By construction

ϕ

((
α 0
0 1

)
g

)
= ϕ(g)

if α is in F×. Moreover, for all a in I ,

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g).

If a is in F× the right side is just ϕ(g). Thus ϕ is invariant under left translations by elements of PF ,
the group of super­triangular matrices in GF . Since GF is generated by PF and w =

(
0
−1

1
0

)
all we

need do to show that ϕ is a function on GF \GA is to show that

ϕ(wg) = ϕ(g).

By linearity we need only establish this when ϕ1 has the form (11.1.2). The hypothesis implies as

in the direct theorem that the integrals

Ψ(g, s, ϕ1) =

∫

I

ϕ1

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a

and

Ψ̃(g, s, ϕ1) =

∫

I

ϕ1

((
a 0
0 1

)
g

)
η−1(a) |a|s−

1
2 d×a

converge absolutely for Re s sufficiently large. Moreover

Ψ(g, s, ϕ1) =
∏

v

Ψ(gv, s, ϕv) = L(s, π)
∏

v

Φ(gv, s, ϕv).
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Almost all factors in the product on the right are identically one so that the product, and therefore
Ψ(g, s, ϕ1), is an entire function of s. In the same way

Ψ̃(g, s, ϕ1) = L(s, π̃)
∏

v

Φ̃(gv, s, ϕv)

and is entire. Since

Φ̃(wgv, 1 − s, ϕv) = ε(s, πv, ψv)Φ(gv, s, ϕv)

the function Ψ̃(wg, 1 − s, ϕ1) is equal to

L(1− s, π̃) ε(s, π)
∏

v

Φ(gv, s, ϕv)

which, because of the functional equation assumed for L(s, π), is equal to Ψ(g, s, ϕ1).

>From its integral representation the function Ψ(g, s, ϕ1) is bounded in any vertical strip of finite

width contained in a certain right half­plane. The equation just established shows that it is also bounded
in vertical strips of a left half­plane. To verify that it is bounded in any vertical strip we just have to

check that it grows sufficiently slowly that the Phrágmen–Lindelöf principle can be applied,

Ψ(g, s, ϕ1) = L(s, π)
∏

v

Φ(gv, s, ϕv).

The first term is bounded in any vertical strip by hypothesis. Almost all factors in the infinite product
are identically 1. If v is non­archimedean Φ(gv, s, ϕv) is a function of |$v|

s and is therefore bounded

in any vertical strip. If v is archimedean

Φ(gv, s, ϕv) =
Ψ(gv, s, ϕv)

L(s, πv)

We have shown that the numerator is bounded at infinity in vertical strips. The denominator is, apart

from an exponential factor, a Γ­function. Stirling’s formula shows that it goes to 0 sufficiently slowly

at infinity.
If Re s is sufficiently large

Ψ(g, s, ϕ1) =

∫

F×\I

∑

α∈F×

ϕ1

((
αa 0
0 1

)
g

)
|a|s−

1
2 d×a

which is ∫

F×\I

ϕ

((
a 0
0 1

)
g

)
|a|s−

1
2 d×a.

This integral converges absolutely when Re s is sufficiently large. If Re s is large and negative

Ψ̃(wg, 1 − s, ϕ1) =

∫

F×\I

ϕ

((
a 0
0 1

)
wg

)
η−1(a) |a|

1
2−s d×a

which equals ∫

F×\I

ϕ

(
w

(
1 0
0 a

)
g

)
η−1(a) |a|

1
2−s d×a.
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Using the relation (
1 0
0 a

)
=

(
a 0
0 a

)(
a−1 0
0 1

)

and changing variables we see that this integral is equal to

∫

F×\I

ϕ

(
w

(
a 0
0 1

)
g

)
|a|s−

1
2 d×a.

Set

f1(a) = ϕ

((
a 0
0 a

)
g

)

and

f2(s) = ϕ

(
w

(
a 0
0 a

)
g

)
.

We are trying to show that for any g the functions f1 and f2 are equal. The previous discussion applies

to ω ⊗ π as well as to π. If ϕ1 is in W (π, ψ) the function

ϕ′
1(g) = ω(detg)ϕ1(g)

is in W (ω ⊗ π, ψ). When ϕ1 is replaced by ϕ′
1 the function ϕ is replaced by

ϕ′(g) = ω(detg)ϕ(g)

and fi is replaced by
f ′
i(a) = ω(detg)ω(a) fi(a).

Thus for any quasi­character ω of F× \ I the integral

∫

F×\I

f1(a)ω(a) |a|s−
1
2 d×a

is absolutely convergent for Re s sufficiently large and the integral

∫

F×\I

f2(s)ω(a) |a|s−
1
2 d×a

is absolutely convergent for Re s large and negative. Both integrals represent functions which can be

analytically continued to the same entire function. This entire function is bounded in vertical strips of
finite width.

The equality of f1 and f2 is a result of the following lemma.
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Lemma 11.3.1 Let f1 and f2 be two continuous functions on F×\I. Assume that there is a constant
c such that for all characters of ω of F× \ I the integral

∫

F×\I

f1(a)ω(a) |a|s d×a

is absolutely convergent for Re s > c and the integral

∫

F×\I

f2(a)ω(a) |a|s d×a

is absolutely convergent for Re s < −c. Assume that the functions represented by these integrals
can be analytically continued to the same entire function and that this entire function is bounded
in vertical strips of finite width. Then f1 and f2 are equal.

Let I0 be the group of idèles of norm 1. Then F× \ I0 is compact. It will be enough to show that

for each b in I the functions f1(ab) and f2(ab) on F× \ I0 are equal. They are equal if they have the
same Fourier expansions. Since any character of F× \ I0 can be extended to a character of F× \ I we

have just to show that for every character ω of F× \ I

f̂1(ω, b) = ω(b)

∫

F×\I0

f1(ab)ω(a) d×a

is equal to

f̂2(ω, b) = ω(b)

∫

F×\I0

f2(ab)ω(a) d×a.

These two functions are functions on I0 \ I which is isomorphic to Z if F is a number field and to R if
F is a function field.

If F is a function field we have only to verify the following lemma.

Lemma 11.3.2 Suppose {a1(n)
∣∣n ∈ Z} and {a2(n)

∣∣n ∈ Z} are two sequences and q > 1 is a real
number. Suppose ∑

n

a1(n) q−ns

converges for Re s sufficiently large and

∑

n

a2(n) q−ns

converges absolutely for Re s large and negative. If the functions they represent can be analytically
continued to the same entire function of s the two sequences are equal.

Once stated the lemma is seen to amount to the uniqueness of the Laurent expansion. If F is a
number field the lemma to be proved is a little more complicated.
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Lemma 11.3.3 Suppose g1 and g2 are two continuous functions on R. Suppose there is a constant
c such that

ĝ1(s) =

∫

R

g1(x) e
sx dx

converges absolutely for Re s > c and

ĝ2(s) =

∫

R

g2(x) e
sx dx

converges absolutely for Re s < −c. If ĝ1 and ĝ2 represent the same entire function and this
function is bounded in vertical strips then g1 = g2.

All we need do is show that for every compactly supported infinitely differentiable function g the

functions g ∗ g1 and g ∗ g2 are equal. If

ĝ(s) =

∫

R

g(x) esx dx

is the Laplace transform of g the Laplace transform of g ∗ gi is ĝ(s) ĝi(s). By the inversion formula

g ∗ gi(x) =
1

2πi

∫ b+i∞

b−i∞

ĝ(s) ĝi(s) e
−xs ds

where b > c if i = 1 and b < −c if i = 2. The integral converges because ĝ goes to 0 faster than the

inverse of any polynomial in a vertical strip. Cauchy’s integral theorem implies that the integral is
independent of b. The lemma follows.

To complete the proof of Theorem 11.3, and Theorem 11.1, we have to show that for any ϕ1 in

W (π, ψ) the series
∑

α∈F×

ϕ1

((
α 0
0 1

)
g

)

is uniformly absolutely convergent for g in a compact subset ofGA and that if ϕ(g) is its sum then, if F
is a number field, for any compact subset Ω of GA and any c > 0 there are constants M1 and M2 such

that ∣∣∣∣ϕ
((

a 0
0 1

)
g

)∣∣∣∣ ≤M1 |a|
M2

for g in Ω and |a| ≥ c. We prefer to prove these facts in a more general context which will now be

described.
For us a divisor is just a formal product of the form

D =
∏

pmp .

It is taken over all non­archimedean places. The integers mp are non­negative and all but a finite

number of them are 0. Let S be a finite set of non­archimedean places containing all the divisors of D,

that is, all places p for which mp > 0.
If a belongs to I we can write a in a unique manner as a product aS âS where the components of

aS outisde S are 1 and those of âS inside S are 1. aS belongs to Is =
∏
v∈S F

×
v . Let ISD be the set of



idèles a such that, for any p in S, ap is a unit which satisfies ap ≡ 1(modpmp). Then I = F× ISD and

F× \ I is isomorphic to F× ∩ ISD \ ISD .

If p is in S let KD
p be the subgroup of all

(
a b
c d

)

in Kp for which c ≡ 0 (modpmp). Let K̂D
p be the subgroup of such matrices for which a ≡ d ≡

1(modpmp). Set

KD
S =

∏

p∈S

KD
p

and set
K̂D
S =

∏

p∈S

K̂D
p

K̂D
S is a normal subgroup of KD

S and the quotient KD
S /K̂

D
S is abelian.

Let GSD be the set for all g in GA such that gp is in the group KD
p for all p in S. Any g in GA may

be written as a product gS ĝS where gS has component 1 outside of S and ĝS has component 1 inside

S. GS is the set of gS and ĜS is the set of ĝS . In particular

GSD = KD
S · ĜS .

It is easily seen that
GA = GF G

S
D.

In addition toD and S we suppose we are given a non­trivial character ψ of F \A, two characters

ε and ε̂ of KD
S /K̂

D
S , two complex valued functions α → aα and α → âα on F×, an irreducible

representation π of ĤS = ⊗v 6∈SHv, and a quasi­character η of F× \ I .
There are a number of conditions to be satisifed. If

(
a 0
0 b

)

belongs to KD
S then

ε̂

((
a 0
0 b

))
= ε

((
b 0
0 a

))
.

If α belongs to F× and β belongs to F× ∩ ISD

aαβ = ε

((
βS 0
0 1

))
aα

and

âαβ = ε̂

((
βS 0
0 1

))
âα.
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The functions α → aα and α→ âα are bounded. Moreover aα = âα = 0 if for some v in S the number
α regarded as an element of Fv does not lie in the largest ideal on which ψv is trivial. If v belongs to S
and a is a unit in Ov

ε

((
a 0
0 a

))
= ηv(a).

Let π = ⊗v 6∈Sπv. Then for a in F×
v

πv

((
a 0
0 a

))
= ηv(a) I.

Because of these two conditions η is determined by π and ε. There is a real number r such that if

πv = π(µv, νv)
|$v|

r ≤ |µv($v)| ≤ |$v|
−r

and
|$v|

r ≤ |νv($v)| ≤ |$v|
−r.

Finally we suppose that πv is infinite dimensional for all v not in S.
These conditions are rather complicated. Nonetheless in the next paragraph we shall find ourselves

in a situation in which they are satisifed. When S is empty, D = 0, aα = âα = 1 for all α they reduce

to those of Theorem 11.3. In particular with the next lemma the proof of that theorem will be complete.
We shall use the conditions to construct a space U of automorphic forms onGA such that U transforms

under ĤS according to π while each ϕ in U satisifes

ϕ(gh) = ε(h)ϕ(g)

for h in KD
S . If U is such a space then for any ϕ in U and any a in I

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g).

This is clear if a belongs ot ISD and follows in general from the relation I = F× ISD .

Recall that W (π, ψ) is the space of functions on ĜS spanned by functions of the form

ϕ1(g) =
∏

v 6∈S

ϕv(gv)

where ϕv belongs to W (πv, ψv) for all v and is equal to ϕ0
v for almost all v.

Lemma 11.4 Suppose ϕ1 belongs to W (π, ψ).
(i) For any g in GSD the series

ϕ(g) =
∑

α∈F×

aα ε(gS)ϕ1

((
α̂S 0
0 1

)
ĝS

)

converges absolutely. The convergence is uniform on compact subsets of GSD.
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(ii) The function ϕ defined by this series is invariant under left translation by the matrices in
GF ∩GSD of the form (

α β
0 δ

)
.

(iii) Suppose F is a number field. Let Ω be a compact subset of GSD. Then there are positive
constants M1 and M2 such that

|ϕ(g)| ≤M1

{
|a| + |a|−1

}M2

if

g =

(
1 x
0 1

)(
a 0
0 1

)
h

with h in Ω, a in ISD, and
(

1
0
x
1

)
in GSD.

It is enough to prove these assertions when ϕ1 has the form

ϕ1(g) =
∏

v 6∈S

ϕv(gv).

To establish the first and third assertions we need only consider the series

∑

α∈F×

δ(α)
∏

v 6∈S

∣∣∣∣ϕv
((

α 0
0 1

)
gv

)∣∣∣∣ (11.4.1)

where δ(α) = 0 if for some v in S the number α regarded as an element of Fv is not the largest ideal on

which ψv is trivial and δ(α) = 1 otherwise.
We need only consider compact sets Ω of the form

Ω = KD
S

∏

v 6∈S

Ωv (11.4.2)

where Ωv is a compact subset of Gv and Ωv = Kv for almost all v.

Lemma 11.4.3 Suppose Ω is of the form (11.4.2). There is a positive number ρ such that for each
non-archimedean place v which is not in S there is a constant Mv such that

∣∣∣∣ϕv
((

a 0
0 1

)
h

)∣∣∣∣ ≤Mv|a|
−ρ

for a in F×
v and h in Ωv and a constant cv such that

∣∣∣∣ϕv
((

a 0
0 1

)
h

)∣∣∣∣ = 0
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if |a| > cv and h is in Ωv. Moroever one may take Mv = cv = 1 for almost all v.

Since ϕv is invariant under an open subgroup of Kv for all v and is invariant under Kv for almost

all v while Ωv = Kv for almost all v it is enough to prove the existence of Mv, cv, and ρ such that these

relations are satisifed when h = 1. Since the function

a→ ϕv

((
a 0
0 1

))

belongs to the space of the Kirillov model the existence of cv is clear. cv can be taken to be 1 when Ov
is the largest ideal of Fv on which ψv is trivial and ϕv = ϕ0

v.
The existence of Mv, for a given v and sufficiently large ρ, is a result of the absolute convergence

of the integral defining Ψ(e, s, ϕv). Thus all we need do is show the existence of a fixed ρ such that the

inequality ∣∣∣∣ϕv
((

a 0
0 1

))∣∣∣∣ ≤ |a|−ρ

is valid for almost all v. For almost all v the representation πv is of the form π(µv, νv) with µv and νv
unramified, Ov is the largest ideal of Fv on which ψv is trivial, and ϕv = ϕ0

v. Thus, for such v,

ϕv

((
εa 0
0 1

))
= ϕv

((
a 0
0 1

))

if ε is a unit in Ov and
∑

n

ϕv

((
$n
v 0

0 1

))
|$v|

n
(
s− 1

2

)
= L(s, πv).

If ρv = µv($v) and σv = νv($v)

L(s, πv) =
1(

1 − ρv|$v|s
) 1(

1 − σv|$v|s
) .

Since |ρv| ≤ |$v|
−r and |σv| ≤ |$v|

−r

∣∣∣∣ϕv
((

$n
v 0

0 1

))∣∣∣∣ =
∣∣∣∣
ρn+1
v − σm+1

v

ρv − σv

∣∣∣∣ ≤ (n+ 1) |$v|
−rn.

Since |$v| ≤
1
2

there is a constant ε > 0 such that

(n+ 1) ≤ |$v|
−εn

for all v and all n ≥ 0.

If v is archimedean the integral representations of the functions in W (πv, ψv) show that there are
positive constants cv, dv, and Mv such that

∣∣∣∣ϕv
((

a 0
0 1

)
h

)∣∣∣∣ ≤Mv |a|
−cv exp

(
− dv |a|

εv
v

)

for a in F×
v and h in Ωv. εv is 1 if v is real and 1

2
if v is complex.
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Since we want to prove not only the first assertion but also the third we consider the sum

f

((
b 0
0 1

)
g

)
=
∑

α∈F×

δ(α)
∏

v 6∈S

∣∣∣∣ϕv
((

bvα 0
0 1

)
gv

)∣∣∣∣

where g lies in the set (11.4.2) and b is an idèle such that bv = 1 for all non­archimedean v. We also
suppose that there is a positive number t such that bv = t for all archimedean v. If Λ is a set of α in F
for which |α|v ≤ cv for all non­archimedean v not in S and δ(α) 6= 0 then

f

((
b 0
0 1

)
g

)

is bounded by ∑

α∈Λ
α 6=0

{ ∏

v∈Sa

Mv|αt|
−cv
v exp(−dvt |α|

εv
v )
}{ ∏

v 6∈S∪Sa

Mv|αv|
−ρ
}
.

If F is a function field Λ is a finite set and there is nothing more to prove. If it is a number field

choose for each v in S a constant cv such that δ(α) = 0 unless |α|v ≤ cv. Since

∏

v

|α|v = 1,

∏

v 6∈S∪Sa

|α|−ρv ≤
{∏

v∈S

cρv
}{ ∏

v∈Sa

|α|ρv
}
.

Thus our sum is bounded by a constant times the product of
∏
v∈Sa

t−cv/εv and

∑

α∈Λ
α 6=0

∏

v∈Sa

{
|α|ρ−cv

v exp
(
− dvt|α|

εv
v

)}
.

The product
∏
v∈Sa

|α|v is bounded below on Λ−{0}. Multiplying each term by the same sufficiently

high power of
∏
v∈Sa

|α|v we dominate the series by another series

∑

α∈Λ

∏

v∈Sa

{
|α|ρv

v exp(−dvt |α|
εv
v )
}

in which the exponents ρv are non­negative. This in turn is dominated by
∏
v∈Sa

t−ρv/εv times

∑

α∈Λ

∏

v∈Sa

exp
(−dv

2
t |α|εv

v

)
.

Λ may be regarded as a lattice in
∏
v∈Sa

Fv. if λ1, · · · , λn is a basis of Λ there is a constant d such that

if α =
∑
ai λi ∑

v∈Sa

dv
2

|α|εv
v ≥ d

∑
|ai|.
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Thus

f

((
b 0
0 1

)
g

)

is dominated by some power of t times a multiple of

{ ∞∑

a=−∞

e−dt|a|
}n

which is bounded by a multiple of
(
1 + 1

t

)n
.

The first assertion is now proved and the third will now follow from the second and the observation

that every element of ISD is the product of an element of F×, an idèle whose components are 1 at all
non­archimedean places and equal to the same positive number at all archimedean places, and an idèle

which lies in a certain compact set.
Suppose ξ is in F and (

1 ξ
0 1

)

belong to GSD. Then ξ is integral at each prime of S and ψv(αξ) = 1 if aα 6= 0. If g belongs to GSD and

h =

(
1 ξ
0 1

)
g

then ε(hS) = ε(gS) and if v is not in S

ϕv

((
α 0
0 1

)
hv

)
= ψv(αξ)ϕv

((
α 0
0 1

)
gv

)
.

If aα 6= 0 ∏

v 6∈S

ψv(αξ) =
∏

v

ψv(αξ) = 1.

Consequently

ϕ

((
1 ξ
0 1

)
g

)
= ϕ(g).

If b belongs to ISD then

ε

((
bS 0
0 bS

)
gS

)
= η(bS) ε(gS)

and

ϕ1

((
b̂Sα̂S 0

0 b̂S

)
ĝS

)
= η(b̂S)ϕ1

((
α̂S 0
0 1

)
ĝS

)

so that

ϕ

((
b 0
0 b

)
g

)
= η(b)ϕ(g).

In particular if β belongs to F× ∩ ISD

ϕ

((
β 0
0 β

)
g

)
= ϕ(g).
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If β belongs to F× ∩ ISD and

h =

(
β 0
0 1

)
g

then

ε(hS) = ε

((
βS 0
0 1

))
ε(gS)

and ϕ(h) is equal to
∑

α

aαε

((
βS 0
0 1

))
ε(gS)ϕ1

((
α̂S β̂S 0

0 1

)
ĝS

)
.

Since

aαβ = ε

((
βS 0
0 1

))
aα

we can change variables in the summation to see that ϕ(h) = ϕ(g).

The lemma is now proved. The function

ϕ̂(g) =
∑

α∈F×

âα ε̂(gS)ϕ1

((
α̂S 0
0 1

)
ĝS

)

can be treated in the same fashion.

Theorem 11.5 If ω is a quasi-characters of F× \ I such that

ωv(av) ε

((
av 0
0 1

))
= 1

for all units av of Ov set

Λ(s, ω) =
{ ∑

F×∩IS
D
\F×

aα ω(αS) |αS |
s− 1

2

} ∏

v 6∈S

L(s, ωv ⊗ πv).

If

ωv(av) ε̂

((
av 0
0 1

))
= 1

for all units av in Ov set

Λ̂(s, ω) =
{ ∑

F×∩IS
D
\F×

âα ω(αS) |αS |
s− 1

2

} ∏

v 6∈S

L(s, ωv ⊗ πv).

Then Λ(s, ω) and Λ̂(s, ω) are defined for Re s sufficiently large. Suppose that whenever ω is such

that Λ(s, ω) or Λ̂(s, ω) is defined they can be analytically continued to entire functions which are
bounded in vertical strips. Assume also that there is an A in F× such that |A|p = |$p|

mp for any
p in S and

Λ(s, ω) =
{ ∏

v∈S

ωv(−A) |A|s−1/2
v

}{ ∏

v 6∈S

ε(s, ωv ⊗ πv, ψv)
}

Λ̂(1 − s, η−1ω−1)



Chapter 2 196

whenever Λ(s, ω) is defined. Then for any ϕ1 in W (π, ψ) there is an automorphic form ϕ on GA

such that

ϕ(g) =
∑

aα ε(gS)ϕ1

((
α̂S 0
0 1

)
ĝS

)

on GSD.

The infinite products occurring in the definition of Λ(s, ω) and Λ̂(s, ω) certainly converge for Re s
sufficiently large. To check that the other factors converge one has to check that

∑
|αS |

s− 1
2

converges for Re s sufficiently large if the sum is taken over those elements α of a system of coset
representatives of F× ∩ ISD \ F× for which |α|v ≤ cv for v in S. This is easily done.

AS is the idèle whose components are 1 outside of S and A in S. Since

(
0 1
AS 0

)(
a b
c d

)(
0 A−1

S

1 0

)
=

(
d cA−1

S

ASb a

)

the matrix (
0 1
AS 0

)

normalizes KD
S . In particular if g belongs to GSD so does

(
0 1
A 0

)
g

(
0 A−1

S

1 0

)
.

Lemma 11.5.1 If ϕ1 is in W (π, ψ) and g is in GSD then, under the hypotheses of the theorem,

ϕ̂

((
0 1
A 0

)
g

(
0 A−1

S

1 0

))
= ϕ(g).

Let ϕ′(g) be the function on the left. As before all we need do is show that for every character ω
of F× ∩ ISD \ ISD and every g in GSD the integral

∫

F×∩IS
D
\IS

D

ϕ

((
a 0
0 1

)
g

)
ω(a) |a|s−

1
2 d×a (11.5.2)

is absolutely convergent for Re s large and positive. The integral

∫

F×∩IS
D
\IS

D

ϕ′

((
a 0
0 1

)
g

)
ω(a) |a|s−

1
2 d×a (11.5.3)

is absolutely convergent for Re s large and negative, and they can be analytically continued to the same
entire function which is bounded in vertical strips.

If for any v in S the character

a→ ωv(a) ε

((
a 0
0 a

))
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on the group of units of Ov is not trivial the integrals are 0 when they are convergent. We may thus
assume that

ωv(a) ε

((
a 0
0 1

))
= 1

for all units in Ov if v is in S.
We discuss the first integral in a formal manner. The manipulations will be justified by the final

result. The integrand may be written as a double sum

∑∑
aαγ ε

((
aS 0
0 1

)
gS

)
ϕ1

((
âSα̂S γ̂S 0

0 1

)
ĝS

)
ω(a) |a|s−

1
2 .

The inner sum is over γ in F×∩ ISD and the outer over a set of coset representatives α of F×∩ ISD \F×.

Since

aαγ ε

((
aS 0
0 1

))
= aα ε

((
γSaS 0

0 1

))

and

ω(a) |a|s−
1
2 = ω(γa) |γa|s−

1
2

the integral is equal to ε(gS) times the sum over α of

aα

∫

IS
D

ϕ1

((
α̂S âS 0

0 1

)
ĝS

)
ε

((
aS 0
0 1

))
ω(a) |a|s−

1
2 d×a.

Since ISD is the direct product of

ÎS = {a ∈ I
∣∣ aS = 1}

and a compact group under which the integrand is invariant the previous expression is equal to

aα

∫

ÎS

ϕ1

((
α̂Sa 0
0 1

)
ĝS

)
ω(a) |a|s−

1
2 d×a.

Changing variables to rid ourselves of the α̂S in the integrand and taking into account the relation

1 = ω(α) |α|s−
1
2 = ω(αS)ω(α̂S) |αS |

s− 1
2 |α̂S |

s− 1
2

we can see the original integral is equal to

ε(gS)
∑

aα ω(αS) |αS |
s− 1

2

∫

ÎS

ϕ1

((
a 0
0 1

)
ĝS

)
ω(a) |a|s−

1
2 d×a.

There is no harm in supposing that ϕ1 is of the form

ϕ1(ĝS) =
∏

v 6∈S

ϕv(gv).
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We have already seen that, in this case,

∫

ÎS

ϕ1

((
a 0
0 1

)
ĝS

)
ω(a) |a|s−

1
2 d×a

is convergent for Re s large and positive and is equal to

∏

v 6∈S

∫

F×
v

ϕv

((
av 0
0 1

)
gv

)
ωv(av) |av|

s− 1
2 d×av.

If ϕ′
v is the function

ϕ′
v(h) = ωv(h)ϕv(h)

in W (ωv ⊗ πv, ψv) this product is

∏

v 6∈S

{
L(s, ωv ⊗ πv)Φ(gv, s, ϕ

′
v)ω

−1
v (detgv)

}
.

Thus the integral (11.5.2) is absolutely convergent for Re s large and positive and is equal to

ε(gS)ω(detĝS) Λ(s, ω)
∏

v 6∈S

Φ(gv, s, ϕ
′
v).

The argument used in the proof of Theorem 11.3 shows that this function is entire.
If

h =

(
0 1
A 0

)(
a 0
0 1

)
g

(
0 A−1

S

1 0

)

then

ε̂(hS) = ε

((
aS 0
0 1

)
gS

)
.

Thus the integrand in (11.5.3) is equal to

∑
âα ε

((
aS 0
0 1

)
gS

)
ϕ1

((
α̂S 0
0 1

)(
0 1
ÂS 0

)(
âS 0
0 1

)
ĝS

)
ω(a) |a|s−

1
2 .

The sum can again be written as a double sum over γ and α. Since

âαγ = ε

((
aS 0
0 1

))
= âα ε

((
1 0
0 γS

))
ε

((
aS 0
0 1

))

which equals

âα η(γS) ε

((
γ−1
S aS 0
0 1

))

and

ϕ1

((
α̂S γ̂S 0

0 1

)(
0 1
ÂS 0

)(
âS 0
0 1

)
ĝS

)
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is equal to

η(γ̂S)ϕ1

((
α̂S 0
0 1

)(
0 1
ÂS 0

)(
γ̂−1
S âS 0
0 1

)
ĝS

)

we can put the sum over F×∩ ISD and the integration over F× ∩ ISD \ ISD together to obtain ε(gS) times

the sum over F× ∩ ISD \ F× of

âα

∫

IS
D

ε

((
aS 0
0 1

))
ϕ1

((
α̂S 0
0 1

)(
0 1
ÂS 0

)(
âS 0
0 1

)
ĝS

)
ω(a) |a|s−

1
2 d×a.

We write

(
α̂S 0
0 1

)(
0 1
ÂS 0

)(
âS 0
0 1

)
=

(
0 1
−1 0

)(
α̂S 0
0 α̂S

)(
−α̂−1

S ÂS âS 0
0 1

)

and then change variables in the integration to obtain the product of ω(−AS) |AS |
s− 1

2 and

âα η
−1(αS)ω−1(αS) |αS |

1
2−s

∫

ÎS

ϕ1

((
0 1
−1 0

)(
a 0
0 1

)
ĝS

)
ω(a) |a|s−

1
2 d×a.

Replacing a by a−1 and making some simple changes we see that the integral is equal to

∫

ÎS

ϕ1

((
a 0
0 1

)(
0 1
−1 0

)
ĝS

)
η−1(s)ω−1(a) |a|

1
2−s d×a

which converges for Re s large and negative and is equal to

∏

v 6∈S

{
L(1− s, η−1

v ω−1
v ⊗ πv)Φ(wgv, 1 − s, ϕ′

v)ωv(detgv)
}
.

Thus the integral 11.5.3 is equal to

ε(gS)ω(detĝS)ω(−AS) |AS |
s− 1

2 Λ̂(1 − s, η−1ω−1)
∏

v 6∈S

Φ(wg, 1 − s, ϕ′
v)

which is entire.

Since
Φ(wgv, 1 − s, ϕ′

v) = ε(s, ωv ⊗ πv, ψ)Φ(gv, s, ϕ
′
v)

the analytic continuations of (11.5.2) and (11.5.3) are equal. We show as in the proof of Theorem 11.3
that the resultant entire function is bounded in vertical strips of finite width.

There is now a simple lemma to be proved.
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Lemma 11.5.3 The group GF ∩GSD is generated by the matrices in it of the form

(
a β
0 δ

)

and (
α 0
γ δ

)
.

This is clear if S is empty. Suppose that S is not empty. If

g =

(
α β
γ δ

)

belongs to GF ∩GSD and |α|v = 1 for all v in S then

g =

(
α 0
γ δ − βγ

α

)(
1 β

γ
0 1

)

and both matrices belong to GF ∩ GSD. In general if g is in GF ∩ GSD then, for each v in S, |α|v ≤ 1,
|γ|v ≤ 1 and either |α|v or |γ|v is 1. Choose ξ in F so that, for every v in S, |ξv| = 1 if |α|v < 1 and

|ξv| < 1 if |α|v = 1. Then

(
1 ξ
0 1

)(
α β
γ δ

)
=

(
α + ξγ β + ξδ
γ δ

)

and |α+ ξγ|v = 1 for all v in S. The lemma follows.
We know that if

h =

(
α β
0 δ

)

belongs to GF ∩GSD then ϕ(hg) = ϕ(g) and ϕ̂(hg) = ϕ̂(g). Suppose

(
α 0
γ δ

)

is in GF ∩GSD. Then

ϕ

((
α 0
γ δ

)
g

)
= ϕ̂

((
0 1
A 0

)(
α 0
γ δ

)
g

(
0 A−1

S

1 0

))
.

Since the argument on the right can be written

(
δ γA−1

0 α

)(
0 1
A 0

)
g

(
0 A−1

S

1 0

)

and the first term of this product lies in GF ∩GSD the right side is equal to

ϕ̂

((
0 1
A 0

)
g

(
0 A−1

S

1 0

))
= ϕ(g).
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Thus ϕ is invariant under GF ∩ GSD. Since GA = GF G
S
D the function ϕ extends in a unique

manner to a function, still denoted ϕ, on GF \GA. It is clear that ϕ isK­finite and continuous and that

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I . It is not quite so clear that ϕ is slowly increasing. If Ω is a compact subset of GA there is a

finite set γ1, · · · , γ` in GF such that

Ω = ∪`i=1Ω ∩ γ−1
i GSD.

What we have to show then is that if γ belongs to GF and c > 0 is given there are constants M1 and
M2 such that for all g in Ω ∩ γ−1GSD and all a in I for which |a| ≥ c

∣∣∣∣γ
((

a 0
0 1

)
g

)∣∣∣∣ ≤M1|a|
M2 .

If v is a place of F , which is not in S and is archimedean if F is a number field, there is a compact
set C in I such that

{a ∈ I
∣∣ |a| ≥ c} ⊆ F×{a ∈ F×

v

∣∣ |a| ≥ c}C

Thus the inequality has only to be verified for a in F×
v — of course at the cost of enlarging Ω. If

γ =

(
α β
0 δ

)

then

γ

(
a 0
0 1

)
g =

(
a x
0 1

)
γg

with x = (1− α)βδ and the conclusion results from Lemma 11.4 and the relation

BA = (BA ∩GF ) (BA ∩GSD)

if

BA =
{( b y

0 1

)
∈ GA

}
.

Otherwise we write

γ =

(
α1 β1

0 δ1

)(
0 1
−1 0

)(
1 β2

0 1

)
.

Then

γ

(
a 0
0 1

)
g =

(
1 β1

δ1
0 1

)(
α1 0
0 δ1a

)(
0 1
−1 0

)(
1 β2

a
0 1

)
g.

The matrix (
0 1
−1 0

)(
1 β2

a
0 1

)
g

lies in a certain compact set which depends on Ω, c, and γ. The required inequality again follows from

Lemma 11.4

The space U of functions ϕ corresponding to ϕ1 in W (π, ψ) transforms under ĤS according to
π. Lemma 10.13 implies that every element of U is an automorphic form. If it is not contained in A0,

Lemma 10.12 applied to the functions

ϕ0(g) =
1

measureF \ A

∫

F\A

ϕ

((
1 x
0 1

)
g

)
dx

with ϕ in U shows that there are two quasi­characters µ and ν on F× \ I such that πv = π(µv, νv) for
almost all v.
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Corollary 11.6 Suppose there does not exist a pair µ, ν of quasi-characters of F × \ I such that
πv = π(µv, νv) for almost all v. Then there is a constituent π′ = ⊗π′

v of A0 such that πv = π′
v for

all v not in S.

Since U transforms under ĤS according to π it is, if v is not in S, the direct sum of subspaces

transforming under Hv according to πv . By assumption U is contained in A0 and therefore in A0(η).
A0(η) is the direct sum of subspaces invariant and irreducible under H. Choose one of these summands

V so that the projection of U on V is not 0. If π′ = ⊗π′
v is the representation of H on V it is clear that

π′
v = πv if v is not in S.

Another way to guarantee that U lies in the space of cusp forms and therefore that the conclusion

of the corollary holds is to assume that for at least one v not in S the representation πv is absolutely
cuspidal.
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§12. Some extraordinary representations. In [18] Weil has introduced a generalization of the Artin
L­functions. To define these it is necessary to introduce the Weil groups. These groups are discussed

very clearly in the notes of Artin–Tate but we remind the reader of their most important properties. If
F is a local field letCF be the multiplicative group of F and if F is a global field letCF be the idèle class

group F× \ I . If K is a finite Galois extension of F the Weil group WK/F is an extension of G(K/F ),

the Galois group of K/F , by CK . Thus there is an exact sequence

1 → CK → WK/F → G(K/F ) → 1.

If L/F is also Galois and L contains K there is a continous homomorphism τL/F,K/F of WL/F onto
WK/F . It is determined up to an inner automorphism of WK/F by an element of CK . In particular

WF/F = CF and the kernel of τK/F,F/F is the commutator subgroup of WK/F . Also if F ⊆ E ⊆ K
we may regard WK/F as a subgroup of WK/F . If F is global and v a place of F we also denote by v
any extension of v to K . There is a homomorphism αv of WKv/Fv

into WK/F which is determined up

to an inner automorphism by an element of CK .
A representation σ ofWK/F is a continuous homomorphism ofWK/F into the group of invertible

linear transformations of a finite­dimensional complex vector space such that σ(w) is diagonalizable for

allw inWK/F . IfK is contained in L then σ ◦ τL/F,K/F is a representation ofWL/F whose equivalence
class is determined by that of σ. In particular if ω is a generalized character of CF then ω ◦ τK/F,F/F is

a one­dimensional representation ofWK/F which we also call ω. If σ is any other representation ω⊗ σ
has the same dimension as σ. If F ⊆ E ⊆ K and ρ is a representation ofWK/E onX let Y be the space

of functions ϕ on WK/F with values in X which satisfy

ϕ(uw) = ρ(u)ϕ(w)

for all u in WK/E . If v ∈WK/F and ϕ ∈ Y let σ(v)ϕ be the function

W → ϕ(wv)

σ(v)ϕ also belongs to Y and v → σ(v) is a representation of WK/F . We write

σ = Ind(WK/F ,WK/E , ρ).

IfF is global and σ is a representation ofWK/F then, for any place v, σv = σ◦αv is a representation

of WKv/Fv
whose class is determined by that of σ.

Now we remind ourselves of the definition of the generalized Artin L­functions. Since we are

going to need a substantial amound of detailed information about these functions the best reference is
probably [19]. In fact to some extent the purpose of [19] is to provide the background for this chapter

and the reader who wants to understand all details will need to be quite familiar with it. If F is a local

field then to every representation σ of WK/F we can associate a local L­function L(s, σ). Moreover if
ψF is a non­trivial additive character of F we can define a local factor ε(s, σ, ψF ). The L­function and

the factor ε(s, σ, ψF ) depend only on the equivalance class of σ.
If F is a global field we set

L(s, σ) =
∏

v

L(s, σv)
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The product converges in a right half­plane and L(s, σ) can be analytically continued to a function
meromorphic in the whole complex plane. If ψF is a non­trivial character of F \ A the functions

ε(s, σv, ψv) are identically 1 for all but a finite number of v. If

ε(s, σ) =
∏

v

ε(s, σv, ψv)

and σ̃ is the representation contragredient to σ the functional equation

L(s, σ) = ε(s, σ)L(1 − s, σ̃)

is satisfied. For all but finitely many places v the representation σv is the direct sum of d, the dimension

of σ, one­dimensional representations. Thus there are generalized characters µ1
v, · · · µ

d
v of CFv

such

that σv is equivalent to the direct sum of the one dimensional representations

w 7→ µiv
(
τKv/Fv ,Fv/Fv

(w)
)
.

Moreover, for all but finitely many of these v, µ1
v, · · · , µ

d
v are unramified and there is a constant r, which

does not depend on v, such that

|µiv($v)| ≤ |$v|
r 1 ≤ i ≤ d.

If F is a global or a local field and σ is a representation of WK/F then w → detσ(w) is a one­
dimensional representation and therefore corresponds to a generalized character ofCF . We denote this

character by detσ.
If F is a local field, σ is a two­dimensional representation of WK/F , and ψF is a non­trivial

additive character of F then, as we saw in the first chapter, there is at most one irreducible admissible

representation π of HF such that

π

((
α 0
0 α

))
= detσ(α) I

and, for all generalized characters ω of CF ,

L(s, ω ⊗ π) = L(s, ω ⊗ σ)

L(s, ω−1 ⊗ π̃) = L(s, ω−1 ⊗ σ)

ε(s, ω ⊗ π, ψF ) = ε(s, ω ⊗ σ, ψF ).

If ψ′
F (x) = ψF (βx) then

ε(s, ω ⊗ σ, ψ′
F ) = detω ⊗ σ(β) ε(s, ω ⊗ σ, ψF )

and, since

π

((
α 0
0 α

))
= detσ(α) I

one also has
ε(s, ω ⊗ π, ψ′

F ) = detω ⊗ σ(β) ε(s, ω ⊗ π, ψF ).
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Thus π, if it exists at all, is independent of ψF . We write π = π(σ).
There are a number of cases in which the existence of π(σ) can be verified simply by comparing

the definitions of the previous chapter with those of [19]. If µ and ν are two quasi­characters ofCF and
σ is equivalent to the representation

w →

(
µ
(
τK/F,F/F (w)

)
0

0 ν
(
τK/F,F/F (w)

)
)

then π(σ) = π(µ, ν). IfK/F is a separable quadratic extension, χ is a quasi­character of CK = WK/K ,

and
σ = Ind(WK/F ,WK/K , χ)

then π(σ) = π(χ). Observe that π(χ) is alway infinite­dimensional.
SupposeF is a global field andK is a separable quadratic extension ofF . Letχ be a quasi­character

of CK and let
σ = Ind(WK/F ,WK/K , χ).

If v does not split in K
σv = Ind(WKv/Fv

,WKv/Kv
, χv),

but if v splits in K the representation σv is the direct sum of two one­dimensional representations
corresponding to quasi­characters µv and νv such that µvν

−1
v is a character. Thus π(σv) is defined and

infinite­dimensional for all v.

Proposition 12.1 If there is no quasi-character µ of CF such that χ(α) = µ(NK/Fα) for all α in
CK the representation ⊗vπ(σv) is a constituent of A0.

If ω is a generalized character of F then

(ω ⊗ σ)v = ωv ⊗ σv.

Define a generalized charcter ωK/F of CK by

ωK/F (α) = ω
(
NK/F (α)

)
.

Then

ω ⊗ σ = Ind(WK/F ,WK/K , ωK/Fχ)

and

L(s, ω ⊗ σ) = L(s, ωK/Fχ).

The L­function on the right is the Hecke L­function associated to the generalized character ωK/Fχ of
CK . It is entire and bounded in vertical strips unless there is a complex number r such that

ωK/F (α)χ(α) = |α|r = |NK/Fα|
r.

But then

χ(α) = ω−1(NK/Fα) |NK/Fα|
r

which is contrary to assumption. The function

L(s, ω−1 ⊗ σ̃) = L(s, ω−1
K/Fχ

−1)

is also entire and bounded in vertical strips. It follows immediately that the collection {π(σv)} satisfies

the conditions of Theorem 11.3.
This proposition has a generalization which is one of the principal results of these notes.
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Theorem 12.2 Suppose F is a global field and σ is a two-dimensional representation of WK/F .
Suppose also that for every generalized character ω of CF both L(s, ω ⊗ σ) and L(s, ω−1 ⊗ σ̃) are
entire functions which are bounded in vertical strips. Then π(σv) exists for every place v and
⊗vπ(σv) is a constituent of A0.

We observe that the converse to this theorem is an immediate consequence of Theorem 11.1.
We are going to apply Corollary 11.6. There are a large number of conditions which must be

verified. We know that π(σv) is defined for all but a finite number of v. In particular it is defined for
v archimedean for then σv is either induced from a quasi­character of a quadratic extension of Fv or is

the direct sum of two one­dimensional representations. If σv is equivalent to the direct sum of two one­

dimensional representations corresponding to quasi­charcters µv and νv then µvν
−1
v is a character so

that π(σv) is infinite­dimensional. Let S be the set of places for which π(σv) is infinite­dimensional. Let

S be the set of places for which π(σv) is not defined or, since this is still conceivable, finite dimensional.
We are going to show that S is empty but at the moment we are at least sure that it is finite. If v is not

in S set πv = π(σv).

If v is in S the representation σv must be irreducible so that

L(s, ωv ⊗ σv) = L(s, ω−1
v ⊗ σ̃v) = 1

for every generalized character ωv of F×
v . The Artin conductor pmv

v of σv is defined in the Appendix to

[19]. There is a constant cv, depending on σv , such that if ωv is unramifed

ε(s, ωv ⊗ σv, ψv) = cv ωv($v)
mv+2n |$v|

(mv+2nv)(s− 1
2 )

if p−nv
v is the largest ideal on which ψv is trivial. ψv is the restriction to Fv of a given non­trivial

character of F \ A.

We take
D =

∏

p∈S

pmp

and η = detσ. We define ε and ε̂ by

ε

((
av 0
0 bv

))
= detσv(bv)

and

ε̂

((
av 0
0 bv

))
= detσv(av)

if v belongs to S and av and bv are units of Ov. If α belongs to F× and |α|v = |$v|
−nv for every v in S

we set aα = 1 and âα =
∏
v∈S cv detσv(α); otherwise we set aα = âα = 0.

The function Λ(s, ω) of Theorem 11.5 is defined only if ωv is unramified at each place of S and

then it equals {∏

v∈S

ωv($
−nv
v ) |$v|

−nv(s− 1
2 )
} {∏

v 6∈S

L(s, ωv ⊗ πv)
}

which is {∏

v∈S

ωv($
−nv
v ) |$v|

−nv(s− 1
2 )
}
L(s, ω ⊗ σ).
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Λ̂(s, ω−1η−1) is also defined if ωv is unramifed at each place of S and is equal to

{∏

v∈S

cv ωv($
nv
v ) |$v|

−nv(s− 1
2 )
}
L(s, ω−1 ⊗ σ̃).

Choose A in F× so that |Av| = |$v|
mv for every v in S. Then

∏

v∈S

ωv(−A) |A|
s− 1

2
v =

∏

v∈S

ωv($v)
mv |$v|

mv(s− 1
2 ).

The functional equation asserts that L(s, ω ⊗ σ) is equal to

{∏

v∈S

ε(s, ωv ⊗ σv, ψv)
}{∏

v 6∈S

ε(s, ωv ⊗ σv, ψv)
}
L(1− s, ω−1 ⊗ σ̃).

The first factor is equal to

{∏

v∈S

cv ωv($v)
2nv |$v|

2nv(s− 1
2 )
}{∏

v∈S

ωv(−A) |A|
s− 1

2
v

}
.

Therefore Λ(s, ω) is equal to

{∏

v∈S

ωv(−A) |A|
s− 1

2
v

}{∏

v 6∈S

ε(s, ωv ⊗ σv, ψv)
}
Λ̂(1 − s, ω−1η−1).

The assumptions of Theorem 11.5 are now verified. It remains to verify that of Corollary 11.6. It

will be a consequence of the following lemma.

Lemma 12.3 Suppose F is a global field, K is a Galois extension of F , and ρ and σ are two
representations of the Weil group WK/F . If for all but a finite number of places v of F the local
representations ρv and σv are equivalent then ρ and σ are equivalent.

We set
L0(s, σ) =

∏

p

L(s, σp).

The product is taken over all non­archimedean places. We first prove the following lemma.

Lemma 12.4 If σ is unitary the order of the pole of L0(s, σ) at s = 1 is equal to the multiplicity
with which the trivial representation is contained in σ.

There are fieldsE1, · · · , Er lying betweenF andK , charactersχE1
, · · · , χEr

, and integersm1, · · · ,mr

such that σ is equivalent to

⊕ri=1mi Ind(WK/F ,WK/E , χEi
)

Let δi = 1 if χEi
is trivial and 0 otherwise. Since

L0(s, σ) =
r∏

i=1

L0(s, χEi
)mi
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the order of its pole at s = 1 is
∑r
i=1mi δi. However

Ind(WK/F ,WK/E , χEi
)

contains the trivial representation if and only if χEi
is trivial and then it contains it exactly once. Thus∑r

i=1mi δi is also the number of times the trivial representation occurs in σ.
Observe that if T is any finite set of non­archimedean primes the order of the pole of

∏

p6∈T

L(s, σp)

at s = 1 is the same as that of L0(s, σ).
The first step of the proof of Lemma 12.3 is to reduce it to the case that both ρ and σ are unitary.

Then ρ and σ certainly have the same degree d. Let ρ act onX and let σ act on Y . Under the restriction ρ
toCK the spaceX decomposes into the direct sum of invariant one­dimensional subspacesX1, · · · ,Xd
which transform according to quasi­characters µ1, · · · , µd of CK . If a is a real number let

M(a) = {i
∣∣ |µi(α)| = |α|a for all α in CK}

and let
X(a) =

∑

i∈M(a)

Xi

X(a) is invariant underWK/F andX =
∑

a⊕X(a). Let ρ(a) be the restriction of ρ toX(a). Replacing

ρ by σ and X by Y we can define ν1, · · · , νd and Y (a) in a similar fashion.

We now claim that if ρv is equivalent to σv then ρv(a) is equivalent σv(a) for each a. To see this

we need only verify that any linear transformation from X to Y which commutes with the action of
WKv/Fv

or even of CKv
takes X(a) to Y (a). Observe that under the restriction of ρv to CKv

the space

Xi transforms according to the character µiv and that |µiv(α)| = |α|a for all α in CKv
if and only if

|µi(α)| = |α|a for all α in CK . Thus X(a) and Y (a) can be defined in terms of ρv and σv alone. The

assertion follows.

Thus we may as well assume that for some real number a

|µi(α)| = |νi(α)| = |α|a

for all i and all α in CK . Replacing σ by α → |α|−a σ(α) and ρ by α → |α|−a ρ(α) if necessary we
may even assume that a = 0. Then ρ and σ will be equivalent to unitary representations and we now

suppose them to be unitary.

If τ is irreducible and ρ ' τ ⊕ ρ′ and σ ' τ ⊕ σ′ then ρ′v is equivalent to σ′v whenever ρv is
equivalent to σv . Since we can use induction on d it is enough to show that if τ is irreducible and

unitary and contained in ρ then it is contained in σ. Let ρ̃ and σ̃ be the representations contragredient
to ρ and σ. Certainly (ρ̃ ⊗ τ)v = ρ̃v ⊗ τv is equivalent to (σ̃ ⊗ τ)v for all but a finite number of v.

Moreover ρ̃⊗ τ contains τ̃ ⊗ τ which contains the identity. If σ̃⊗ τ contains the identity then, as is well­

known and easily verified, σ contains τ . On the other hand the orders of the poles of L0(s, ρ̃⊗ τ) and
L0(s, σ̃⊗ τ) at s = 1 are clearly equal so that, by Lemma 12.4, σ̃⊗ τ contains the trivial representations

if ρ̃⊗ τ does.
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We return to the proof of Theorem 12.2. It follows from Lemma 12.3 that if the assumptions of
Corollary 11.6 are not satisfied σ is equivalent to the direct sum of two one­dimensional representations

associated to quasi­characters µ and ν of CF . Then

L(s, ω ⊗ σ) = L(s, ωµ)L(s, ων).

The two functions on the right are HeckeL­functions. The function on the left is entire for every choice

of ω. Taking ω = µ−1 and ω = ν−1 we see that L(s, µ−1ν) and L(s, ν−1µ) have a zero at s = 1. Let
µ−1 ν(α) = |α|r χ(α) where χ is a character. Then

L(s, µ−1ν) = L(s+ r, χ)

L(s, ν−1µ) = L(s− r, χ−1).

Now neither L(s, χ) nor L(s, χ−1) has a zero in the set Re s ≥ 1. Therefore 1 + r < 1 and 1 − r < 1.

This is impossible.
We can now apply Corollary 11.6 to assert that there is a constituent π′ =

∏
v ⊗π

′
v of A0 such that

π′
v = π(σv) for v not in S. To prove the theorem we need only show that π′v = π(σv) for v in S. Taking

the quotient of the two functional equations

L(s, ω ⊗ σ) =
{∏

v

ε(s, ωv ⊗ σv, ψv
}
L(1− s, ω−1 ⊗ σ̃)

and

L(s, ω ⊗ π′) =
{∏

v

ε(s, ωv ⊗ π′
v, ψv)

}
L(1− s, ω−1 ⊗ π̃′),

we find that ∏

v∈S

L(s, ωv ⊗ σv)

L(s, ωv ⊗ π′
v)

is equal to {
∏

v∈S

ε(s, ωv ⊗ σvψv)

ε(s, ωv ⊗ π′
v, ψv)

} {
∏

v∈S

L(1 − s, ω−1
v ⊗ σ̃v)

L(1 − s, ω−1
v ⊗ π̃′

v)

}
.

We need one more lemma. If v is a non­archimedean place and ωv is a quasi­character of F×
v

let m(ωv) be the smallest non­negative integer such that ωv is trivial on the units of Ov congruent to

1 modulo p
m(ωv)
v .

Lemma 12.5 Suppose S is a finite set of non-archimedean places and v0 ∈ S. Suppose that we are
given a quasi-character χv0 of F×

v0
and for each v 6= v0 in S a non-negative integer mv. Then there

is a quasi-character ω of CF such that ωv0 = χv0 and m(ωv) ≥ mv if v 6= v0 belongs to S.

Suppose χv0(α) = |α|av0 χ
′
v0

(α) where χ′
v0

is a character. If ω′ is a character of CF and ω′
v0

= χ′
v0

while m(ω′
v) ≥ mv for v 6= v0 in S we may take ω to be the generalized character α → |α|r ω′(α)

of CF . In other words we may assume initially that χv0 is a character. Let A be the group of idèles

whose component at places not in S is 1, whose component of a place v 6∈ v0 in S is congruent to

1 modulo pmv
v , and whose component at v0 is arbitrary. Certainly F× ∩ A = {1}. We claim that F×A

is closed in I . Indeed if α ∈ I there is a compact neighborhood X of α on which the norm is bounded



Chapter 2 210

above by 1/ε and below by ε where ε is a positive constant. If β ∈ F× and γ ∈ A then |βγ| = |γ|.
Moreover

Aε = {γ ∈ A
∣∣ ε ≤ |γ| ≤

1

ε
}

is compact. Since F× is discrete F×Aε is closed. Since any point has a compact neighborhood whose
intersection with F×A is closed the set F×A is itself closed.

We can certainly find a character of A which equals χv0 on F×
v0 and, for any v 6= v0 in S, is

non­trivial on the set of units in Ov congruent to 1 modulo pmv
v . Extend this character to F×A by

setting it equal to 1 on F×. The result can be extended to a character of I which is necessarily 1 on F×.

We take ω to be this character.
Let π′

v

((
αv

0
0
αv

))
= ηv(αv). If η(α) =

∏
v ηv(αv) then η is a quasi­character of F× \ I . Since, by

construction, η = detσ on IsD the quasi­characters η and detσ are equal. Therefore ηv = detσv for all
v. We know that if m(ωv) is sufficiently large

L(s, ωv ⊗ σv) = L(s, ωv ⊗ π′
v) = 1

and
L(1− s, ω−1

v ⊗ σ̃v) = L(1− s, ω−1
v ⊗ π̃′

v) = 1.

Moreover, by Proposition 3.8

ε(s, ωv ⊗ π′
v, ψv) = ε(s, ωvηv, ψv) ε(s, ωv, ψv).

It is shown in the Appendix of [19] that if m(ωv) is sufficiently large

ε(s, ωv ⊗ σv, ψv) = ε(s, ωvdetσv, ψv) ε(s, ωv, ψv).

Applying Lemma 12.5 and the equality preceding it we see that if v is in S and ωv is any quasi­

character of F×
v

L(s, ωv ⊗ σv)

L(s, ωv ⊗ π′
v)

=

{
ε(s, ωv ⊗ σv, ψv)

ε(s, ωv ⊗ π′
v, ψv)

} {
L(1− s, ω−1

v ⊗ σ̃)

L(1− s, ω−1
v ⊗ π̃′

v)

}
.

Recalling that
L(s, ωv ⊗ σv) = L(1− s, ω−1

v ⊗ σ̃v) = 1

for v in S we see that
L(1 − s, ω−1

v ⊗ π̃′
v)

L(s, ωv ⊗ π′
v)

=
ε(s, ωv ⊗ σv, ψv)

ε(, ωv ⊗ π′
v, ψv)

. (12.5.1)

The theorem will follow if we show that

L(s, ωv ⊗ π′
v) = L(1− s, ω−1

v ⊗ π′
v) = 1

for all choices of ωv.

If not, either π′v is a special representation or there are two quasi­characters µv and νv of F×
v such

that π′v = π(µv, νv). According to (12.5.1) the quotient

L(1 − s, ω−1
v ⊗ π′

v)

L(s, ωv ⊗ π′
v)
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is an entire function of s for every choice of ωv . If π′
v = π(µv, νv) and m(µ−1

v νv) is positive

L(1− s, µv ⊗ π̃′
v)

L(s, µ−1
v ⊗ π′

v)
=

1 − |$v|
s

1 − |$v|1−s

which has a pole at s = 1. If m(µ−1
v νv) = 0

L(1− s, µv ⊗ π̃′
v)

L(s, µ−1
v ⊗ π′

v)
=

{
1 − |$v|

s

1 − |$v|1−s

} {
1 − µ−1

v νv($v) |$v|
s

1 − µv ν
−1
v ($v) |$v|1−s

}

which has a pole at s = 1 unless µv ν
−1
v ($v) = |$v|. But then it has a pole at s = 2. If π′v is the special

representation associated to the pair of quasi­characters

α → µv(α) |α|
1
2 α→ µv(α) |α|−

1
2

of F×
v then

L(1 − s, µv ⊗ π̃′
v)

L(s, µ−1
v ⊗ π′

v)
=

1 − |$v|
s+ 1

2

1 − |$v|
1
2−s

which has a pole at s = 1
2 .

There is a consequence of the theorem which we want to observe.

Proposition 12.6 Suppose E is a global field and that for every separable extension F of E, every
Galois extension K of F , and every irreducible two-dimensional representation σ of WK/F the
function L(s, σ) is entire and bounded in vertical strips. Then if F1 is the completion of E at some
place, K1 is a Galois extension of F1, and σ1 is a two-dimensional representation of WK1/F1

the
representation π(σ1) exists.

We begin with a simple remark. The restriction of σ1 to CK1
is the direct sum of two one­

dimensional representations corresponding to generalized characters χ1 and χ2 of CK1
. If τ belongs

to G = G(K1/F1) either χ1

(
τ(α)

)
= χ1(α) for all α in CK or χ1

(
τ(α)

)
= χ2(α) for all α in CK . If

the representation σ1 is irreducible there is at least one τ for which χ1

(
τ(α)

)
= χ2(α). If χ1 6= χ2, the

fixed field L1 of
H =

{
τ ∈ G

∣∣χ1

(
τ(α)

)
≡ χ1(α)

}

is a quadratic extension of F . The restriction of σ1 toWK1/L1
is the direct sum of two one­dimensional

representations and therefore is trivial on the commutator subgroup Wc
K1/L1

which is the kernel of
τK1/F1,L1/F1

. With no loss of generality we may suppose thatK1 equalsL1 and is therefore a quadratic

extension of F1. Then σ1 is equivalent to the representation

Ind(WK1/F,
,WK1/K1

, χ1).

If σ1 is reducible π(σ1) is defined. The preceding remarks show that it is defined if σ1 is irreducible

and σ1(α) is not a scalar matrix for some α in CK1
. The proposition will therefore follow from

Theorem 12.2 and the next lemma.
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Lemma 12.7 Suppose F1 is the completion of the field E at some place, K1 is a Galois extension of
F1, and σ1 is an irreducible two-dimensional representation such that σ1(α) is a scalar matrix for
all α in CK1

. Then there is a separable extension F of E, a Galois extension K of F , a place v of
K, and isomorphism ϕ of Kv with K1 which takes Fv to F1, and an irreducible two-dimensional
representation σ of WK/F such that σv is equivalent to σ1 ◦ ϕ.

Observe that the existence of σ1 forces F1 to be non­archimedean. We establish a further sequence

of lemmas.

Lemma 12.8 Suppose V is a finite dimensional real vector space, G is a finite group of linear
transformations of V , and L is a lattice in V invariant under G. If χ is a quasi-character of L
invariant under G there is a quasi-character χ′ of V invariant under G and a positive integer m
such that the restrictions of χ′ and χ to mL are equal.

Let V̂ be the dual of V and V̂C its complexification. There is a y in V̂C such that χ(x) = e2πi〈x,y〉

for all x in L. If z belongs to V̂C the generalized character x → e2πi〈x,z〉 is trivial on L if and only if z

belongs to L̂
m . L̂ is the lattice

{v ∈ V̂
∣∣ 〈x, v〉 ∈ Z for all x in L}.

Let Ĝ be the group contragredient to G. We have to establish the existence of an m and a z in L̂
m such

that y− z is fixed by Ĝ. If σ belongs to Ĝ then σy−y = wσ belongs to L̂. Clearly σwτ +wσ = wστ . Set

z =
1

[G : 1]

∑

τ

wτ .

If m is taken to be [G : 1] this is the required element.

Lemma 12.9 Suppose F is a global field, K is a Galois extension of it, and v is a place of K.
Suppose also that [Kv : Fv] = [K : F ] and let χv be a quasi-character of CKv

invariant under
G = G(Kv/Fv) = G(K/F ). There is a closed subgroup A of finite index in CK which is invariant
under G and contains CKv

and a quasi-character χ of A invariant under G whose restriction to
CKv

is χv.

Suppose first that the fields have positive characteristic. We can choose a set of non­negative

integers nw, w 6= v, all but a finite number of which are zero, so that the group

B = CKv
×
∏

w 6=v

Unw

Kw

is invariant under G and contains no element ofK× except 1. Unw

Kw
is the group of units ofOKw

which
are congruent to 1 modulo pnw

Kw
. We extend χv to B by setting it equal to 1 on

∏

w 6=v

Unw

Kw

and then to A = K×B/K× by setting it equal to 1 on K×.
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Now let the fields have characteristic 0. Divide places of K different from v into two sets, S,
consisting of the archimedean places, and T , consisting of the non­archimedean ones. Choose a

collection of non­negative integers π′w, w ∈ T , all but a finite number of which are zero, so that

B′ = CKv
×
∏

w∈S

CKw
×
∏

w∈T

U
n′

w

Kw
.

is invariant under G and contains no roots of unity in K except 1. If w is archimedean let UKw
be the

elements of norm 1 in Kw and set

B′
a =

∏

w∈S

UKw
×
∏

w∈T

U
n′

w

Kw
.

B′/B′
a is isomorphic to the product of CKv

and

V =
∏

w∈S

CKw
/UKw

which is a vector group. The projection L of

M = B′
1(B

′ ∩K×)/B′
1

on V is a lattice in V and the projection is an isomorphism. Define the quasi­character µ of L so that if
m in M projects to m1 in CKv

and to m2 in V then

χv(m1)µ(m2) = 1.

µ is invariant under G. Choose a quasi­character µ′ of V and an integer n so that µ′ and µ are equal

on nL. Let ν′ be the quasi­character obtained by lifting χv × µ′ from CKv
× V to B′. It follows

from a theorem of Chevalley ([20] Theorem 1) that we can choose a collection of non­negative ingegers
{nw

∣∣w ∈ T} all but a finite number of which are zero so that nw ≥ n′
w for all w in T , so that

B = CKv
×
∏

w∈S

CKw
×
∏

w∈T

Unw

Kw

is invariant underG, and so that every element ofB∩K× is an nth power of some element ofB′∩K×.

The restriction ν of ν′ toB is trivial onB∩K×. We takeA = K×B/K× and letχ be the quasi­character
which is 1 on K× and ν on B.

Lemma 12.10 Suppose F1 is a completion of the global field E, K1 is a finite Galois extension of F1

with Galois group G1, and χK1
is a quasi-character of CK1

invariant under G1. There is a separable
extension F of E, a Galois extension K of F , a place v of K such that [Kv : Fv] = [K : F ], an
isomorphism ϕ of Kv with K1 which takes Fv to F1, and a quasi-character χ of CK invariant
under g(K/F ) such that χv = χK1

◦ ϕ.

We may as well suppose that F1 = Ew , where w is some place of E. It is known ([8], p.31) that

there is a polynomial with coefficients in E such that if θ is a root of this polynomial Ew(θ)/Ew is

isomorphic to K1/F1. Let L be the splitting field of this polynomial and extend w to a place of L.
The extended place we also call w. Replacing E by the fixed field of the decomposition group of w if
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necessary we may suppose that F1 = Ew, K1 = Lw and [Lw : Ew] = [L : E]. Now set χw = χK1
and

extend χw to a quasi­character χ′ of A as in the previous lemma.

Let K be the abelian extension of L associated to the subgroup A. Since A is invariant under
G(L/E) the extension K/E is Galois. Let v be a place of K dividing the place w of L. Since A
contains CLw

the fields Kv and Lw are equal. Let F be the fixed field of the image of G(Kv/Ew) in

G(K/E). Let v also denote the restriction of v to F . The fields Fv and Ew are the same. The mapping
NK/L : CK → CL maps CK into A. Let χ = χ′ ◦NK/L. Then χ is clearly invariant under G(K/F ).

Since NK/L restricted to Kv is an isomorphism of Kv with Lw which takes Fv onto Ew the lemma is
proved.

To prove Lemma 12.7 we need only show that if F is a global field, K is a Galois extension of F ,
χ is a quasi­character of CK invariant under G(K/F ), v is a place of K such that [K : F ] = [Kv : Fv],
and σ1 is an irreducible two­dimensional representation of WKv/Fv

such that σv(α) = χv(α)I for all

α in CKv
then there is a two­dimensional representation σ of WK/F such that σv is equivalent to σ1. σ

will be irreducible because σ1 is.

Let σ1 act on X . Let ρv be the right regular representation of WKv/Fv
on the space Vv of functions

f on WKv/Fv
satisfying

f(αw) = χv(α) f(w)

for all α in CKv
and all w in WKv/Fv

. If λ is a non­zero linear functional on X the map from x to the
function λ(σ1(w)x) is a WKv/Fv

­invariant isomorphism of X with a subspace Y of Vv .

Let V be the space of all functions f on WK/F satisfying

f(αw) = χ(α) f(w)

for all α in CK and all w in WK/F . Since [K : F ] = [Kv : Fv] the groups G(K/F ) and G(Kv/Fv) are

equal. Therefore
WK/F = CKWKv/Fv

Moreover CKv
= CK ∩WKv/Fv

. Thus the restriction of functions in V to WKv/Fv
is an isomorphism

of V with Vv . For simplicity we identify the two spaces. Let ρ be the right regular representation of

WK/F on V . If α belongs to CK then

f(wα) = χ(wαw−1) f(w) = χ(α) f(w)

because χ is G(K/F ) invariant. Therefore ρ(α) = χ(α) I and a subspace V is invariant under WK/F

if and only if it is invariant under WKv/Fv
. If we take for σ the restriction of ρ to Y then σv will be

equivalent to σ1.



Chapter 2 215

References

for Chapter II

Automorphic forms are discussed in terms of group representations in [3] and [11] as well as:

13. Godement, R., Analyse spectrale des fonctions modulaires, Seminaire Bourbaki, No. 278.
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Chapter III: Quaternion Algebras

§13. Zeta-functions for M(2, F ). In this paragraph F is again a local field and A = M(2, F ) is the

algebra of 2×2 matrices with entries from F . The multiplicative groupA× ofA is justGF = GL(2, F ).
If g is in GF we set

|g|A = αA(g) = |detg|2F .

Let π be an admissible representation of HF on the space V . Let the contragredient representation

π̃ act on on Ṽ . If v belongs to V and ṽ to Ṽ the function

〈π(g)v, ṽ〉 = 〈v, π̃(g−1)ṽ〉

is characterized by the relation
∫

〈π(gh), v, ṽ〉 f(h) dh = 〈π(g)π(f)v, ṽ〉

for all f in HF .
If Φ belongs to the Schwartz space S(A) and v belongs to V and ṽ to Ṽ we set

Z(π,Φ, v, ṽ) =

∫

GF

Φ(g) 〈π(g)v, ṽ〉 d×g

and

Z(π̃,Φ, v, ṽ) =

∫

GF

Φ(g) 〈v, π̃(g)ṽ〉 d×g

The choice of Haar measure is not important provided that it is the same for both integrals.

If ω is a quasi­character of F×

Z(ω ⊗ π,Φ, v, ṽ) =

∫

GF

Φ(g)ω(detg)〈π(g)v, ṽ〉 d×g

The purpose of this paragraph is to prove the following theorem.

Theorem 13.1 Let π be an irreducible admissible representation of HF and π̃ its contragredient. Let
π act on V and π̃ on Ṽ .

(i) For every v in V , ṽ in Ṽ , and Φ in S(A) the integrals defining Z(αsF ⊗ π,Φ, v, ṽ) and Z(αsF ⊗
π̃,Φ, v, ṽ) converge absolutely for Re s sufficiently large.

(ii) Both functions can be analytically continued to functions which are meromorphic in the whole
plane and bounded at infinity in vertical strips of finite width.

(iii) If

Z(α
s+ 1

2

F ⊗ π,Φ, v, ṽ) = L(s, π) Ξ(s,Φ, v, ṽ)

and
Z(α

s+ 1
2

F ⊗ π̃,Φ, v, ṽ) = L(s, π̃) Ξ̃(s,Φ, v, ṽ)

then Ξ(s,Φ, v, ṽ) and Ξ̃(s,Φ, v, ṽ) are entire.
(iv) There exist φ, v1, · · · , vn and ṽ1, · · · , ṽn such that

∑n
i=1 Ξ(s,Φ, vi, ṽi) is of the form a ebs with

a 6= 0.
(v) If Φ′ is the Fourier transform of Φ with respect to the character ψZ(x) = ψF (trx) then

Ξ̃(1− s,Φ′, v, ṽ) = ε(s, π, ψF ),Ξ(s,Φ, v, ṽ).

We suppose first that F is non­archimedean and π is absolutely cuspidal. Then we may take π in

the Kirillov form so that V is just S(F×). Since an additive character ψF = ψ is given we will of course

want to take the Kirillov model with respect to it. The next lemma is, in the case under consideration,
the key to the theorem.
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Lemma 13.1.1 If ϕ belongs to S(F×), v belongs to V , and ṽ belongs to Ṽ set

Φ(g) = ϕ(detg)〈v, π̃(g)ṽ〉 |detg|−1
F

if g belongs to GF and set Φ(g) = 0 if g in A is singular. Then Φ belongs to S(A) and its Fourier
transform is given by

Φ′(g) = ϕ′(detg)〈π(g)v, ṽ〉 |detg|−1
F η−1(detg)

if g belongs to GF and
Φ′(g) = 0

if g is singular. Here η is the quasi-character of F× defined by

π

((
a 0
0 a

))
= η(a) I

and

ϕ′ = π

((
0 1
−1 0

))
ϕ.

This lemma is more easily appreciated if it is compared with the next one which is simpler but

which we do not really need.

Lemma 13.1.2 Let S0(A) be the space of all Φ in S(A) that vanish on the singular elements and
satisfy ∫

φ

(
g1

(
1 x
0 1

)
g2

)
dx = 0

for g1 and g2 in GF . If Φ is in S0(A) so is its Fourier transform.

Since S0(A) is stable under left and right translations by the elements of GF it is enough to show

that

Φ′

((
a 0
0 0

))
= 0

for a in F and that ∫

F

Φ′

((
1 x
0 1

))
dx = 0

To verify these relations we just calculate the left sides!

Φ′

((
a 0
0 0

))
=

∫

A

Φ(g)ψA

(
g

(
a 0
0 0

))
dg

The right side is a positive multiple of

∫

GF

Φ(g)ψA

(
g

(
a 0
0 0

))
|detg|2 d×g

which equals ∫

GF /NF

ψA

(
g

(
a 0
0 0

))
|detg|2

{∫

F

Φ

(
g

(
1 x
0 1

))
dx
}
d×g
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This is 0 because the inner integral vanishes identically.

∫

F

Φ′

((
1 x
0 1

))
dx

is equal to ∫ {∫
Φ

((
α β
γ δ

))
ψF (α+ δ + γx) dα dβ dγ dδ

}
dx

which, by the Fourier inversion fomula, is equal to

∫
Φ

((
α β
0 δ

))
ψF (α+ δ) dαdδ dβ

which equals ∫
|α|ψF (α+ δ)

{
Φ

((
α 0
0 δ

)(
1 β
0 1

))
dβ
}
dαdδ

and this is 0.
We return to the proof of Lemma 12.1.1 for absolutely cuspidal π. Since 〈v, π̃(g)ṽ〉 has compact

support on GF moduloZF the function Φ(g) belongs to S(A). Moreover

∫

F

Φ

(
g

(
1 x
0 1

)
h

)
dx

is equal to

ϕ(detgh) |detgh|−1
F

∫
〈π(g−1v, π̃

((
1 x
0 1

))
π̃(h) v〉 dx.

Since π is absolutely cuspidal this integral is 0. Thus Φ belongs to S0(A) and, in particular, Φ′ vanishes
at the singular elements.

Suppose we can show that for all choice of ϕ, v, and ṽ

Φ′(e) = ϕ′(e) 〈v, ṽ〉. (13.1.3)

If h belongs to GF set Φ1(g) = Φ(h−1g). If a = deth, ϕ1(x) = |a|ϕ(a−1x), and v1 = π(h) v,

Φ1(g) = ϕ1(detg)〈v1, π̃(g)ṽ〉 |detg|−1
F .

Then Φ′
1(e) is equal to

ϕ′
1(e) 〈v1, v〉.

On the other hand

ϕ′
1 = π(w)ϕ = |a|π(w)π

((
a−1 0
0 1

))
ϕ

which equals

|a|π

((
a−1 0
0 a−1

))
π

((
a 0
0 1

))
π(w)ϕ.

Thus Φ′(h), which equals Φ′
1(e) |deth|−2, is

ϕ′(deth)〈π(h) v, ṽ〉 η−1(deth) |deth|−1.

The formula (13.1.3) will be a consequence of the next lemma.
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Lemma 13.1.4 Let dε be the normalized Haar measure on the group U = UF . If ν is a character of
U set

η(ν, x) =

∫

U

ν(ε)ψ(εx) dε

if x is in F . Let dx be the Haar measure on F which is self-dual with respect to ψ. Then

∫

F

η(ν, x$n)ψ(ax) dx = 0

unless |a| = |$|n but if a = ζ$n with ζ in U

∫

F

η(ν, x$n)ψ(ax) dx = ν(−ζ) |$|−n c−1

if c is the measure of U with respect to dx.

The general case results from the case n = 0 by a change of variable; so we suppose n = 0. In this

case the formulae amount to a statement of the Fourier inversion formula for the function which is 0
outside of U and equal to c−1ν(ε) on U .

Suppose we could show that there is a positive constant d which does not depend on π such that
for all ϕ, v, and ṽ

Φ′(e) = dϕ′(e) 〈v, ṽ〉.

Then we would have
Φ′(g) = dϕ′(detg) 〈π(g)v, ṽ〉 η−1(detg).

Exchanging π and π̃ and recalling that π̃ = η−1 ⊗ π we see that Φ′′, the Fourier transform of Φ′, is
given by

Φ′′(g) = d2ϕ′′(detg)〈v, π̃(g)ṽ〉 |detg|−1
F η(detg),

where ϕ′′ = π̃(w)ϕ1 if ϕ1(a) = ϕ′(a) η−1(a). According to the remarks preceding the statement of

Theorem 2.18, ϕ′′ is the product of π(w)ϕ′ = η(−1)ϕ and η−1(detg). Thus

Φ′′(g) = η(−1) d2ϕ(detg) 〈v, π̃(g)ṽ〉 |detg|−1
F .

Since Φ′′ = Φ(−g) = η(−1)Φ(g) the numbers d2 and d are both equal to 1. The upshot is that in

the proof of the formula (13.1.3) we may ignore all positive constants and in particular do not need to
worry about the normalizaton of Haar measures.

Moreover it is enough to prove the formula for ϕ, v, ṽ in a basis of the spaces in which they

are constrained to lie. Oddly enough the spaces are all the same and equal to S(F×). Assume
ϕ1 = v, ϕ2 = ṽ, and ϕ are supported respectively by $n1U , $n2U , and $nU and that, for all ε in U ,

ϕ1($
n1ε) = ν−1

1 (ε),ϕ2($
n2ε) = ν−1

2 (ε) and ϕ($nε) = ν−1(ε). ν, ν1 and ν2 are three characters of U .
The formal Mellin transforms of these three functions are ϕ̂1(µ, t) = δ(µν−1

1 )tn1 , ϕ̂2(µ, t) =
δ(µν−1

2 )tn2 , and ϕ̂(µ, t) = δ(µν−1)tn. Recall that, for example,

ϕ̂(µ, t) =
∑

n

tn
∫

U

ϕ($nε)µ(ε) dε.
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The scalar product 〈ϕ1, ϕ2〉 is equal to

∫
ϕ1(a)ϕ2(−a) d

×a = δ(ν1ν2) δ(n1 − n2) ν2(−1).

If η(ε$n) = ν0(ε) z
n
0 then

ϕ̂′(µ, t) = C(µ, t) ϕ̂(µ−1ν−1
0 , t−1z−1

0 )

which equals

δ(νµν0)
∑

m

Cm(ν−1ν−1
0 )tm−nz−n0 .

Consequently

ϕ̂′(1) = Cn(ν
−1ν−1

0 ) z−n0 .

Thus the formula to be proved reads

Φ′(e) = Cn(ν
−1ν−1

0 ) z−n0 ν2(−1) δ(ν1ν2) δ(n1 − n2).

Almost all g in A can be written in the form

g =

(
b 0
0 b

)(
1 −x
0 1

)(
a 0
0 a

)(
0 1
−1 0

)(
1 y
0 1

)

with a and b in F× and x and y in F . The additive Haar measure dg on A may be written as

dg = |detg|2F d
×g = |b4| d×b dx|a| d×a dy

and for any g of this form

ψA(g) = ψF
(
b(x− y)

)

while Φ(g) is equal to

η−1(b) |b2a|−1 ϕ(b2a)〈π

((
0 −1
1 0

)(
a−1 0
0 1

)(
1 x
0 1

))
ϕ1, π̃

((
1 y
0 1

))
ϕ2〉.

Let f1 and f2 be the two functions which appear in the scalar product. Their formal Mellin
transforms can be calculated by the methods of the second paragraph,

f̂1(µ, t) = ν0(−1)C(µ, t) η(µ−1ν−1
0 ν−1

1 ,$n1x)µ−1ν−1
0 (ζ) z−r−n1

0 t−r−n2

if a = ζϕr and

f̂2(µ, t) = η(µν−1
2 ,$n2y) tn2 .

The scalar product of f1 and f2 is equal to

∫
f1(a) f2(−a) d

×a
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which, by the Plancherel theorem for F×, is equal to

∑

µ

µ(−1)
1

2π

∫ 2π

0

f̂1(µ, e
iθ) f̂2(µ

−1, e−iθ) dθ.

A typical integral is equal to the product of ν0(−1)µ−1ν−1
0 (ζ)z−r−n1

0 and

∫ 2π

0

C(µ, eiθ) e−i(r+n1+n2)θ η(µ−1ν−1
0 ν−1

1 ,$n1x) η(µ−1ν−1
2 ,$n2y) dθ

which equals

2πCr+n1+n2
(µ) η(µ−1ν−1

0 ν−1
1 ,$n1x) η(µ−1ν2,$

n2y).

Also if a = ζ$r

η−1(b) |b2a|−1 ϕ(b2a) = ϕ(b2$r) ν−1(ζ) η−1(b) |b2|−1|a|−1.

If we put all this information together we get a rather complicated formula for Φ(g) which we

have to use to compute Φ′(e). Φ′(e) is expressed as an integral with respect to a, b, x, and y. We will

not try to write down the integrand. The integral with respect to a is an integration over ζ followed
by a sum over r. The integrand is a sum over µ. The integration over ζ annihilates all but one term,

that for which µνν0 = 1. We can now attempt to write down the resulting integrand, which has to be
integrated over b, x, and y, and summed over r. It is the product of

η−1(b) |b|2 ν(−1) z−r−n1
0 ϕ(b2$r)Cr+n1+n2

(ν−1ν−1
0 )

and
η(νν−1

1 ,$n1x) η(νν0ν
−1
2 ,$n2y)ψF

(
b(x− y)

)
.

The second expression can be integrated with respect to x and y. Lemma 13.1.4 shows that the
result is 0 unless |b| = |$|n1 = |$|n2 . In particular Φ′(e) = 0 if n1 6= n2. If n1 = n2 the integration

over b need only be taken over $n1U . Then the summation over r disappears and only the term for

which r + 2n1 = n remains. Apart from positive constants which depend only on the choices of Haar
measure Φ′(e) is equal to

z−n0 ν1(−1)Cn(ν
−1ν−1

0 )

∫

U

ν−1
1 ν−1

2 (ε) dε.

Since ∫

U

ν−1
1 ν−1

2 (ε) dε = δ(ν1ν2)

the proof of Lemma 13.1.1 is complete.
Since L(s, π) = L(sπ̃) = 1 if π is absolutely cuspidal the first three assertions of the theorem are,

for such π, consequences of the next lemma.
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Lemma 13.1.5 Suppose Φ belongs to S(A), v belongs to V , and ṽ belongs to Ṽ . If π is absolutely
cuspidal the integral ∫

Φ(g)〈π(g)v, ṽ〉 |detg|s+
1
2 d×g

is absolutely convergent for Re s sufficiently large and the functions it defines can be analytically
continued to an entire function.

Suppose the integral is convergent for some s. If ξ is an elementary idempotent such that π(ξ)v = v
the integral is not changed if Φ is replaced by

Φ1(g) =

∫

GL(2,OF )

Φ(gh−1) ξ(h) dh.

Since π is absolutely cuspidal it does not contain the trivial representation of GL(2, OF ) and we can

choose ξ to be orthogonal to the constant functions on GL(2, OF ). Then Φ1(0) = 0. Thus, when
proving the second assertion of the lemma we can suppose that Φ(0) = 0.

The support of 〈π(g)v, ṽ〉 is contained in a set ZFC with C compact. Moreover there is an
open subgroup K′ of GL(2, OF ) such that the functions Φ(g) and 〈π(g)v, ṽ〉 are invariant under right

translations by the elements of K′. If

C ⊆ Upi=1giK
′

the integral is equal to

p∑

i=1

〈π(gi)v, ṽ〉 |detgi|
s+ 1

2

∫

F×

Φ

((
a 0
0 a

)
gi

)
η(a) |a|2s+1 d×a,

if each of the integrals in this sum converges. They are easily seen to converge if Re s is sufficiently
large and if Φ(0) = 0 they converge for all s. The lemma is proved.

Now we verify a special case of the fifth assertion.

Lemma 13.1.6 Suppose ϕ is in S(F×) and

Φ(g) = ϕ(detg)〈v, π̃(g)ṽ〉 |detg|−1.

Then for all u in V and all ũ in Ṽ

Ξ̃(1 − s,Φ′, u, ũ) = ε(s, π, ψ) Ξ(s,Φ, u, ũ).

The expression Ξ(s,Φ, u, ũ) is the integral over GF of

|detg|s−
1
2ϕ(detg) 〈π(g)u, ũ〉 〈v, π̃(g)ṽ〉.

The integral ∫

SL(2,F )

〈π(gh)u, ũ〉 〈v, π̃(gh)ṽ〉 dh

depends only on detg. Set it equal to F (detg). Then Ξ(s,Φ, u, ũ) is equal to

∫

F×

ϕ(a)F (a) |a|s−
1
2 d×a.
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By Lemma 13.1.1
Φ′(g) = ϕ′(detg) |detg|−1 η−1(detg) 〈π(g)v, ṽ〉

so that Ξ(s,Φ′, u, ũ) is equal to

∫

F×

ϕ′(a) F̃ (a) |a|s−
1
2 η−1(a) d×a

if

F̃ (a)

∫

SL(2,F )

〈u, π̃(gh)ũ〉 〈π(gh)v, ṽ〉 dh

whenever a = detg. Since the integrand is not changed when g is replaced by

(
b 0
0 b

)
g

we have F̃ (b2a) = F̃ (a) and F̃ (a) = F̃ (a−1). The same relations are valid for F . Also F̃ (a) = F (a−1)

so that F = F̃ .

We remind ourselves that we are now trying to show that

∫

F×

ϕ′(a) F̃ (a) η−1(a) |a|
1
2−s d×a

is equal to

ε(s, π, ψ)

∫

F×

ϕ(a)F (a) |a|s−
1
2 d×a.

If U ′ is an open subgroup of UF such that

π̃

((
ε 0
0 1

))
ũ = ũ

and

π

((
ε 0
0 1

))
v = v

for ε in U ′ then F and F̃ are constant on cosets of (F×)2U ′ which is of finite index in F×. Write

F (a) =

p∑

i=1

ciχi(a)

where χi are characters of F×/(F×)2U ′. We may assume that all ci are different from 0. Then

F (a−1) =

p∑

i=1

ci χi(a
−1).

The factor ε(s, π ⊗ χi, ψ) was defined so that

∫

F×

ϕ′(a)χ−1
i η−1(a) |a|

1
2−s d×a
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would be equal to

ε(s, χi ⊗ π, ψ)

∫

F×

ϕ(a)χi(a) |a|
s− 1

2 d×a.

All we need do is show that π and χi ⊗ π are equivalent, so that

ε(s, χi ⊗ π, ψ) = ε(s, π, ψ).

A character χ is one of the χi if and only if χ is trivial on (F×)2 and∫

F×/(F×)2
F (a)χ(a) d×a 6= 0.

This integral is equal to ∫

GF /ZF

χ(g)〈π(g)u, ũ〉 〈v, π̃(g)ṽ〉 dg

which equals ∫

GF /ZF

〈χ⊗ π(g)u, ũ〉 〈v, π̃(g)ṽ〉 dg.

The integral does not change if π is replaced by ω ⊗ π. Thus the Schur orthogonality relations imply
that it is non­zero only if π and χ⊗ π are equivalent.

If Φ belongs to S0(A) the functions Φ(g) |detg|s+
1
2 belongs to HF and we can form the operator

T (s,Φ) =

∫

GF

Φ(g) |detg|s+
1
2 π(g) d×g.

If Φ has the form of the previous lemma the functional equation may be written as

T (1 − s,Φ′) = ε(s, π, ψ)T (s,Φ).

Lemma 13.1.7 Given a non-zero w in V , the set of all u in V such that for some Φ of the form

Φ(g) = ϕ(detg) 〈v, π̃(g)ṽ〉 |detg|−1
F

the vector T (s,Φ)w is of the form ebsu is a set that spans V .

If the function Φ is of this form so is the function Φ′(g) = Φ(hg) and

T (s,Φ′)w = |deth|−(s+ 1
2 )π(h−1)T (s,Φ)w

Since π is irreducible we need only show that there is at least one non­zero vector in the set under
consideration. Moreover there is an r such that αrF ⊗ π is unitary and we may as well suppose that π
itself is unitary. Let (u, v) be a positive invariant form on V .

Choose v = w and ṽ so that 〈u, ṽ〉 = (u,w) for all u. Let ϕ be the characteristic function of UF .

Then

Φ(g) =
(
w, π(g)w

)

if |detg| = 1 and is 0 otherwise. If

H = {g ∈ GF
∣∣ |detg| = 1}

then

T (s,Φ)w =

∫

H

(
w, π(g)w

)
π(g)w d×g

is independent of s and is non­zero because

(
T (s,Φ)w,w

)
=

∫

H

∣∣(π(g)w,w
)∣∣2 d×g.

The fourth assertion follows immediately and the fifth will now be a consequence of the following
lemma.
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Lemma 13.1.8 Suppose Φ belongs to S(A) and Ψ belongs to S0(A). There is a vertical strip in which
the integrals ∫∫

Φ(g)Ψ′(h) 〈π(g)v, π̃(h)ṽ〉 |detg|s+
1
2 |deth|

3
2−s d×g d×h

and ∫∫
Φ′(g)Ψ(h) 〈π−1(g)v, π̃(h−1)ṽ〉 |detg|

3
2−s |deth|s+

1
2 d×g d×h

exist and are equal.

A little juggling shows that there is no harm in supposing that the quasi­character η defined by

π

((
a 0
0 a

))
= η(a) I

is a character. Fix v and ṽ. Let C be a compact subset of GF which contains the support of Ψ and Ψ′.

The set
{π̃(h)ṽ

∣∣h ∈ C}

is finite. Thus there is a compact set in GF such that for any h in C the function

g → 〈π(g)v, π̃(h)ṽ〉

has its support in ZF C
′. Moreover these functions are uniformly bounded. The first integral is

therefore absolutely convergent for Re s > −1
2 . The second is convergent for Re s < 3

2 .
If −1

2
< Re s < 3

2
the first integral is equal to

∫
Ψ′(h) |deth|

3
2−s
{∫

Φ(g)〈π(g)v, π̃(h)ṽ〉 |detg|s+
1
2 d×g

}
d×h.

Replacing g by hg we obtain

∫
Ψ′(h) |deth|2

{∫
Φ(gh)〈π(g)v, ṽ〉 |detg|s+

1
2 d×g

}
d×h.

If we take the additive Haar measure to be dh = |deth|2 d×h this may be written as

∫
〈π(g)v, ṽ〉 |detg|s+

1
2

{∫
Φ(hg)Ψ′(h) dh

}
d×g.

The second integral is

∫
Ψ(h) |deth|s+

1
2

{∫
Φ′(g)〈π−1(g)v, π̃−1(h)ṽ〉 |detg|

3
2−s d×g

}
d×h.

After a change of variables this becomes

∫
〈π−1(g)v, ṽ〉 |detg|

3
2−s
{∫

Φ′(gh)Ψ(h) dh
}
d×g.
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Replacing g by g−1 we obtain

∫
〈π(g)v, ṽ〉 |detg|s+

1
2

{
|detg|−2

∫
Φ′(g−1h)Ψ(h) dh

}
d×g.

Since ∫
Φ(hg)Ψ′(h) dh

is equal to

|detg|−2

∫
Φ′(g−1h)Ψ(h) dh

the lemma follows.
The theorem is now proved when π is absolutely cuspidal. Suppose that it is a constituent of

τ = ρ(µ1, µ2). In this case the field may be archimedean. Although τ is not necessarily irreducible it is
admissible and its matrix coefficients are defined. The contragredient representation τ̃ is ρ(µ−1

1 , µ−1
2 )

and the space of τ is B(µ1, µ2) while that of τ̃ is B(µ−1
1 , µ−1

2 ). If f belongs to B(µ1, µ2) and f̃ belongs

to B(µ−1
1 , µ−1

2 ) then

〈τ(g)f, f̃〉 =

∫

K

f(kg) f̃(k) dk

and

〈f, τ̃(g)f̃〉 =

∫

K

f(k) f̃(kg) dk

if K is the standard maximal compact subgroup of GF .

If we set
L(s, τ) = L(s, µ1)L(s, µ2)

L(s, τ̃ ) = L(s, µ−1
1 )L(s, µ−1

2 )

and
ε(s, τ, ψ) = ε(s, µ1, ψ) ε(s, µ2, ψ)

the theorem may be formulated for the representation τ . We prove it first for τ and then for the

irreducible constituents of τ .
We use a method of R. Godement. If Φ belongs to S(A) then for brevity the function x→ Φ(gxh)

which also belongs to S(A) will be denoted by hΦg. Also let

ϕΦ(a1, a2) =

∫

F

Φ

((
a1 x
0 a2

))
dx

where dx is the measure which is self dual with respect to ψ. ϕΦ belongs to S(F 2). The map Φ → ϕΦ

of S(A) into S(F 2) is certainly continuous.

We are now going to define a kernel KΦ(h, g, s) on K ×K . We set

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , ϕΦ).

Recall that the right­hand side is

∫∫
ϕΦ(a1, a2)µ1(a1) |a1|

s µ2(a2) |a2|
s d×a1 d

×a2.
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In general
KΦ(h, g, s) = KgΦh−1(e, e, s).

We also set
K̃Φ(e, e, s) = Z(µ−1

1 αsF , µ
−1
2 αsF , ϕΦ)

and
K̃Φ(h, g, s) = K̃gΦh−1(e, e, s).

The kernels are defined for Re s sufficiently large and are continuous in h, g, and s and, for fixed h and
g, holomorphic in s.

We now make some formal computations which will be justified by the result. The expression

Z(α
s+ 1

2

F ⊗ τ,Φ, f, f̃ ) is equal to

∫

GF

Φ(g)
{∫

K

f(kg) f̃(k) dk
}
|detg|s+

1
2 d×g

which is ∫

K

f̃(k)
{∫

GF

Φ(g) f(kg) |detg|s+
1
2 d×g

}
dk.

Changing variables in the inner integral we obtain

∫

K

f̃(k)
{∫

GF

Φ(k−1g) f(g) |deth|s+
1
2 d×g

}
dk.

Using the Iwasawa decomposition to evaluate the integral over GF we see that this is equal to

∫

K×K

KΦ(k1, k2, s) f(k2) f̃(k1) dk1 dk2.

Since we could have put in absolute values and obtained a similar result all the integals are convergent
and equal for Re s sufficiently large. A similar computation shows that

Z(α
s+ 1

2

F ⊗ τ̃ ,Φ, f, f̃ )

is equal to ∫

K×K

K̃Φ(k1, k2, s) f(k1) f̃(k2) dk1 dk2

if Re s is large enough.

If ξ is an elementary idempotent such that τ(ξ)f = f and τ̃(ξ)f̃ = f̃ then Z(α
s+ 1

2

F ⊗ τ,Φ, f, f̃) is

not changed if Φ is replaced by

Φ1(g) =

∫∫
Φ(k1gk

−1
2 ) ξ(k1) ξ(k2) dk1 dk2.

Thus, at least when proving the second and third assertions, we may suppose that Φ isK­finite on both

sides and, in fact, transforms according to a fixed finite set of irreducible representations of K . Then,

as s varies, the functions
KΦ(k1, k2, s)
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stay in some fixed finite dimensional space U of continuous functions on K ×K . The map

F →

∫∫
F (k1, k2) f(k2) f̃(k1) dk1 dk2

is a linear form on this space and we can find g1, · · · , gn and h1, · · · , hn in K such that it can be

represented in the form

F →
n∑

i=1

λi F (gi, hi).

Thus
Z(α

s+ 1
2

F ⊗ τ,Φ, f, f̃) =
∑

λiKΦ(gi, hi, s).

Thus to prove the second and third assertions we need only show that for each g and h in K the
function

KΦ(g, h, s)

L(s, τ)

is entire and KΦ(g, h, s) itself is bounded at infinity in vertical strips. There is certainly no harm in

supposing that g = h = e so that

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , ϕΦ)

Thus the desired facts are consequences of the results obtained in paragraphs 3, 5, and 6 when proving

the local functional equation for constituents of τ . Replacing τ by its contragredient representation we

obtain the same results for Z(α
s+ 1

2

F ⊗ τ̃ ,Φ, f, f̃ ).

To prove the functional equation we have to see what happens to the Fourier transform when we
pass from the function Φ to to Φ1. The answer is simple:

Φ′
1(g) =

∫∫
Φ′(k1gk

−1
2 ) ξ(k1) ξ(k2) dk1 dk2.

Thus in proving the functional equation we may suppose that Φ is K­finite on both sides. We may

also suppose that if F (k1, k2) is in U so is F ′(k1, k2) = F (k2, k1). Then Z(α
s+ 1

2

F ⊗ τ,Φ′, f, f̃ ) =∑
λi K̃Φ′(hi, gi, s). To prove the functional equation we have to show that

K̃Φ′(h, g, 1 − s)

L(1 − s, τ)
= ε(s, τ, ψ)

KΦ(g, h, s)

L(s, τ)

for any h and g in K . Since the Fourier transform of gΦh−1 is hΦ′g it will be enough to do this for

h = g = e. Then the equality reduces to

Z(µ−1
1 α1−s

F , µ−1
2 α1−s

F , ϕΦ′)

L(1− s, τ̃)
= ε(s, τ, ψ)

Z(µ1α
s
F , µ2α

s
F , ϕΦ)

L(s, τ)

and is a result of the facts proved in the first chapter and the next lemma.
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Lemma 13.2.1 The Fourier transform of the function ϕΦ is the function ϕΦ′ .

The value of Φ′ at (
α β
γ δ

)

is ∫
Φ

((
x y
z t

))
ψ(αx+ βz + γy + δt) dx dy dz dt

if dx, dy, dz, and dt are self­dual with respect to ψ. Thus ϕΦ′(α, δ) is equal to

∫ {∫
Φ

((
x y
z t

))
ψ(αx + δt)ψ(βz) dx dy dz dt

}
dβ

Applying the Fourier inversion formula to the pair of variables β and z we see that this is equal to

∫
Φ

((
x y
0 t

))
ψ(αx+ δt) dx dy dt

which is the value of the Fourier transform of ϕΦ at (α, δ).
The theorem, with the exception of the fourth assertion, is now proved for the representation τ .

We will now deduce it, with the exception of the fourth assertion, for the constituents of τ . We will

return to the fourth assertion later.
If π is a constituent of τ either π = π(µ1, µ2) or π = σ(µ1, µ2). In the first case there is nothing left

to prove. In the second only the third assertion remains in doubt. If F is the complex field even it is
alright because we can always find another pair of quasi­characters µ′1 and µ′2 such that π = π(µ′1, µ

′
2).

We ignore this case and suppose that F is real or non­archimedean.

First take F to be non­archimedean. We may suppose that µ1 and µ2 are the form µ1 = χα
1
2

F and

µ2 = χα
− 1

2

F . The one­dimensional representation g → χ(detg) is contained in τ̃ = ρ(µ−1
1 , µ−1

2 ) and

acts on the function g → χ(detg). The matrix elements for π are the functions

g → 〈τ(g)f, f̃〉 = 〈π(g)f, f̃〉

where f̃ belongs to B(µ−1
1 , µ−1

2 ) and

∫

K

f(k)χ(detk) dk = 0.

For such an f there is an elementary idempotent ξ such that τ(ξ)f = f while

∫

K

ξ(k) dk = 0

The value of Z(α
s+ 1

2

F ⊗ π,Φ, f, f̃ ) is not changed if we replace Φ by

Φ1(g) =

∫

K

Φ(gh−1) ξ(h) dh.
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Lemma 13.2.2 If g1 and g2 belong to GF then
∫∫

Φ1

(
g1

(
x y
0 0

)
g2

)
dx dy = 0.

It will be enough to prove this when g1 is the identity. Let

ϕ(x, y) = Φ1

((
x y
0 0

))
.

If g1 is the identity then, after a change of variables, the integral becomes

|detg2|
−1

∫∫
ϕ(x, y) dx dy

so that we can also assume g2 is the identity. Then the integral equals

∫

K

{∫∫
Φ

((
x y
0 0

)
k

)
dx dy

}
ξ(k−1) dk.

Changing variables as before we see that the inner integral does not depend on K . Since

∫

K

ξ(k−1) dk = 0

the lemma follows.
To establish the third assertion for the representation π all we need do is show that for any g and

h in K the function
KΦ(g, h, s)

L(s, π)

is entire provided ∫∫
Φ

(
g1

(
x y
0 0

)
g2

)
dx dy = 0

for all g1 and g2 in GF . As usual we need only consider the case that g = h = e. Since

∫
ϕΦ(x, 0) dx = 0

and

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , ϕΦ)

we need only refer to Corollary 3.7.

If F is the field of real numbers the proof is going to be basically the same but a little more
complicated. We may assume that µ1µ

−1
2 (x) = |x|2p+1−m(sgnx)m, where p is a non­negative integer

and m is 0 or 1, and that π acts on BS(µ1, µ2). The restriction of π to SO(2,R) contains only those
representations κn for which n ≡ 1 − m (mod2) and |n| ≥ 2p + 1 − m. Let ξn be the elementary

idempotent corresponding to the representation κn. As before we may suppose that

∫

SO(2,R)

Φ(xk−1) ξn(k) dk = 0 (13.2.3)

if κn does not occur in the restriction of π to SO(2,R).
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Lemma 13.2.4 If Φ satisfies (13.2.3), if g1 and g2 belong to GF , and ϕ = ϕg1Φg2 then

∫

R

xi
∂j

∂yj
ϕ(x, 0) dx = 0

if i ≥ 0, j ≥ 0 and i+ j = 2p−m.

We may assume that g2 = e. If ϕ = ϕΦ let

L(Φ) =

∫

R

xi
∂j

∂yj
ϕ(x, 0) dx

and let
F (g) = L(gΦ).

We have to show that, under the hypothesis of the lemma, F (g) = 0 for all g. However F is defined
for all Φ in S(A) and if Φ is replaced by hΦ the function F is replaced by F (gh). Thus to establish the

identity

F

((
ai z
0 a2

)
g

)
= η1(a2) η2(a2)F (g)

where η1(a1) = a−i1 |a1|
−1 and η2(a2) = aj2 |a2|

−1, we need only establish it for g = e.

Let

h =

(
a1 z
0 a2

)
.

Then

hΦ

((
x u
0 y

))
= Φ

((
a1y xz + a2u
0 a2y

))
.

If ϕ = ϕΦ and ϕ1 = ϕhΦ then ϕ1(x, y), which is given by

∫
Φ

((
a1x xz + a2u
0 a2y

))
du,

is equal to

|a2|
−1

∫
Φ

((
a1x u
0 a2y

))
du = |a2|

−1 ϕ(a1x, a2y).

Moreover F (h) is equal to ∫
xi
∂jϕ1

∂yj
(x, 0) dx

which equals

a−i1 |a1|
−1 aj2 |a2|

−1

∫
xi
∂jϕ

∂yj
(x, 0) dx

as required.
Finally if

g =

(
α β
γ δ

)
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and ϕ = ϕgΦ then F (g) is equal to ∫
xi
∂jϕ

∂yj
(x, 0) dv

and

ϕ(x, y) =

∫
Φ

((
αx + γu βx+ δu
yγ yδ

))
du.

Since we can interchange the orders of differentiation and integration,

∂jϕ

∂yj
(x, 0) =

j∑

n=0

λnγ
nδj−n

∫
ϕn(αx+ γu, βx+ δu) du

where

ϕn(x, y) =
∂jΦ

∂γn ∂δj−n

((
x y
0 0

))

and the number λn are constants. Thus F (g) is a linear combination of the functions

γnδj−n
∫∫

xi ϕn(αx+ γu, βx+ δu) dx du.

If α 6= 0 we may substitute x− γu
2

for x to obtain

γnδj−n
∫∫

(x− γu)i

2
ϕn

(
αx, βx +

∆u

2

)
dx du

where ∆ = detg. Substituting u− αβ
∆
x for u we obtain

γnδj−n
∫∫ (

x+
βγ

∆
x−

γu

2

)i
ϕn

(
αx,

∆u

2

)
dx du.

After one more change of variables this becomes

∆−i |∆|−1 γnδj−n
∫∫

(δx− γu)i ϕn(x, u) dx du.

In conclusion F (g) is a function of the form

F

((
α β
γ δ

))
= ∆−i |∆|−1 P (α, β, γ, δ)

where P is a polynomial.

Thus the right translates ofF by the elements ofGF span a finite­dimensional space. In particular it

isO(2,R) finite and if η1 = µ′
1α

1
2

F while η2 = µ′
2α

− 1
2

F it lies in a finite­dimensional invariant subspace of

B(µ′
1, µ

′
2). Thus it lies in BF (µ′

1, µ
′
2). Since µ′

1µ
′
2
−1

= µ−1
1 µ2 no representation of SO(2,R) occurring

in π(µ′1, µ
′
2) can occur in π = σ(µ1, µ2). If F is not zero then for at least one such representation κn

F1(g) =

∫

SO(2,R)

f(gk−1) ξn(k) dk
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is not identically 0. But F1 is the result of replacing Φ by

Φ1(x) =

∫

SO(2,R)

Φ(xk−1) ξn(k) dk

in the definition of F . In particular if Φ satisfies the conditions of the lemma both Φ1 and F1 are zero.
Therefore F is also zero and the lemma is proved.

The third assertion can now be verified as in the non­archimedean case by appealing to Lemma 5.17.

The fourth has still to be proved in general.
If F is the real field let S1(A) be the space of functions of the form

Φ

((
a b
c d

))
= exp

(
− π(a2 + b2 + c2 + d2)

)
P (a, b, c, d)

where P is a polynomial. If F is the complex field S1(A) will be the space of functions of the form

Φ

((
a b
c d

))
= exp

(
− π(aā+ bb̄+ cc̄+ dd̄)

)
P (a, ā, b, b̄, c, c̄, d, d̄)

where P is again a polynomial. If F is non­archimedean S1(A) will just be S(A). The space S1(F
2) is

defined in a similar manner.

Lemma 13.2.5 Suppose ϕ belongs to S1(F
2). Then there is a Φ in S1(A) such that

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , ϕ)

and f1, · · · , fn in B(µ1, µ2) together with f̃1, · · · , f̃n in B(µ−1
1 , µ−1

2 ) such that

n∑

i=1

∫

K×K

KΦ(h, g, s) fi(g) f̃i(h) dg dh = KΦ(e, e, s).

Since there is a ϕ in S1(F
2) such that

Z(µ1α
s
F , µ2α

s
F , ϕ) = aebs L(s, τ)

this lemma will imply the fourth assertion for the representation τ .
Given ϕ the existence of Φ such that ϕ = ϕΦ and therefore

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , ϕΦ)

is a triviality and we worry only about the existence of f1, · · · , fn and f̃1, · · · , f̃n.
It is easily seen that if (

a1 x
0 a2

)

and (
b1 y
0 b2

)
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belong to K then

KΦ

((
a1 x
0 a2

)
h,

(
b1 y
0 b2

)
g, s

)

is equal to

µ1(a1)µ2(a2)µ
−1
1 (b1)µ

−1
2 (b2)KΦ(h, g).

Also

KΦ(hh1, gg1, s) = Kg1Φh
−1
1

(h, g, s).

Since Φ belongs to S1(A) it is K­finite on the left and right. Thus there is a finite set S of irreducible

representations of K such that if U1 is the space of functions F on K which satisfy

F

((
a1 x
0 a2

)
h

)
= µ1(a1)µ2(a2)F (h)

for all (
a1 x
0 a2

)

in K and can be written as a linear combination of matrix elements of representations in S and U2 is

the space of functions F ′ on K which satisfy

F ′

((
a1 x
0 a2

)
h

)
= µ−1

1 (a1)µ
−1
2 (a2)F

′(h)

and can be written as a linear combination of matrix elements of representations in S then, for every s,
the function

(h, g) → KΦ(h, g, s)

belongs to the finite dimensional space U spanned by functions of the form (h, g) → F (h)F ′(g) with

F in U1 and F ′ in U2.

Choose F1, · · · , Fn and F ′
1, · · · , F

′
n so that for every function F in U

F (e, e) =
n∑

i=1

λi

∫

K×K

F (h, g) F̄i(h) F̄
′
i (g) dh dg.

Since F̄i is the restriction to K of an element of B(µ−1
1 , µ−1

2 ) while F̄ ′
i is the restriction to K of an

element of B(µ1, µ2) the lemma follows.

Unfortunately this lemma does not prove the fourth assertion in all cases. Moreover there is a
supplementary condition to be verified.
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Lemma 13.2.6 Suppose F is non-archimedean and π is of the form π = π(µ1, µ2) with µ1 and
µ2 unramified. Suppose Φ is the characteristic function of M(2, OF ) in M(2, F ). If v and ṽ are
invariant under K = GL(2, OF ) and if

∫

K

d×g = 1

then
Z(α

s+ 1
2

F ⊗ π,Φ, v, ṽ) = L(s, π) 〈v, ṽ〉.

Suppose f belongs to B(µ1, µ2) and is identically 1 on K while f̃ belongs to B(µ−1
1 , µ−1

2 ) and is
identically 1 on K . Then

〈f, f̃〉 =

∫

K

f(k) f̃(k) dk = 1

and if τ = ρ(µ1, µ2) we are trying to show that

Z(α
s+ 1

2

F ⊗ τ,Φ, f, f̃ ) = L(s, τ).

The left side is equal to ∫

K×K

KΦ(h, g, s) f(h) f̃(g) dh dg.

Since Φ is invariant on both side under K this is equal to

KΦ(e, e, s) = Z(µ1α
s
F , µ2α

s
F , ϕ)

if

ϕ(x, y) =

∫
Φ

((
x z
0 y

))
dz.

Since we have so normalized the Haar measure on GF that

∫

GF

F (g) dg =

∫

K

{∫
F

((
a1 0
0 a2

)(
1 x
0 1

)
k

)
d×a1 d

×a2 dx
}
dk

where dk is the normalized measure on K , dx is the measure on F which assigns the measure 1 to OF ,
and d×a is the measure on F× which assigns the measure 1 to UF the function ϕ is the characteristic

function of OF ×OF and

Z(µ1α
s
F , µ2α

s
F , ϕ) = L(s, µ1)L(s, µ2)

as required.

This lemma incidentally proves the fourth assertion for the one­dimensional representation g →
χ(detg) if χ is unramified. If χ is ramified and π corresponds to χ then π = π(µ1, µ2) if µ1(a) =

χ(a) |a|
1
2 and µ2(a) = χ(a) |a|−

1
2 . Thus L(s, π) = 1. If Φ is the restriction of the function χ−1 to K

then

Z(π,Φ, v, ṽ) = 〈v, ṽ〉

∫

K

d×g

and the fourth assertion is verified in this case.
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Take µ1 and µ2 of this form with χ possibly unramified and suppose that π = σ(µ1, µ2). Suppose
first that χ is unramified. Let ϕ0 be the characteristic function of OF in F and let

ϕ1(x) = ϕ0(x)− |$−1|ϕ0($
−1x).

It has OF for support. Set

Φ

((
a b
c d

))
= ϕ1(a)ϕ0(b)ϕ0(c)ϕ0(d).

It has M(2, OF ) for support and depends only on the residues of a, b, c, and dmodulo pF . If

K1 = {k ∈ K
∣∣ k ≡ e(mod p)}

then KΦ(h, g, s) depends only on the cosets of h and g moduloK1. Also

KΦ

(
e, w

(
1 x
0 1

)
, s

)
= 0

if x is in OF . To see this we observe first that if

Φ1(g) = Φ

(
gw

(
1 x
0 1

))

then ϕΦ1
(a1, a2) is equal to ∫

F

Φ

((
−y a1 − xy
−a2 −a2x

))
dy

which equals

ϕ0(a2)ϕ0(a2x)

∫

OF

ϕ1(y)ϕ0(a1 − xy) dy.

Since x is in OF the function ϕ0(a1 − xy) equals ϕ0(a1) for y in OF and this expression is 0 because

∫

OF

ϕ1(y) dy = 0.

We choose f in BS(µ1, µ2) so that f(gk) = f(g) if k belongs to K1, f(e) = 1, and

f(e) +
∑

x∈OF /p

f

(
w

(
1 x
0 1

))
= 0.

We choose f̃ in B(µ1, µ2) so that f̃(gk) = f̃(g) if k belongs to K1, f̃(e) = 1, and

f̃

(
w

(
1 x
0 1

))
= 0

if x belongs to OF . Then ∫

K×K

KΦ(h, g, s) f̃(h) f(g) dh dg
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is equal to ∫

K

KΦ(e, g, s) f(g) dg = KΦ(e, e, s)

which equals

Z(µ1α
s
F , µ2α

s
F , ϕΦ).

Moreover
ϕΦ(a1, a2) = ϕ1(a)ϕ0(a2)

so that, as we saw when proving Corollary 3.7, L(s, π) is a constant times Z(µ1α
s
F , µ2α

s
F , ϕΦ).

If χ is ramified L(s, π) = 1. If Φ has support in K then Z(α
s+1/2
F ⊗ π,Φ, v, ṽ) is equal to

∫

K

Φ(k)〈π(k)v, ṽ〉 dk

and we can certainly choose v, ṽ and Φ so that this is not 0.
We are not yet finished. We have yet to take care of the representations not covered by Lemma 13.2.5

when the field is archimedean. If F is the complex field we have only the finite dimensional repre­

sentations to consider. There is a pair of characters µ1 and µ2 such that π is realized on the subspace
Bf (µ1, µ2) of B(µ1, µ2). There will be positive integers p and q such that µ1µ

−1
2 (z) = z−pz̄−q . The

representations σ = ρ|q−p| of SU(2,C) which is of degree |q − p| + 1 is contained in the restriction
of π to SU(2,C). In particular Bf (µ1, µ2) contains all functions f in B(µ1, µ2) whose restrictions to

SU(2,C) satisfy

f

((
a1 0
0 a2

)
k

)
= µ1(a1)µ2(a2) f(k)

and transform on the right according to σ.
We are going to use an argument like that used to prove Lemma 13.2.5. Suppose we can find a

function Φ in S1(A) such that
Z(µ1α

s
F , µ2α

s
F , ϕΦ)

differs from L(s, π) by an exponential factor and such that Φ transforms on the right under SU(2,C)
according to the representation σ. ThenKΦ(h, g, s) will satisfy the same conditions as in Lemma 13.2.5.
Moreover the functions F ′ in the space we called U2 can be supposed to transform on the right under

SU(2,C) according to σ so that the functions F̄ ′
i will correspond to functions fi in Bf (µ1, µ2). Then

∫

K×K

KΦ(h, g, s) f̃i(h) fi(g) dh dg = Z(α
s+ 1

2

F ⊗ τ,Φ, fi, f̃i)

is equal to

Z(α
s+ 1

2

F ⊗ π,Φ, vi, ṽi)

if vi = fi and ṽi is the restriction of f̃i, regarded as a linear functional, to Bf (µ1, µ2).

There are four possible ways of writing µ1 and µ2.
(i) µ1(z) = zm1(zz̄)s1 , µ2(z) = zm2(zz̄)s2 , m1 −m2 = q − p.

(ii) µ1(z) = zm1(zz̄)s1 , µ2(z) = z̄m2(zz̄)s2 , m1 +m2 = q − p.
(iii) µ1(z) = z̄m1(zz̄)s1 , µ2(z) = zm2(zz̄)s2 , −m1 −m2 = q − p.

(iv) µ1(z) = z̄m1(zz̄)s1 , µ2(z) = z̄m2(zz̄)s2 , m2 −m1 = q − p.
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In all four casesm1 and m2 are to be non­negative integers. Φ is the product of exp(−π(aā+ b̄b+
cc̄+ dd̄)) and a polynomial. We write down the polynomial in all four cases and leave the verifications

to the reader.
(i.a) m1 ≥ m2 : ām1−m2(ād̄− b̄c̄)m2 .

(i.b) m1 ≤ m2 : (ād̄− b̄c̄)m1 d̄n2−m1 .

(ii) ām1 dm2 .
(iii) am1 d̄m2 .

(iv.a) m1 ≥ m2 : am1−m2(ad− bc)m2 .
(iv.b) m2 ≥ m1 : (ad− bc)m1 dm2−m1 .

For the real field the situation is similar. Suppose first that π = π(µ1, µ2) is finite dimensional. If
µ1µ2(−1) = 1 then π contains the trivial representation of SO(2,R) and if µ1µ2(−1) = 1 it contains

the representation

κ :

(
cos θ sin θ
− sin θ cos θ

)
→ eiθ.

We list the four possibilities for µ1 and µ2 and the polynomial P by which exp
(
−π(a2 + b2 + c2 +d2)

)

is to be multiplied to obtain Φ.

(i) µ1(−1) = µ2(−1) = 1: P (a, b, c, d) = 1.
(ii) µ1(−1) = µ2(−1) = 1: P (a, b, c, d) = ad− bc.

(iii) µ1(−1) = 1, µ2(−1) = −1: P (a, b, c, d) = c− id.
(iv) µ1(−1), µ2(−1) = 1: P (a, b, c, d) = a− ib.

Only the special representations remain to be considered. We may suppose that π = σ(µ1, µ2)
where µ1 and µ2 are of the form µ1(x) = |x|r+

q
2 and µ2(x) = |x|r−

q
2 (sgn t)m with q = 2p+1−m and

with p a non­negative integer. Moreover m is 0 or 1. L(s, π) differs from

Γ
(s+ r + q

2

2

)
Γ
(s+ r + q

2 + 1

2

)

by an exponential as does

Z(µ1α
s
F , µ2α

s
F , ϕ)

if

ϕ(a1, a2) = e−π(a2
1+a

2
2) aq+1

2 .

Since the representation of κq+1 occurs in the restriction of π to SO(2,R) we may take

Φ

((
a b
c d

))
= exp

(
− π(a2 + b2 + c2 + d2)

)
(c+ id)q+1.
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§14. Automorphic forms and quaternion algebras. Let F be a global field and letM ′ be a quaternion
algebra over F . The multiplicative group G′ of M ′ may be regarded as an algebraic group over F .

In the ninth paragraph we have introduced the group G′
A

and the Hecke algebra H′. A continuous
function ϕ on G′

F \ G′
A

is said to be an automorphic form if for every elementary idempotent ξ in H′

the space

{ρ(ξf)ϕ
∣∣ f ∈ H

′}

is finite dimensional.

If ϕ is an automorphic form it is Z′
A

finite on the left if Z′ is the centre of G′. Let A
′ be the space

of automorphic forms on G′
A

and if η is a quasi­character of F× \ I let A′(η) be the space of ϕ in A′

for which ϕ′(ag) = η(a)ϕ′(g) for all a in Z′
A

which, for convenience, we identify with I . The first
assertion of the following lemma is easily proved by the methods of the eighth paragraph. The second

is proved by the methods of the tenth. The proof is however a little simpler because G′
FZ

′
A
\ G′

A
is

compact. Since, at least in the case of number fields, the proof ultimately rests on general facts from
the theory of automorphic forms nothing is gained by going into details.

Lemma 14.1 (i) If an irreducible admissible representation π of H
′ is a constituent of A

′ then for
some η it is a constituent of A′(η).
(ii) The space A′(η) is the direct sum of subspaces irreducible and invariant under H′. The rep-

resentation of H′ on each of these subspaces is admissible and no representation occurs more
than a finite number of times in A′(η).

Now we have to remind ourselves of some facts whose proofs are scattered throughout the

previous paragraphs. Suppose π = ⊗vπv is an irreducible admissible representation of H′. For each v
the representation πv of H′

v is irreducible and admissible. Suppose ψ is a non­trivial additive character

of F \A and ψv is its restriction to Fv. We have defined L(s, πv), L(s, π̃v), and ε(s, πv, ψv). If uv is in

the space of πv and ũv in the space of π̃v we have set

Z
(
α
s+ 1

2

F ⊗ πv,Φ, uv , ũv
)

equal to ∫

G′
Fv

Φ(g) 〈πv(g)uv, ũv〉 |ν(g)|
s+ 1

2 d×g.

We know that

hv ε(s, πv, ψv)




Z
(
α
s+ 1

2

F ⊗ πv,Φ, uv , ũv
)

L(s, πv)





is entire and equals

Z
(
α

1
2−s

F ⊗ π̃v,Φ
′, uv, ũv

)

L(1− s, π̃v)
.

The factor hv is 1 of G′
Fv

is isomorphic to GL(2, Fv) and is −1 otherwise. The case that G′
Fv

is

isomorphic to GL(2, Fv) was treated in the previous paragraph. The other cases were treated in the
fourth and fifth paragraphs.
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Theorem 14.2 Suppose π is a constituent of the space of automorphic forms on G′
A

. The infinite
products ∏

v

L(s, πv)

and ∏

v

L(s, π̃v)

are absolutely convergent for Re s sufficiently large. The functions L(s, π) and L(s, π̃) defined by
them can be analytically continued to the whole complex plane as meromorphic functions. If F is a
number field they will have only a finite number of poles and will be bounded at infinity in vertical
strips of finite width. If

ε(s, π) =
∏

v

ε(s, πv, ψv)

the functional equation
L(s, π) = ε(s, π)L(1 − s, π̃)

will be satisfied.

We may suppose that π acts on the subspace V of A′(η). Let ϕ be a non­zero function in V . For

almost all v the algebra M ′
v = M ′ ⊗F Fv is split and G′

Fv
= G′

v is isomorphic to GL(2, Fv). Moreover
for almost all such v, say for all v not in S, ϕ is an eigenfunction of the elements of H′

v = H′
Fv

which

are invariant on both sides under translations by the elements of K′
v. Thus if f is such an element and

ϕ(g) 6= 0 the corresponding eigenvalue λv(f) is

λv(f) = ϕ(g)−1

∫

G′
v

ϕ(gh) f(h) dh.

To prove the absolute convergence of the infinite products we have only to refer to Lemma 3.11 as in

the proof of Theorem 11.1.
The representation π̃ contragredient to π can be defined. If π = ⊗πv acts on V = ⊗u0

v
Vv then

π̃ = ⊗π̃v acts on Ṽ = ⊗u0
v
Ṽv where ũ0

v is, for almost all v, fixed by K′
v and satisfies 〈u0

v, ũ
0
v〉 = 1. The

pairing between V and Ṽ is defined by

〈⊗uv,⊗ũv〉 =
∏

v

〈uv, ũv〉.

Almost all terms in the product are equal to 1. If u is in V and ũ is in Ṽ the matrix element 〈π(g)u, ũ〉
can also be introduced. If f is in H′

〈π(f)u, ũ〉 =

∫

G′
A

f(g) 〈π(g)u, ũ〉 d×g.

If F (g) is a linear combination of such matrix elements and Φ belongs to the Schwartz space on A′
A

we
set*

Z
(
α
s+ 1

2

F ,Φ, F
)

=

∫

G′
A

Φ(g)F (g) |ν(g)|s+
1
2 d×g.

* Unfortunately the symbol F plays two quite different roles on this page!
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The function F̃ (g) = F (g−1) is a linear combination of matrix coefficients for the representation π̃. We
set

Z
(
α
s+ 1

2

F ,Φ, F̃
)

=

∫

G′
A

Φ(g) F̃ (g) |ν(g)|s+
1
2 d×g.

Before stating the next lemma we observe that ifχ is a quasi­character ofF×\I the one dimensional

representation g → χ
(
ν(g)

)
is certainly a constituent of A′.

Lemma 14.2.1 If π is a constituent of A′ the integrals defining Z(α
s− 1

2

F ,Φ, F ) and Z(α
s− 1

2

F ,Φ, F̃ )
are absolutely convergent for Re s large enough. The two functions can be analytically continued
to the whole complex plane as meromorphic functions with only a finite number of poles. If π is
not of the form g → χ

(
ν(g)

)
they are entire. If F is a number field they are bounded at infinity in

vertical strips of finite width. In all cases they satisfy the functional equation

Z
(
α
s+ 1

2

F ,Φ, F
)

= Z
(
α

3
2−s

F ,Φ′, F̃
)

if Φ′ is the Fourier transform of Φ.

There is no harm in assuming that F is of the form

F (g) =
∏

v

〈π(gv)uv, ũv〉 =
∏

v

Fv(gv)

and that Φ is of the form
Φ(x) =

∏

v

Φv(xv)

where, for almost all v, Φv is the characteristic function of M(2, Ov). Recall that for almost all v we
have fixed an isomorphism θv of M ′

v with M(2, Fv).

We know that each of the integrals

∫

G′
v

Φv(gv)Fv(gv) |ν(gv)|
s+ 1

2 d×gv

converges absolutely for Re s sufficiently large. Let S be a finite set of primes which contains all
archimedean primes such that outside ofS the vector uv is u0

v , the vector ũv is ũ0
v, Φv is the characteristic

function of M(2, Ov), and πv = πv(µv, νv) where µv and νv are unramified. Let π′v = πv(|µv|, |νv |). If
v is not in S the integral ∫

K′
v

Φ(gv)Fv(gv) |ν(gv)|
s+ 1

2 d×gv = 1

and if σ = Re s ∫

G′
v

|Φv(gv)| |Fv(gv)| |ν(gv)|
σ+ 1

2 d×gv

is, as we see if we regard πv as acting on B(µb, νv), at most

∫

G′
v

Φv(gv) 〈π
′
v(gv) fv, f̃v〉 |ν(gv)|

σ+ 1
2 d×gv
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if fv and f̃v are the uniqueK ′
v­invariant elements in B(|µv|, |νv |) and B(|µv|

−1, |νv|
−1) which take the

value 1 at the identity. We suppose that the total measure of K′
v is 1 so that 〈fv, f̃v〉 = 1. According to

Lemma 13.2.6 the integral is equal to L(σ, π′v). Since

∏

v∈S

L(σ, π′v)

is absolutely convergent for σ sufficiently large the integral defining Z(α
s+ 1

2

F ,Φ, F ) is also and is equal

to ∏

v

Z
(
α
s+ 1

2

Fv
⊗ πv,Φv, uv, ũv

)

and to

L(s, π)
∏

v

Ξ(s,Φv, uv , ũv).

Notice that Ξ(s,Φv, uv , ũv) is identically 1 for almost all v. Z(α
s+ 1

2

F ,Φ, F̃ ) may be treated in a similar
fashion. If we take π to be the trivial representation we see that

∫

G′
A

Φ(g) |ν(g)|s+
1
2 d×g

is absolutely convergent for Re s sufficiently large.

It will be enough to prove the remaining assertions of the lemma when η is a character. We may
also assume that if η is of the form η(a) = |a|r then r = 0. We have identified V with a subspace of

A′(η). We may take Ṽ to be {ϕ̃
∣∣ϕ ∈ V }. To see this observe that this space is invariant under H′ and

that

〈ϕ1, ϕ2〉 =

∫

G′
F
Z′

A
\G′

A

ϕ1(g)ϕ2(g) dg

is a non­degenerate bilinear form. Hereϕ1 belongs to V and ϕ̃2 belongs to V . The remaining assertions
need only be verified for functions of the form

F (g) =

∫

G′
F
Z′

A
\G′

A

ϕ(hg) ϕ̃(h) dh

with ϕ in V and ϕ̃ in Ṽ .

For such an F the function Z(α
s+ 1

2

F ,Φ, F ) is equal to

∫
Φ(g)

{∫
ϕ(hg) ϕ̃(h) dh

}
|ν(g)|s+

1
2 d×g.

Since ϕ and ϕ̃ are bounded this double integral converges absolutely for Re s sufficiently large.
We first change variables by substituting h−1g for g. The integration with respect to g can then be

carried out in three steps. We first sum over GF ′ , then we integrate over Z′
F \ Z ′

A
which we identify

with F× \ I , and finally we integrate over G′
FZ

′
A
\G′

A
. Thus if KΦ(h1, h2, s) is

|ν(h−1
1 |s+

1
2 |ν(h2)|

s+ 1
2

∫

F×\I

∑

G′
F

Φ(h−1
1 ξah2) η(a) |a|

2s+1 d×a
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the function Z(α
s+ 1

2

F ,Φ, F ) is equal to

∫∫
ϕ(h2) ϕ̃(h1)KΦ(h1, h2, s) dh1 dh2.

The integrations with respect to h1 and h2 are taken overG′
FZ

′
A
\G′

A
. A similar result is of course valid

for Z(α
s+ 1

2

F ,Φ, F̃ ). If K̃Φ(h1, h2, s) is

|ν(h−1
1 )|s+

1
2 |ν(h2)|

s+ 1
2

∫

F×\I

∑

G′
F

Φ(h−1
1 ξah2) η

−1(a) |a|2s+1 d×a

then Z(α
s+ 1

2

F ,Φ, F̃ ) is equal to

∫∫
ϕ(h2) ϕ̃(h2) K̃Φ(h1, h2, s) dh1 dh2.

We first study

θ(s,Φ) =

∫

F×\I

∑

ξ 6=0

Φ(ξa) η(a) |a|2s+1
F d×a

and

θ̃(s,Φ) =

∫

F×\I

∑

ξ 6=0

Φ(ξa) η−1(a) |a|2s+1
F d×a.

The sums are taken over G′
F the set of non­zero elements of M ′. Choose two non­negative continuous

functions F0 and F1 on the positive real numbers so that F0(t) + F1(t) = 1, F1(t) = F0(t
−1), and so

that F0 vanishes near zero while F1 vanishes near infinity. If

θi(s,Φ) =

∫

F×\I

∑

ξ 6=0

Φ(ξa) η(a) |a|
2s+1 Fi(|a|) d

×a

we have
θ(s,Φ) = θ0(s,Φ) + θ1(s,Φ).

In the same way we may write

θ̃(s,Φ) = θ̃0(s,Φ) + θ̃1(s,Φ)

θ0(s,Φ) and θ̃0(s,Φ) are entire functions of s which are bounded in vertical strips.
Applying the Poisson formula we obtain

Φ(0) +
∑

ξ 6=0

Φ(ξa) = |a|−4
F

{
Φ′(0) +

∑

ξ 6=0

Φ′(ξa−1)
}
.

Thus, for Re s sufficiently large, θ1(s,Φ) is equal to the sum of

∫

F×\I

∑

ξ 6=0

Φ′(ξa−1) η(a) |a|2s−3 F1(|a|) d
×a,
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which, after the substitution of a−1 for a, is seen to equal θ̃0(1 − s,Φ′), and

∫

F×\I

{
Φ′(0) |a|−4 − Φ(0)

}
η(a) |a|2s+1 F1(|a|) d

×a.

Thus if

λ(s) =

∫

F×\I

|a|s η(a)F1(|a|) d
×a

the function θ(s,Φ) is equal to

θ0(s,Φ) + θ̃0(1 − s,Φ′) + Φ′(0)λ(2s− 3) − Φ(0)λ(2s+ 1).

A similar result is valid for θ̃(s,Φ). The function

θ0(s,Φ) + θ̃0(1 − s,Φ′)

is entire and bounded in vertical strips and does not change when s and Φ are replaced by 1 − s and
Φ′.

If η is not of the form η(a) = |a|r the function λ(s) vanishes identically. If η is trivial and I0 is the

group of idèles of norm 1

λ(s) =

∫

F×\I

|a|2s+1 Fj(|a|) d
×a.

It is shown in [10] that this function is meromorphic in the whole plane and satisfies λ(s)+λ(−s) = 0.

If F is a number field, its only pole is at s = 0 and is simple. Moreover it is bounded at infinity in
vertical strips of finite width. If F is a function field its poles are simple and lie at the zeros of 1− q−s.
Here q is the number of elements in the field of constants.

Thus θ(s,Φ) is meromorphic in the whole plane and is equal to θ̃(1− s,Φ′). If hΦg is the function
x→ Φ(gxh) then

KΦ(h1, h2, s) = |ν(h−1
1 )|s+

1
2 |ν(h2)|

s+ 1
2 θ(s, h2Φh

−1
1 )

while

K̃Φ(h1, h2, s) = |ν(h−1
1 )|s+

1
2 |ν(h2)|

s+ 1
2 θ̃(s, h2Φh

−1
1 ).

Since the Fourier transform of h2Φh
−1
1 is

|ν(h2)|
−2 |ν(h1)|

2 h1Φ
′h−1

2

we have
KΦ(h1, h2, s) = K̃Φ′(h2, h1, s).

The functional equation of the lemma follows. So do the other assertions except the fact that the

functions Z(α
s+ 1

2

F ,Φ, F ) and Z(α
s+ 1

2

F ,Φ, F̃ ) are entire when η is trivial and π is not of the form

g → χ
(
ν(g)

)
. In this case the functions ϕ and ϕ̃ are orthogonal to the constant functions and the

kernels KΦ(h1, h2, s) and K̃Φ(h1, h2, s) may be replaced by

K ′
Φ′(h1, h2, s) = K̃Φ′(h1, h2, s) + Φ(0)λ(2s+ 1) − Φ′(0)λ(2s− 3)
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and
K̃ ′

Φ′(h1, h2, s) = K̃Φ′(h1, h2, s) + Φ′(0)λ(2s+ 1)− Φ(0)λ(2s− 3).

The functional equation of the kernels is not destroyed but the poles disappear.

The theorem follows easily from the lemma. In fact suppose that the finite set of places S is so
chosen that for v not in S

Ξ(s,Φ0
v, u

0
v, ũ

0
v) = 1

if Φ0
v is the characteristic function of M(2, Ov). If v is in S choose Φ′

v, uiv , ũiv , 1 ≤ i ≤ nv, so that

nv∑

i=1

Ξ(s,Φiv, u
i
v, ũ

i
v) = ebvs

where bv is real. If α is a function from S to the integers and, for each v in S, 1 ≤ α(v) ≤ nv, set

Φα(g) =
{∏

v∈S

Φα(v)
v (gv)

}{∏

v∈S

Φ0
v(gv)

}

and set

Fα(g) =
{∏

v∈S

〈πv(gv)u
α(v)
v , ũα(v)

v 〉
}{∏

v 6∈S

〈πv(gv)u
0
v, ũ

0
v〉
}
.

Then ∑

α

Z
(
α
s+ 1

2

F ,Φα, Fα
)

= cbs L(s, π)

where b is real. The required analytic properties of L(s, π) follow immediately.
To prove the functional equation choose for each v the function Φv and the vectors uv and ũv so

that
Ξ(s,Φv, uv, ũv)

is not identically 0. We may suppose that, for almost all v, Φv = Φ0
v, uv = u0

v , and ũv = ũ0
v . Let

Φ(g) =
∏

v

Φv(gv)

and let

F (g) =
∏

v

〈πv(gv)uv, ũv〉.

Then

Z
(
α
s+ 1

2

F ,Φ, F
)

= L(s, π)
∏

v

Ξ(s,Φv, uv, ũv)

and

Z
(
α

3
2−s

F ,Φ′, F̃ ) = L(1 − s, π̃)
∏

v

Ξ̃(1 − s,Φ′
v, uv, ũv).

Since

Ξ̃(1− s,Φ′
v, uv, ũv) = hvε(s, πv, ψv) Ξ(s,Φv, uv, ũv)

the functional equation of the lemma implies that

L(s, π) =
{∏

v

hv

}
ε(s, π)L(1− s, π̃).

Since, by a well­known theorem, the algebra M ′ is split at an even number of places the product
∏
v hv

equals 1.
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Corollary 14.3 If π is a constituent of A
′ which is not of the form g → χ

(
ν(g)

)
then for any quasi-

character ω of F× the functions L(s, ω ⊗ π) and L(s, ω−1 ⊗ π̃) are entire and bounded in vertical
strips of finite width. Moreover they satisfy the functional equation

L(s, ω ⊗ π) = ε(s, ω ⊗ π)L(1 − s, ω−1 ⊗ π̃).

We have only to observe that if π is a constituent of A′ then ω ⊗ π is also.

Now we change the notation slightly and let π′ = ⊗π′
v be an irreducible admissible representation

of H′. We want to associate to it a representation π = ⊗πv of H the Hecke algebra ofGL(2,A). IfM ′
v is

split then πv is just the representation corresponding to π′v by means of the isomorphism θv ofGFv
and

G′
Fv

. If M ′
v is not split πv is the representation πv(π

′
v) introduced in the fourth and fifth paragraphs.

In both cases πv is defined unambiguously by the following relations

L(s, ωv ⊗ πv) = L(s, ωv ⊗ π′
v)

L(s, ωv ⊗ π̃v) = L(s, ωv ⊗ π̃′
v)

ε(s, ωv ⊗ πv, ψv) = ε(s, ωv ⊗ π′
v, ψv)

which holds for all quasi­characters ωv of F×
v .

Applying the previous corollary and Theorem 11.3 we obtain the following theorem.

Theorem 14.4 If π′ is a constituent of A′ and π′
v is infinite dimensional at any place where M ′

splits then π is a constituent of A0.

Some comments on the assumptions are necessary. If π′ is a constituent of A′ we can always

find a quasi­character of ω of F× \ I such that ω ⊗ π′ is unitary. If π′ = ⊗π′
v the same is true of the

representations π′v . In particular if M ′ splits at v the representation π′v will not be finite dimensional

unless it is one dimensional. Various density theorems probably prevent this from happening unless

π′ is of the form g → χ
(
ν(g)

)
. If π′ is of this form then all but a finite number of the representations πv

are one dimensional. But if M ′ does not split at v the representation πv is infinite dimensional. Thus

π cannot act on a subspace of A. However it can still be a constituent of A. This is in fact extremely
likely. Since the proof we have in mind involves the theory of Eisenstein series we prefer to leave the

question unsettled for now.



Chapter 3 247

§15. Some orthogonality relations. It is of some importance to characterize the range of the map
π′ → π from the constituents of A′ to those of A discussed in the last chapter. In this paragraph we

take up the corresponding local question. Suppose F is a local field and M′ is the quaternion algebra
over F . G′

F is the group of invertible elements of M ′. We know how to associate to every irreducible

admissible representation π′ of H′
F an irreducible admissible representation π = π(π′) of HF the

Hecke algebra of GL(2, F ).

Theorem 15.1 Suppose F is non-archimedean. Then the map π ′ → π is injective and its image is
the collection of special representations together with the absolutely cuspidal representations.

The proof requires some preparation. We need not distinguish between representations ofG′
F and

H′
F or between representations of GF and HF . An irreducible admissible representation π of GF is

said to be square­integrable if for any two vectors u1 and u2 in the space of π and any two vectors ũ1

and ũ2 in the space of π̃ the integral

∫

ZF \GF

〈π(g)u1, ũ1〉 〈u2, π̃(g)ũ2〉 dg

is absolutely convergent. Since π̃ is equivalent to η−1 ⊗ π if

π

((
a 0
0 a

))
= η(a) I

this is equivalent to demanding that

∫

ZF \GF

|〈π(g)u1, ũ1〉|
2 |η−1(detg)| dg

be finite for every u1 and u2.
If π is square­integrable and ω is a quasi­character of F× then ω ⊗ π is square integrable. We can

always choose ω so that ω2η is a character. If η is a character choose u0 different from 0 in the space V
of π. Then

(u1, u2) =

∫

ZF \GF

〈π(g)u1, u0〉 〈π(g)u2, u0〉 dg

is a positive­definite form on the space V of π so that π is unitary and square­integrable in the usual

sense.

The Schur orthogonality relations when written in the form

∫

ZF \GF

〈π(g)u1, ũ1〉 〈u2, π̃(g)ũ2〉 dg =
1

d(π)
〈u2, ũ1〉 〈u1, ũ2〉

are valid not only for representations which are square­integrable in the usual sense but also for
represntations which are square­integrable in our sense. The formal degree d(π) depends on the choice

of Haar measure. Notice that d(ω ⊗ π) = d(π).

The absolutely cuspidal representations are certainly square­integrable because their matrix ele­
ments are compactly support modulo ZF .
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Lemma 15.2 The special representations are square-integrable.

Suppose σ = σ(α
1
2

F , α
− 1

2

F ). Since

χ⊗ σ = σ
(
χα

1
2

F , χα
− 1

2

F

)

it is enough to show that σ is square­integrable. If ϕ belongs to Bs(α
1
2

F , α
− 1

2

F ) and ϕ̃ belongs to

B(α
− 1

2

F , α
1
2

F ) then

f(g) = 〈ϕ, ρ(g−1)ϕ̃〉

is the most general matrix coefficient of σ. B(α
− 1

2

F , α
1
2

F ) is the space of locally constant functions on

NFAF \GF and Bs(α
1
2

F , α
− 1

2

F ) is the space of locally constant functions ϕ on GF that satisfy

ϕ

((
a1 x
0 a2

)
g

)
=
∣∣∣a1

a2

∣∣∣ϕ(g)

and ∫
ϕ

(
w

(
1 x
0 1

))
dx = 0.

Since

GF =
⋃

n≥0

ZF K

(
$n 0
0 1

)
K

we can choose the Haar measure on ZF \GF so that

∫

ZF \GF

|f(g)|2 dg

is equal to
∑

n≥0

c(n)

∫ ∣∣∣∣f
(
k1

(
$−n 0

0 1

)
k2

)∣∣∣∣
2

dk1 dk2

where c(0) = 1 and

c(n) = qn
(
1 +

1

q

)

if n > 0. Here q = |$|−1. Since f isK­finite on both sides and its translates are also matrix coefficients

we need only show that
∞∑

n=0

∣∣∣∣f
((

$−n 0
0 1

))∣∣∣∣
2

qn

is finite. It will be more than enough to show that

Φ(a) = f

((
a 0
0 1

))
= O(|a|−1)

as a→ ∞.
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We recall that

Φ(a) =

∫

F

ϕ

(
w

(
1 x
0 1

))
ϕ̃

(
w

(
1 x
0 1

)(
a 0
0 1

))
dx.

The function

ϕ1(x) = ϕ

(
w

(
1 x
0 1

))

is integrable and the function

ϕ2(x) = ϕ̃

(
w

(
1 x
0 1

))

is bounded and locally constant. Moreover

Φ(a) =

∫

F

ϕ1(x)ϕ2(a
−1x) dx.

Suppose ϕ2(x) = ϕ2(0) for |x| ≤M . If |a| ≥ 1

Φ(a) = ϕ2(0)

∫

{x
∣∣ |x|≤|a|M}

ϕ1(x) dx+

∫

{x
∣∣ |x|>|a|M}

ϕ1(x)ϕ2(a
−1x) dx.

Since ∫

F

ϕ1(x) dx = 0

Φ(a) is equal to ∫

{x
∣∣ |x|>|a|M}

(
ϕ2(a

−1x) − ϕ2(0)
)
ϕ1(x) dx.

The function ϕ2 is bounded so we need only check that

∫

{x
∣∣ |x|>|a>}

|ϕ1(x)| dx = O(|a|−1)

as |a| → ∞. The absolute value of the function ϕ is certainly bounded by some multiple of the function

ϕ′ in B(α
1
2

F , α
− 1

2

F ) defined by

ϕ′

((
a1 x
0 a2

)
k

)
=
∣∣∣a1

a2

∣∣∣

if k is in GL(2, OF ). Since

w

(
1 x
0 1

)
=

(
0 1
−1 −x

)
=

(
x−1 0
0 x

)(
1 y
0 1

)
k

with y in F and k in GL(2, OF ) if |x| > 1

∫

{x
∣∣ |x|>|$|−n}

|ϕ1(x)| dx = O
( ∞∑

k=n+1

|$|k
)

= O(|$|−n).
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Since we need to compare orthogonality relations on the two groups GF = GL(2, F ) and G′
F

we have to normalize their Haar measure simultaneously. There are two ways of doing this. We first

describe the simplest. Choose a non­trivial additive character ψ of F . Then ψM (x) = ψ(trx) and
ψM ′(x) = ψ

(
τ(x)

)
are non­trivial additive characters of M = M(2, F ) and M ′. Let dx and dx′ be the

Haar measures on M and M ′ self­dual with respect to ψM and ψM ′ . Then

d×x = |x|−1
M dx = |detx|−2

F dx

and
d×x′ = |x′|−1

M ′ dx
′ = |ν(x′)|−2

F dx′

are Haar measure on GF and G′
F .

The second method takes longer to describe but is more generally applicable and for this reason

well worth mentioning. Suppose G and G′ are two linear groups defined over F and suppose there is
an isomorphism ϕ of G′ with G defined over the finite Galois extension K . Suppose the differential

form ω on G is defined over F . In general the form ω′ = ϕ∗ω on G′ is not defined over F . Suppose
however that ω is left and right invariant and under an arbitrary isomorphism it is either fixed or

changes sign. Suppose moreover that for every σ in G(K/F ) the automorphism σ(ϕ)ϕ−1 ofG is inner.

Then
σ(ω′) = σ(ϕ)∗ σω = σ(ϕ)∗ ω = ϕ∗

(
σ(ϕ)ϕ−1

)
∗
ω = ϕ∗ω = ω′

and ω′ is also defined over F . If ξ is another such isomorphism of G′ with G then

ξ∗(ω) = ϕ∗(ξϕ
−1)∗ω = ±ϕ∗ω = ±ω′

and the measures associated toϕ∗ω and ξ∗ω are the same. Thus a Tamagawa measure onGF determines

one on G′
F .

We apply this method to the simple case under consideration. If

x =

(
a b
c d

)

is a typical element of M then
µ = da ∧ db ∧ dc ∧ dd

is a differential form invariant under translations and the associated measure is self­dual with respect

to ψM . If ω = (detx)−2µ then ω is an invariant form on G and the associated measure is d×x.

If K is any separable quadratic extension of F we may imbed K in both M and M ′. Let σ be
the non­trivial element of G(K/F ). There is a u in M and a u′ in M ′ such that M = K + Ku and

M ′ = K+Ku′ while uxu−1 = xσ and u′xu′
−1

= xσ for all x inK . u2 is a square in F× and u′
2

= γ is

an element of F× which is not the norm of any element ofK . We may suppose that u2 = 1. If we letK
act to the right the algebra L = K⊗F K is an algebra overK . σ acts on L through its action on the first
factor. There is an isomorphism L → K ⊕K which transforms σ into the involution (x, y) → (y, x).

In particular every element of K ⊗ 1 is of the form δδσ with δ in L. Choose δ so that γ = δδσ . If

M ′
K = M ′ ⊗F K = L⊗ Lu′

and
MK = M ⊗F K = L⊗ Lu,
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let ϕ be the linear map from M ′
K to MK which sends x + yu′ to x + yδu. ϕ is easily seen to be an

isomorphism of M ′
K and MK as algebras over K . σ(ϕ)ϕ−1 takes x+ yu to

x+ yδσδ−1u = δ−1(x+ yu)δ

and is therefore inner. Thus ϕ determines an isomorphism ofG′ the multiplicative group ofM ′ withG
the multiplicative group ofM . ϕ is defined overK and σ(ϕ)ϕ−1 is inner. Let |ω′| be the Haar measure

on G′
F associated to the Haar measure |ω| = d×x of GF . We want to show that |ω′| is just d×x′.
Let θ be an invariant form onK . The obvious projections ofM = K⊕Ku onK define differential

forms θ1 and θ2 on M . Let θ1 ∧ θ2 = cµ. In the same way the projections of M ′ = K ⊕ Ku′ on K
define differential forms θ′1 and θ′2 on M ′. If we extend the scalars from F to K we can consider the

map x→ xδ of L into itself. θ is a form on L and its inverse image is N(δ)θ = γθ. Thus

ϕ∗(θ1 ∧ θ2) = γθ′1 ∧ θ
′
2.

Thus if µ′ = ϕ∗(µ)
cµ′ = γθ′1 ∧ θ

′
2.

Suppose c1|θ| is self­dual with respect to the character ψK(x) = ψ
(
τ(x)

)
on K . Then

∫ {∫
Φ(a, b)ψK(ax+ byσ) |θ(a)| |θ(b)|

}
|θ(x)| |θ(y)| = c−4

1 Φ(0, 0)

and

|γ|2F

∫ {∫
Φ(a, b)ψK(ax+ byσγ) |θ(a)| |θ(b)|

}
|θ(x)| |θ(y)| = c−4

1 Φ(0, 0).

If x+ yu belongs to M with x and y in K then, since τ(u) = 0,

τ(x+ yu) = τ(x) = TrK/F (x).

In the same way

τ(x+ yu′) = TrK/F (x).

Thus
ψM
(
(x+ yu)(a+ bu)

)
= ψK(xa+ ybσ)

ψM ′

(
(x+ yu′)(a+ bu′)

)
= ψK(xa+ ybσγ).

Thus c21|θ1 ∧ θ2| is self­dual with respect to ψM and c21|γ|F |θ′1 ∧ θ′2| is self­dual with respect to ψM ′ .

Since c21 = |c|F the measure |µ′| is self­dual with respect to ψM ′ . Finally ω′ = ν(x′)−2 dx′ so that |ω′|
is just d×x′. Thus the two normalizations lead to the same result.

If b is in M or M ′ the eigenvalues of b are the roots α1 and α2 of the equation

X2 − τ(b)X + ν(b) = 0.

If b is in GF or G′
F it is said to be regular of α1 and α2 are distinct; otherwise it is singular. We set

δ(b) =

∣∣∣∣
(α1 − α2)

2

α1α2

∣∣∣∣
F

.
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The set of singular elements is of measure 0. If b is regular the subalgebra ofM orM ′ generated by b is
a separable quadratic extension E of F and the multiplicative group of E is a Cartan subgroup of GF
orG′

F . To obtain a set of representatives for the conjugacy classes of Cartan subgroups ofGF orG′
F we

choose once and for all a set S′ of representatives for the classes of separable quadratic extensions of

F . We also choose for each E in S′ an imbedding of E in M and in M ′. The multiplicative group of E
may be regarded as a Cartan subgroup BF of either GF or G′

F . S′ will also stand for the collection of
Cartan subgroups obtained in this way. It is a complete set of representatives for the conjugacy classes

of Cartan subgroups ofG′
F . If S is the result of adjoining to S′ the group AF of diagonal matrices then

S is a complete set of representatives for the conjugacy classes of Cartan subgroups of GF . If BF is in

S′ we choose the Tamagawa measure µB on BF as in the seventh paragraph. The analogue for G′
F of

the formula (1.2.2) is∫

Z′
F
\G′

F

f(g)ω′
0(g) =

∑

S′

1

2

∫

ZF \BF

δ(b)
{∫

BF \G′
F

f(g−1bg)ω′
B(g)

}
µ0
B(b).

Let B̂F be the set of regular elements in BF and let

C =
⋃

S′

ZF \ B̂F .

We may regard C as the discrete union of the spaces ZF \ B̂F . We introduce on C the measure µ(c)
defined by ∫

C

f(c)µ(c) =
1

2

∑

S′

1

measure(ZF \BF )

∫

ZF \B̂F

f(b) δ(b)µ0
B(b).

Lemma 15.3 Let η be a quasi-character of F× and let Ω′(η) be the set of equivalence classes of
irreducible representations π of G′

F such that π(a) = η(a) for a in Z ′
F , which we identify with F×.

If π1 and π2 belong to Ω′(η) and
f(g) = χπ1

(g)χπ̃2
(g)

where χπ(g) = Tr π(g) then ∫

C

f(c)µ(c) = 0

if π1 and π2 are not equivalent and ∫

C

f(c)µ(c) = 1

if they are.

Since Z ′
F \ G′

F is compact we may apply the Schur orthogonality relations for characters to see

that
1

measureZ ′
F \G′

F

∫

Z′
F
\G′

F

f(g)ω′
0(g)

is 0 if π1 and π2 are not equivalent and is 1 if they are. According to the integration formula remarked

above this expression is equal to

1

measureZ ′
F \G′

F

∑

S′

1

2

∫

ZF \BF

f(b) δ(b) (measureBF \G′
F )µ0

b(b).

Since
measureZ ′

F \G′
F = (measureZF \BF )(measureBF \G′

F )

the lemma follows. Observe that ZF and Z′
F tend to be confounded.

There is form of this lemma which is valid for GF .
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Lemma 15.4 Let η be a quasi-character of F×. Let Ω0(η) be the set of equivalence classes of
irreducible admissible representations π of GF which are either special or absolutely cuspidal and
satisfy π(a) = η(a) for all a in ZF . Suppose π1 and π2 belong to Ω0(η). Let f = fπ1,π2

be the
function

f(b) = χπ1
(b)χπ̃2

(b)

on C. Then f is integrable and ∫

C

f(c)µ(c)

is 1 if π1 and π2 are equivalent and 0 otherwise.

It is enough to prove the lemma when η is a character. Then χπ̃ is the complex conjugate of χπ
and fπ,π is positive. If the functions fπ,π are integrable then by the Schwarz inequality all the functions
fπ1,π2

are integrable.

Let Ω(η) be the set of irreducible admissible representations π of GF such that π(a) = η(a) for a
in ZF . If ϕ is a locally constant function on GF such that

ϕ(ag) = η−1(a)ϕ(g)

for a in ZF and such that the projection of the support of ϕ on ZF \GF is compact then we define π(ϕ),

if π is in Ω(η), by

π(ϕ) =

∫

ZF \GF

ϕ(g)π(g)ω0(g).

It is easily seen that π(ϕ) is an operator of finite rank and that the trace ofπ(ϕ) is given by the convergent

integral ∫

ZF \GF

ϕ(g)χπ(g)ω
0(g).

In fact this follows from the observation that there is a ϕ1 in HF such that

ϕ1(g) =

∫

ZF

ϕ1(ag) η(a)µZ(a)

and the results of the seventh paragraph.

Suppose π1 is absolutely cuspidal and unitary and acts on the space V1. Suppose also that
π1(a) = η(a) for a in ZF . Choose a unit vector u1 and V1 and set

ϕ(g) = d(π1)
(
u1, π1(g)u1

)
.

Since π1 is integrable it follows from the Schur orthogonality relations that π2(ϕ) = 0 if π2 in Ω(η) is
not equivalent to π1 but that π2(ϕ) is the orthogonal projection on Cu1 if π2 = π1. In the first case

Trπ1(ϕ) = 0 and in the second Trπ2(ϕ) = 1.
On the other hand

Trπ2(ϕ) =

∫

ZF \GF

χπ2
(g)ϕ(g)ω0(g).

We apply formula (7.2.2) to the right side to obtain

∑

S

1

2

∫

ZF \BF

χπ2
(b) δ(b)

{∫

BF \GF

ϕ(g−1bg)ωB(g)
}
µ0
B(g).



If BF belongs to S′ the inner integral is equal to

1

measureZF \BF
d(π1)

∫

ZF \GF

(
u1, π1(g

−1bg)u1

)
ωB(g)

which by Proposition 7.5 is equal to

1

measureZF \BF
χπ̃1

(b).

If BF is AF the group of diagonal matrices the inner integral is, apart from a constant relating Haar
measures, the product of d(π1) and the integral over GL(2, OF ) of

∫

F

(
π1

((
1 −x
0 1

)
b

(
1 x
0 1

))
π1(k)u1, π1(k)u1

)
dx.

If

b =

(
α1 0
0 α2

)

this is ∣∣∣∣1 −
α2

α1

∣∣∣∣
−1 ∫

F

(
π1(b)π1

((
1 x
0 1

))
π1(k)u1, π1(k)u1

)
dx

which we know is 0. Collecting these facts together we see that f = fπ2,π1
is integrable on C if π1 is

absolutely cuspidal and that its integral has the required value.

To complete the proof all we need do is show that if π = σ(χ
1
2
αF , χ

− 1
2

F ) is a special representation
then f = fπ,π is integrable on C and ∫

C

f(c)µ(c) = 1.

If π′ is the one­dimensional representation g → χ
(
ν(g)

)
of G′

F then π = π(π′). To prove the existence

of χπ we had to show in effect that if BF was in S′ and b was in B̂F then

χπ(b) = −χπ′(b).

Thus fπ,π = fπ′,π′ and the assertion in this case follows from the previous lemma.

The relation just used does not seem to be accidental.

Proposition 15.5 Suppose π′ is an irreducible admissible representation of G′
F and π = π(π′) the

corresponding representation of GF . If BF is in S′ and b is in B̂F

χπ′(b) = −χπ(b).

We may suppose that π′ is not one­dimensional and that π is absolutely cuspidal. We may also

suppose that they are both unitary. We take π in Kirillov form with respect to some additive character
ψ. If ϕ is in S(F×) the function

ϕ′ = π

((
0 1
−1 0

))
ϕ

is also.
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Since the measure µ and µ′ are self­dual with respect to the characters ψM and ψM ′ Lemma 13.1.1
and Proposition 4.5 show us that for any λ in F×

∫

GF

ϕ(detg)
(
π(g−1)u, u

)
|detg|ψM (λg)ω(g) (15.5.1)

is equal to

ϕ′(λ2) η−1(λ) |λ|−2

and that ∫

G′
F

ϕ(detg)
(
π′(g−1)u′, u′

)
|detg|ψM ′(λg)ω′(g) (15.5.2)

is equal to

−ϕ′(λ2) η−1(λ) |λ|−2.

Here u is a unit vector in the space of π and u′ a unit vector in the space π′. In any case (15.5.1) is just

the negative of (15.5.2).
If we use formula (7.2.1) to express the integral (15.5.1) as a sum over S we obtain

1

2

∑

S′

1

measureZF \BF

∫

BF

ϕ(detb) |detb|
χπ(b

−1)

d(π)
δ(b)ψM (λb)µB(b).

The contribution from AF vanishes as in the previous lemma. The other integrals have been simpli­

fied by means of Proposition 7.5. There is of course an obvious analogue for the group G′
F of the

formula (7.2.1). If we apply it we see that (15.5.2) is equal to

1

2

∑

S′

1

measureZF \BF

∫

BF

ϕ(detb) |ν(b)|
χπ′(b−1)

d(π′)
δ(b)ψM ′(λb)µB(b)

if ν(b) is the reduced norm. Of course on BF the functions ν(b) and detb are the same. Choose B0
F in

S′ and b0 in B̂0
F . We shall show that

χπ′(b−1
0 )

d(π′)
=

−χπ(b
−1
0 )

d(π)
.

The orthogonality relations of the previous two lemmas will show that d(π) = d(π′) and we will

conclude that

χπ′(b−1
0 ) = −χπ(b

−1
0 ).

The norm and the trace of b0 are the same whether it is regarded as an element of M or of M ′. In

fact if B̂0
F is the multiplicative group of E in S′ the norm and the trace are in both cases the norm and

the trace of b0 as an element of E. Since b0 and its conjugate in E are conjugate in GF and G′
F we can

choose an open set U in E× containing both b0 and its conjugate so that

|ν(b)|χπ′(b−1) δ(b) = |ν(b0)|χπ′(b−1
0 ) δ(b0)

if b is in U . Lemma 7.4.2 shows that χπ is locally constant in B̂0
F . Thus we can also suppose that

|detb|χπ(b
−1) δ(b) = |detb0|χπ(b−1

0 ) δ(b0)
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if b is in U . Suppose α0 and β0 are the trace and norm of b0. We can choose a positive integer m so that
if α− α0 and β − β0 belong to pmF the roots of

X2 − αX + b

belong to E and in fact lie in U .
Let ξ(λ) be the expression (15.5.1) regarded as a function of λ. Keeping in mind the fact that

ψM (λb) = ψM ′(λb) = ψ(λ tr b),

we compute
1

measure p−m−n
F

∫

p
−m−n
F

ξ(λ)ψ(−λα0) dλ (15.5.3)

where p−nF is the largest ideal on which ψ is trivial. Since

1

measurep−m−n
F

∫

p
−m−n
F

ψ
(
λ(tr b− α0)

)
dλ

is 0, unless tr b− α0 belongs to pmF when it is 1, the integral (15.5.3) is equal to

1

2

∑

S′

1

measureZF \BF

∫

V (BF )

ϕ(detb) |detb|
χπ(b

−1)

d(π)
δ(b)µB(b)

if
V (BF ) = {b ∈ BF

∣∣ tr b− α0 ∈ pmF }.

If we take ϕ to be the characteristic function of

{β ∈ F
∣∣β − β0 ∈ pmF }

the summation disappears and we are left with

1

2
·

1

measureZF \BF
|detb0|

χπ(b
−1
0 )

d(π)
δ(b0)

∫

V (B0
F

)

ϕ(detb)µB(b).

If we replace ξ(λ) by the expression (15.5.2) the final result will be

1

2
·

1

measureZF \BF
|ν(b0)|

χπ′(b−1
0 )

d(π)
δ(b0)

∫

V (B0
F

)

ϕ(detb)µB(b).

Since these differ only in sign the proposition follows.

We are now in a position to prove Theorem 15.1. The orthogonality relations and the previous

lemma show that the map π′ → π is injective because the map takes Ω′(η) into Ω0(η). It is enough to
verify that V is surjective when η is unitary. Let L2(η) be the space of all measurable functions f on

∪S′B̂F
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such that f(ab) = η(a) f(b) if a is in ZF and

∫

C

|f(c)|2 µ(c)

is finite. By the Peter–Weyl theorem the set of functions χπ′ , π′ ∈ Ω′(η), form an orthonormal basis of
L2(η). The family χπ , π ∈ Ω0(η), is an orthonormal family in L2(η). By the previous proposition the

image of Ω′(η) in Ω0(η) is actually an orthonormal basis and must therefore be the whole family.

We observe that it would be surprising if the relation d(π) = d(π′) were not also true when π′

is one­dimensional. The facts just discussed are also valid when F is the field of real numbers. They

follow immediately from the classification and the remarks at the end of the seventh paragraph.
We conclude this paragraph with some miscellaneous facts which will be used elsewhere. F is

again a non­archimedean field. Let K = GL(2, OF ) and let K0 be the set of all matrices

(
a b
c d

)

in K for which c ≡ 0(modpF ). Suppose π is an irreducible admissible representation of GF in the

space V . We are interested in the existence of a non­zero vector v in V such that

π

((
a b
c d

))
v = ω1(a)ω2(d) v

for all matrices in K0 while

π

((
0 1
$ 0

))
v = ω0 v

ω0 is a constant and ω1 and ω2 two characters of UF . $ is a generator of pF . Since

(
0 $−1

1 0

)(
a b
c d

)(
1 1
$ 0

)
=

(
d $−1c
$b a

)

such a vector can exist only if ω1 = ω2 = ω.

Lemma 15.6 Suppose ω and ω0 are given. Let π be ρ(µ1, µ2) which may not be irreducible. There
is a non-zero vector ϕ in B(µ1, µ2) satisfying the above conditions if and only if the restrictions of
µ1 and µ2 to UF , the group of units of OF , are equal to ω and

ω2
0 = µ(−$)µ2(−$)

Moreover ϕ if it exists is unique apart from a scalar factor.

It is easily seen that K is the disjoint union of K0 and

K0

(
0 1
−1 0

)
K0 = K0wK0

Let ϕ1 be the function which is 0 on K0wK0 and on K0 is given by

ϕ1

((
a b
c d

))
= ω(ad).
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Let ϕ2 be the function which is 0 on K0 and takes the value ω(a′d′ad) at

(
a′ b′

c′ d′

)(
0 1
−1 0

)(
a b
c d

)
.

If ϕ in B(µ1, µ2) satisfies

π

((
a b
c d

))
ϕ = ω(ad)ϕ

for all matrices in K0 then the restrictions of ϕ to K must be a linear combination of ϕ1 and ϕ2. This
already implies that ω is the restriction of µ1 and µ2 to UF . Suppose ϕ = aϕ1 + bϕ2. Since

π

((
0 1
$ 0

))
ϕ1 = |$|

1
2 µ1($)µ2(−1)ϕ2

and

π

((
0 1
$ 0

))
ϕ2 = |$|−

1
2 µ2(−$)ϕ1

while µ1(−1) = µ2(−1) = ω(−1), we have

ω0b = |$|
1
2 µ1(−$)a

and
ω0a = |$|−

1
2 µ2(−$)b

Apart from scalar factors there is at most one solution of this equation. There is one non­trivial solution
if and only if ω2

0 = µ1(−$)µ2(−$).

Lemma 15.7 Suppose π = σ(µ1, µ2) is the special representation corresponding to the quasi-chacters

µ1 = χα
− 1

2

F and µ2 = χα
1
2

F . There is a non-zero vector v in the space of π such that

π

((
a b
c d

))
v = ω(ad)v

for all matrices in K0 while

π

((
0 1
$ 0

))
v = ω0v

if and only if ω is the restriction of χ to UF and ω0 = −χ(−$). If v exists it is unique apart from
a scalar.

We first let π act on Bs(µ2, µ2) a subspace of B(µ2, µ1). The condition on ω follows from the

previous lemma which also shows that ω0 must be ±χ(−$). If we take the plus sign we see that v
must correspond to the function whose restriction to K is constant. Since this function does not lie in

Bs(µ2, µ1) only the minus sign is possible. To see the existence we let π act on

Bs(µ1, µ2) = B(µ1, µ2)/Bf(µ1, µ2)

In B(µ1, µ2) there are two functions satisfying the conditions of the lemma. One with ω0 = −χ(−$)
and one with ω0 = χ(−$). One of the two, and we know which, must have a non­zero projection on

Bs(µ1, µ2).

The above lemmas together with the next one sometimes allow us to decide whether or not a given
representation is special.
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Lemma 15.8 If the absolutely cuspidal representation π acts on V there is no non-zero vector v in
V such that

π

((
0 1
$ 0

))
v = ω0v

and

π

((
a b
c d

))
v = ω(ad)v

for all matrices in K0.

We may suppose that π is the Kirillov form with respect to an additive character ψ such that OF
is the largest ideal on which ψ is trivial. Then v is a function ϕ in S(F×). If a is in UF and b is in F×

we must have ϕ(ab) = ω(a)ϕ(b). Moreover if b is in F× and x is in OF then ϕ(b) = ψ(xb)ϕ(b). Thus

ϕ(b) = 0 if b is not in OF . Consequently ϕ̂(ν, t) is 0 if ν 6= ω−1 but ϕ̂(ω−1, t) is a polynomial of the
form

amt
m + · · · + ant

n

with aman 6= 0. If ϕ1(b) = ϕ(−$b) then

ϕ̂1(ω
−1, t) =

ω(−1)

t
ϕ̂(ω−1, t).

Let

π

((
a 0
0 a

))
= η(a) I

and let ν0 be the restriction of η to UF while z0 = η($). The character ν0 will have to be equal to ω2.

The relation

ω0ϕ = π

((
0 1
$ 0

))
ϕ = π

((
0 1
−1 0

))
ϕ2

implies that
ω0ϕ̂(ω−1, t) = C(ω−1, t)ω(−1) z0t ϕ̂(ω−1, z−1

0 t−1).

By Proposition 2.23, C(ω−1, t) is of the form ct−` with ` ≥ 2. Thus the right side has a pole at 0 not
shared by the left. This is a contradiction.
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§16. An application of the Selberg trace formula. In the fourteenth paragraph we saw that if
π′ = ⊗vπ

′
v is a constituent of A′ and π′ is not of the form g → χ

(
ν(g)

)
where χ is a quasi­character

of F× \ I then π = ⊗vπv, with πv = π(π′
v), is a constituent of A0. Let S be the set of places at which

the quaternion algebra M ′ does not split. Given the results of the previous paragraph it is tempting to

conjecture that the following theorem is valid.

Theorem 16.1 Suppose π = ⊗πv is a constituent of A0. If for every v in S the representation πv
is special or absolutely cuspidal then for every v there is a representation π′

v such that πv = π(π′
v)

and π′ = ⊗π′
v is a constituent of A′.

The existence of π′
v has been shown. What is not clear is that π′ is a constituent of A′. It seems

to be possible to prove this by means of the Selberg trace formula. Unfortunately a large number of

analytical facts need to be verified. We have not yet verified them. However the theorem and its proof

seem very beautiful to us; so we decided to include a sketch of the proof with a promise to work out the
analytical details and publish them later. We must stress that the sketch is merely a formal argument

so that the theorem must remain, for the moment, conjectural.
We first review some general facts about traces and group representations. Suppose G is a locally

compact unimodular group and Z is a closed subgroup of the centre of G. Let η be a character of Z .

We introduce the space L1(η) of all measurable functions f on G which satisfy f(ag) = η−1(a) f(g)
for all a in Z and whose absolute values are integrable on Z \G. If f1 and f2 belong to L1(η) so does

their product f1 ∗ f2 which is defined by

f1 ∗ f2(g) =

∫

Z\G

f1(gh
−1) f2(h) dh

If f belongs to L1(η) let f∗ be the function f∗(g) = f̄(g−1). It also belongs to L1(η). A subalgebra B
of L1(η) will be called ample if it is dense and closed under the operation f → f∗.

Let π be a unitary representation of G on the Hilbert space H such that π(a) = η(a) I for all a in

Z . We do not suppose that π is irreducible. If f belongs to L1(η) we set

π(f)

∫

Z\G

f(g)π(g) dg

If π(f) is compact for all f in some ample subalgebra B then π decomposes into the direct sum of

irreducible representations no one of which occurs more than a finite number of times.

Lemma 16.1.1 Suppose π1 and π2 are two unitary representations of G such that π1(a) = η(a) I
and π2(a) = η(a) I for all a in Z. Suppose there is an ample subalgebra B of L1(η) such that π1(f)
and π2(f) are of Hilbert–Schmidt class for all f in B.

(i) If for every f in B
traceπ1(f)π1(f

∗) ≥ traceπ2(f)π2(f
∗)

then π2 is equivalent to a subrepresentation of π1.
(ii) If for every f in B

traceπ1(f)π1(f
∗) = traceπ2(f)π2(f

∗)

then π2 is equivalent to π1.

Let π1 act on H1 and let π2 act on H2. A simple application of Zorn’s lemma shows that we
can choose a pair of closed invariant subspaces M1 and M2, of H1 and H2 respectively, such that the
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restrictions of π1 to M1 and π2 to M2 are equivalent and such that the pair M1,M2 is maximal with
respect to this property. Replacing H1 and H2 by the orthogonal complements of M1 and M2 we may

suppose that M1 = 0 and that M2 = 0. To prove the first assertion of the lemma we have to show that
with this assumption H2 = 0. If the second condition is satisfied we can reverse the roles of π1 and π2

to see that H1 is also 0.

Before beginning the proof we make a simple remark. Suppose σ is an irreducible unitary rep­
resentation of G on L and σα, α ∈ A, is an irreducible unitary representation of G on Lα. Suppose

that σ(a) = η(a) I for all a in Z and σα(a) = η(a) I for all a in Z and all α in A. Suppose that σ is
equivalent to none of the σα and that a non­zero vector x in L and vectors xα in Lα are given. Finally

suppose that ∑

α

‖σα(f)xα‖
2

is finite for every f in B. Then if ε is any positive number there is an f in B such that

∑

α

‖σα(f)xα‖
2 < ε‖σ(f)x‖2.

Suppose the contrary and let L′ be the closure in ⊕αLα of

{⊗σα(f)xα
∣∣ f ∈ B}

L′ is invariant under G and the map

⊕σα(f)xα → σ(f)x

may be extended to a continuous G­invariant map A′ of L′ into L. If A′ were 0 then σ(f)x = 0 for all
f in B which is impossible. Let A be the linear transformation from ⊕Lα to L which is A′ on L′ and 0
on its orthogonal complement. A commutes with G and is not 0. Let Aα be the restriction of A to Lα.
Aα is a G­invariant map of Lα into L and is therefore 0. Thus A is 0. This is a contradiction.

Suppose H2 is not 0. There is an h in B such that π1(h) 6= 0. If f = h ∗ h∗ then π2(f) is positive

semi­definite and of trace class. It has a positive eigenvalue and with no loss of generality we may

suppose that its largest eigenvalue is 1. Let π2 = ⊗πβ2 , where πβ2 acts on Hβ
2 , be a decomposition of π1

into irreducible representations. There is a β0 and a unit vector x in Hβ0

2 such that π2(f)x = x. Let
π1 = ⊕πα1 , where πα1 acts onHα

1 , be a decomposition of π1 into irreducible representations. Choose an

orthogonal basis {xα,γ
∣∣ γ ∈ Γα} of Hα

1 consisting of eigenvectors of π1(f). Since

traceπ1(f) ≥ traceπ2(f)

the largest eigenvalue of π1(f) is positive. Let it be λ.

If f1 belongs to B, ∑

α

∑

γ

‖πα1 (f1)x
α,γ‖2

is the Hilbert–Schmidt norm of π1(f1) and is therefore finite. By assumption πβ0

2 is not equivalent to

any of the representations πα1 so that we can apply our earlier remark to the vector x and the family of
representations πα,γ1 = πα1 together with the family of vectors xα,γ to infer the existence of an f1 in B
such that ∑

α

∑

γ

‖π1(f1)x
α,γ‖2 <

1

2λ
‖π2(f1)x‖

2.
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Then
traceπ1(f1f)π∗

1(f1f) = traceπ∗
1(f1f)π1(f1f)

is equal to ∑

α,γ

‖π1(f1)π1(f)xα,γ‖2 ≤ λ
∑

α,γ

‖π1(f1)x
α,γ‖2.

The right side is less than
1

2
‖π2(f1)x‖

2 =
1

2
‖π2(f1f)x‖2

which is at most
1

2
traceπ2(f1f)π∗

2(f1f).

This is a contradiction.

The next lemma is a consequence of the results of [35].

Lemma 16.1.2 Suppose η is trivial so that L1(η) = L1(Z \ G). Suppose that B is an ample sub-
algebra of L1(η) which is contained in L2(Z \ G). If there is a positive constant γ and a unitary
representation π of Z \G such that π(f) is of Hilbert–Schmidt class for all f in B and

traceπ(f)π(f ∗) = γ

∫

Z\G

|f(g)|2 dg

then Z \G is compact.

In proving the theorem it is better to deal with representations in the adèle groups than to deal
with representations of the global Hecke algebras. We have to assume that the reader is sufficiently

well acquainted with the theory of group representations to pass back and forth unaided between the

two viewpoints.
If F is a global field, A is the adèle ring of F , G = GL(2), and η is a character of the idèle class

group F× \ I the space A(η) of all measurable functions ϕ on GF \GA that satisfy

ϕ

((
a 0
0 a

)
g

)
= η(a)ϕ(g)

for all a in I and whose absolute values are square­integrable on GF ZA \ GA is a Hilbert space. If ϕ
belongs to this space ∫

NF \NA

ϕ(ng) dn

is defined for almost all g. If it is 0 for almost all g the function ϕ is said to be a cusp form. The space

A0(η) of all such cusp forms is closed and invariant under GA. It is in fact the closure of A0(η). It
decomposes in the same way but now into a direct sum of closed orthogonal subspaces V on which

GA acts according to an irreducible representation π = ⊗πv. Thus V is now isomorphic to a tensor
product of Hilbert spaces. Of course the same representations occur now as occurred before. Similar

remarks apply to the multiplicative group G′ of quaternion algebra M ′ over F .
It will be enough to prove the theorem when π is a constituent of some A0(η) or A0(η) and η is a

character because we can always take the tensor product of π with a suitable quasi­character. Suppose
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η is given. Let S be the set of places at which M ′ does not split. Suppose that for each v in S we are
given an irreducible unitary representation σ′v of G′

Fv
= G′

v such that

σ′
v(a) = ηv(a) I

for all a in F∗
v which we identify with Z′

v = Z ′
Fv

. Let σv = π(σ′
v) be the representation of Gv

corresponding to σ′v . We may take σv unitary. Let σv act on Uv and let σ′v act on U ′
v . Fix a unit vector

u′v in Uv and a unit vector uv in Uv which is Kv­finite. u′v is automatically K′
v­finite.

Write A0(η) as the direct sum, in the Hilbert space sense, of mutually orthogonal invariant irre­

ducible subspaces V 1, V 2, · · ·. Let the factorization of the representation πi on V i be ⊗πiv. Let πiv act
on V iv . For simplicity of notation we identify V i with ⊗V iv . We also suppose that if v is in S and πiv is

equivalent to σv then Uv = V iv and πiv = σv . Let X be the set of all i such that πiv = σv for all v in S
and if i belongs to X let

M i = {⊗v∈Suv} ⊗ {⊗v∈SV
i
v }.

M i is invariant and irreducible under the action of

ĜS = {g = (gv)
∣∣ gv = 1 for all v in S}.

Let

M = ⊕i∈XM
i.

M is a Hilbert space and ĜS acts on M . If at least one of the representations σ′v , v ∈ S, is not one­

dimensional set N = M . If they are all one­dimensional let N be the subspace of A0(η) spanned, in
the Hilbert space sense, byM and the functions g → χ(detg) where χ is a character of F× \ I such that

χ2 = η and σ′v(g) = χv
(
ν(g)

)
for all g in G′

v if v is in S. If v is non­archimedean this last condition

determines χv uniquely. If v is real it only determines it on the positive numbers.
Let A′(η) be the space of all measurable functions ϕ on G′

F \ G′
A

that satisfy ϕ(ag) = η(a)ϕ(g)
for all a in I and whose absolute values are square integrable on G′

F Z
′
A
\G′

A
. Replacing σv by σ′v and

uv by u′v we define N ′ in the same way as we defined M . If at least one of the representations σ′v,

v ∈ S, is not one­dimensional we set M ′ = N ′. However if they are all one­dimensional and χ is a
character of F× \ I such that χ2 = η and σ′v(g) = χv

(
ν(g)

)
for allG inG′

V if v is in S then the function

g → χ
(
ν(g)

)
belongs toN ′. We letM ′ be the orthogonal complement inN′of the set of such functions.

The group Ĝ′
S acts on M ′ and N ′. However by means of the local isomorphisms θv we can define an

isomorphism of ĜS and Ĝ′
S . Thus ĜS acts on M and M ′. To prove the theorem we need only show

that the representations on these two spaces are equivalent. To do this we combine Lemma 16.1.1 with

the Selberg trace formula.
To apply Lemma 16.1.1 we have to introduce an algebra B. B will be the linear span ofB0, the set

of functions f on ĜS of the form

f(g) =
∏

v 6∈S

fv(gv)

where the functions fv satisfy the following conditions.
(i) If av belongs to F×

v then

fv(avgv) = η−1
v (av) fv(gv).

(ii) fv is Kv­finite on both sides and the projection of the support of fv on Zv \Gv is compact.

(iii) If v is archimedean fv is infinitely differentiable.
(iv) If v is non­archimedean fv is locally constant.
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(v) For almost all non­archimedean v the functions fv is 0 outside of ZvKv but on ZvKv is given by

fv(g) = ω−1
v (detg)

where ωv is unramified and satisfies ω2
v = ηv .

We introduce B′ in the same way. We may identify B and B′ and to verify the conditions of the
lemma we need only show that if f = f1 ∗ f2 with f1 and f2 in B0 then

traceσ(f) = traceσ ′(f)

if σ is the representation on M and σ′ that on M ′. Let τ be the representation on N and τ ′ that on N ′.

Since

trace τ(f) = traceσ(f) +
∑∫

ẐS\ĜS

χ(g) f(g) dg

and

trace τ ′(f) = traceσ′(f) +
∑∫

ẐS\ĜS

χ(g) f(g) dg

we need only show that

trace τ(f) = trace τ ′(f).

Before beginning the proof we had better describe the relation between the Haar measures on the

groups ZA \ GA and Z′
A
\ G′

A
. Choose a non­trivial character ψ of F \ A. If ω0 is any invariant form

of maximal degree on Z \G defined over F and therefore over each Fv we can associate to ω0 and ψv
a Haar measure ω0(v) on Zv \Gv. Then

∏
v 6∈S ω0(v) determines a Haar measure ω0 on ẐS \ ĜS and∏

v ω0(v) determines a Haar measure ω0 on ZA \GA. The measure on ZA \GA is independent of ψ and
is called the Tamagawa measure. As in the previous paragraph we can associate to ω0(v) a measure

ω′
0(v) on Z ′

v \G
′
v and therefore to ω0 a measure ω′

0 on Ẑ ′
S \ Ĝ′

S or Z′
A
\G′

A
.

We first take f = f1 ∗ f2 in B′ and find a formula for trace τ ′(f). Let d(σ′
v) be the formal degree

of σ′v with respect to the measure ω′
0(v) and let ξ′v be the function

ξ′v(g) = d(σ′
v) (σ′

v(g)u
′
v, u

′
v)

on G′
v. Let Φ′ = Φ′

f be the function

Φ′(g) =
{∏

v∈S

ξ′v(gv)
}
f(ĝS)

on G′
A

. Here ĝS is the projection of g on Ĝ′
S . If ρ′ is the representation of G′

A
on A′(η) the restriction of

ρ′(Φ′) to N ′ is τ ′(f) and ρ′(Φ) annihilates the orthogonal complement of N′. Thus

traceρ′(Φ′) = trace τ ′(f).

If ϕ is in A′(η) then ρ′(Φ′)ϕ(g) is equal to

∫

Z′
A
\G′

A

ϕ(gh)Φ′(h)ω′
0(h) =

∫

Z′
A
\G′

A

ϕ(h)Φ′(g−1h)ω′
0(h).
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The integration on the right can be performed by first summing over Z′
F \ G′

F and then integrating
over ZAG

′
F \G′

A
. If

Φ′(g, h) =
∑

Z′
F
\G′

F

Φ′(g−1γh)

the result is ∫

Z′
A
G′

F
\G′

A

ϕ(h)Φ′(g, h)ω′
0(h).

Thus the trace of ρ′(Φ) is equal to ∫

Z′
A
G′

F
\G′

A

Φ′(g, g) dg.

If we write out the integrand and perform the usual manipulations (cf [29]) we see that this integral

is ∑

{γ}

measure
(
Z ′

A G
′
F (γ) \G′

A(γ)
) ∫

G′
A

(γ)\G′
A

Φ′(g−1γg). (16.1.3)

The sum is over a set of representatives of the conjugacy classes in G′
F . G′

A
(γ) is the centralizer of γ in

G′
A

and G′
F (γ) is its centralizer in G′

F .
Let Q′ be a set of representatives for the equivalence classes of quadratic extensions E of F such

that E ⊗F Fv is a field for all v in S. For each E in Q′ fix an imbedding of E in the quaternion algebra
M ′. Let BF = BF (E) be the multiplicative group of E, considered as a subalgebra of M ′, or what is

the same the centralizer of E in G′
F . Let BA = BA(E) be the centralizer of E in G′

A
. Let Q′

1 be the

separable extensions in Q′ and Q′
2 the inseparable ones if they exist. Then (16.1.3) is the sum of

measure(Z ′
AG

′
F \G′

A)Φ′(e), (16.1.4)

if e is the identity,

1

2

∑

Q′
1

∑

γ∈Z′
F

\BF

γ 6∈Z′
F

measure(Z ′
A BF \BA)

∫

BA\GA

Φ′(g−1γg)ωB(g) (16.1.5)

and ∑

Q′
2

∑

γ∈Z′
F

\BF
γ 6∈ZF

measure(Z ′
A BF \BA)

∫

BA\GA

Φ′(g−1γg)ωB(g). (16.1.6)

The last sum is deceptive because Q′
2 has at most one element. ωB is the quotient of the measure on

Z ′
A
\G′

A
by that on Z′

A
\BA. The choice of the measure on Z′

A
\BA is not too important. We do suppose

that it is a product measure.*
The expression (16.1.4) is equal to

measure(Z ′
AG

′
F \G′

A)
{∏

v∈S

d(σ′
v)
}
f(e).

* In (16.1.5) the factor 1
2 is not quite correct. If we want to leave it in, both γ and its conjugate must

be counted, even if they differ only by an element of F .
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The integrals of (16.1.5) and (16.1.6) are equal to the product

∏

v∈S

χσ′
v
(γ−1)

measure(Z ′
v \Bv)

and ∫

B̂S\Ĝ′
S

f(g−1γg)ωB .

Now regard f = f1 ∗ f2 as an element of B. We can still introduce for each v in S the function

ξv(g) = d(σv)
(
σv(g)uvuv

)

onGv. d(σv) is the formal degree of σv with respect to the measure ω0(v). If σ′
v is not one­dimensional

ξv is integrable and we can use it to define a function Φ to which we can hope to apply the trace formula.

When σ′v is one­dimensional the function ξv is not even integrable so it is of no use to us. However in
this case we can find an integrable function ζv with the following properties.

(i) For all a in Fv

ζv

((
a 0
0 a

)
g

)
= η−1

v (a) ζv(g).

(ii) For a suitable choice of uv the operator σv(ζv) is the orthogonal projection on the space Cuv.

(iii) If χv is a character of F×
v such that χ2

v = ηv then

∫

Zv\Gv

χv(detg) ζv(g)ω0(v)

is −1 if σ′
v(h) = χv

(
ν(h)

)
for all h in G′

v and is 0 otherwise.

(iv) If πv is a unitary infinite­dimensional irreducible admissible representation of Gv which is not
equivalent to σv but satisfies

πv

((
a 0
0 a

))
= ηv(a) I

for all a in F×
v then

traceπv(ζv) = 0.

If v is real we cannot describe ζv without a great deal more explanation than is desirable at present.

However after a few preliminary remarks we will be able to describe it when v is non­archimedean.
Suppose σ′

v(g) = χv
(
ν(g)

)
for g in G′

v and πv is a representation of Gv such that

πv

((
a 0
0 a

))
= ηv(a) I

for all a in F×
v . Applying Lemma 3.9 to χ−1

v ⊗ πv we see that the restriction of πv to Kv contains the

representation k → χv(detk) if and only if πv = π(µv, νv), µvνv = ηv , and the restrictions of µv and
νv to Uv, the group of units of Fv, are both equal to the restriction of χv . Let ζ ′v be the function on Gv
which is 0 outside of ZvKv but on Kv is equal to

1

measure(Zv \ ZvKv)
χ−1
v (detg).
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Let Hv be the group generated by Zv , the matrices

(
a b
c d

)

in Kv for which c ≡ 0(mod pv), and (
0 1
$v 0

)
.

Let ωv be the character ωv(a) = (−1)n χv(a) if |a| = |$v|
n. According to the concluding lemmas of

the previous paragraph there is a non­zero vector u in the space of πv such that

πv(g)u = ωv(detg)u

for all g in Hv if and only if πv is equivalent to σv, πv = π(µv, νv) is infinite­dimensional, µvνv = ηv,
and the restrictions of µv and νv to Uv are equal to the restriction of χv, or πv is the one­dimensional

representation

g → ωv(detg).

Let ζ ′′v be the function which is 0 outside of Hv and equal to

1

measureZv \Hv
ω−1
v (detg)

on Hv. We may take
ζv = ζ ′′v − ζ ′v.

There are some consequences of the four conditions on ζv which we shall need. If µv and νv are

two characters of F×
v such that µvνv = ηv , the trace of ρ(ζv, µv, νv) is a multiple of

∫

Zv\Av

µv(α) νv(β)
∣∣∣α
β

∣∣∣
1
2
{∫

Nv

∫

Kv

ζv(k
−1ank) dn dk

}
da

if

a =

(
α 0
0 β

)
.

Since this is 0 for all possible choice of µv and νv

∫

Nv

∫

Kv

ζv(k
−1ank) dk dn = 0

for all a. We also observe that if σ′v is not one­dimensional then

∫

Nv

∫

Kv

ξv(k
−1ank) dk dn = 0

for all a.
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If πv is special or absolutely cuspidal trace πv(ζv) is therefore equal to

1

2

∑

S′

∫

Zv\Bv

{∫

Bv\Gv

ζv(g
−1bg)ωb(v)

}
χπv

(b) δ(b)µ0
B(b).

Since traceπv(ζv) is 1 if πv is equivalent to σv and 0 otherwise the orthogonality relations imply that

∫

Bv\Gv

ζv(g
−1bg)ωB(v) =

−1

measureZv \Bv
χσv

(b−1)

for all regular b and therefore, by continuity, for all bwhose eigenvalues do not lie inFv. It probably also
follows from the Plancherel theorem that ζv(e) = d(σv). We do not need this but we shall eventually

need to know that ζv(e) = d(σ′
v). For the moment we content ourselves with observing that if ωv is a

character of F×
v and σ′v is replaced by ωv ⊗ σ′

v the formal degree does not change and ζv is replaced by
the function g → ω−1

v (detg) ζv(g) so that ζv(e) does not change. Thus the relation ζv(e) = d(σ′
v) need

only be proved when σ′v is trivial.
Let S1 be the subset of v in S for which σ′v is one­dimensional and let S2 be the complement of S1

in S. Given f = f1 ∗ f2 in B we set

Φ(g) =
{ ∏

v∈S1

ζv(gv)
}{ ∏

v∈S2

ξv(gv)
}
f(ĝS).

Let ρ+
0 be the representation of GA on A+

0 (η) the sum, in the Hilbert space sense, of A0(η) and

the functions χ : g → χ(detg) where χ is a character of F× \ I such that χ2 = η and let ρ be
the representation on A(η). If at least one of the representations ρ′v is not one­dimensional ρ+0 (Φ)
annihilates the orthogonal complement of A0(η). If they are all one­dimensional we apply the third
condition on the functions ζv together with the fact that the number of places in S is even to see that

ρ+
0 (Φ)χ = 0 unless σ′

v(h) = χv
(
ν(h)

)
for all h in G′

v and all v in S but that if this is so

ρ+
0 (Φ)χ = τ(f)χ.

Recall thatA0(η) is the direct sum of spacesV i on whichGA acts according to representations πi = ⊗πiv.

If at least one of the representations σ′v is not one­dimensional ρ+0 (Φ) is equal to σ(f) on M and
annihilates the orthogonal complement of M in A0(η). Suppose they are all one­dimensional. If i
belongs to X the restrictions of ρ+0 (Φ) and σ(f) or τ(f) to M i are equal and ρ+

0 (Φ) annihilates the
orthogonal complement of Mi in V i. If i is not in X the trace of the restriction of ρ+0 (Φ) to V i is

{∏

v∈S

traceπiv(ζv)
}
{trace π̂iS(f)}

in π̂iS = ⊗v 6∈Sπ
i
v . Since πiv , v ∈ S, are all infinite­dimensional and for at least one such v the

representation πiv is not equivalent to σv,

∏

v∈S

traceπiv(ζv) = 0.

We conclude that
traceρ+

0 (Φ) = trace τ(f).
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To show that
trace τ(f) = trace τ ′(f)

we have to apply the trace formula to find a suitable expression for traceρ+0 (Φ). In order to describe

the formula we need to state some results in the theory of Eisenstein series.
Consider the collection of pairs of character µ, ν of F× \ I such that µν = η. To such pairs, µ, ν

and µ′, ν′ are said to be equivalent if there is a complex number r such that µ′ = µαrF and ν′ = να−r
F .

If a belongs to I then αrF (a) = |a|r . Let P be a set of representatives for these equivalence classes.

Suppose (µ, ν) belongs to P . If s is a complex number the space B(µα
s
2

F , να
− s

2

F ) of functions on

NA \GA is defined as in the tenth paragraph. Since the functions in this space are determined by their
restrictions to K we may think of it as a space of functions on K in which case it is independent of s.

Thus we have isomorphisms

Ts : B(µα
s
2

F , να
− s

2

F ) → B(µ, ν).

The theory of Eisenstein series provides us with a function (ϕ, s) → E(ϕ, s) from B(µ, ν) × C to

A(η). E(g, ϕ, s) is the value of E(ϕ, s) at g. For a given ϕ the function E(g, ϕ, s) is continuous in g
and meromorphic in s. Moreover there is a discrete set of points in C such that outside of this set it is

holomorphic in s for all g and ϕ. If s is not in this set the map ϕ → E(Tsϕ, s) of B(µα
s
2

F , να
− s

2

F ) into

A(η) commutes with the action of H.
If the total measure of NF \NA is taken to be 1 the integral

∫

NF \NA

E(ng, Tsϕ, s) dn

is equal to

ϕ(g) +
(
M(s)ϕ

)
(g).

M(s) is a linear transformation from B(µα
s
2

F , να
− s

2

F ) to B(να
− s

2

F , µα
s
2

F ) which commutes with the action
of H. It is mermorphic in the sense that

〈M(s)T−1
s ϕ1, T

−1
s ϕ2〉

is meromorphic if ϕ1 belongs to B(µ, ν) and ϕ2 belongs to B(ν−1, µ−1). The quotient of M(s) by

L(1− s, νµ−1)

L(1 + s, µν−1)
= ε(1− s, νµ−1)

L(s, µν−1)

L(1 + s, µν−1)

is holomorphic for Re s ≥ 0. Since the analytic behavior of E(g, ϕ, s) is controlled by that of M(s) it

should be possible, as we observed before, to use the Eisenstein series to show that a constituent of

B(µα
s
2

F , να
− s

2

F ) is also a constituent of A(η).

To indicate the dependence of M(s) on µ and ν we write M(µ, ν, s). Then

M(µ, ν, s)M(ν, µ,−s) = I.

If s is purely imaginary we can introduce the inner product

(ϕ1, ϕ2) =

∫

K

ϕ1(k) ϕ̄s(k) dk
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onB(µα
s
2

F , να
− s

2

F ). LetB(µα
s
2

F , να
− s

2

F )be its completion with respect to this inner product. B(µα
s
2

F , να
− s

2

F )
may be thought of as a function space onGA on whichGA acts by right translations. The representation

ofGA on B(µα
s
2

F , να
− s

2

F ) is unitary. Let g correspond to the operator ρ(g, µ, ν, s) and if f is in L1(η) let

ρ(f, µ, ν, s) =

∫

ZA\GA

f(g) ρ(g, µ, ν, s)ω0(g)

Ts extends to an isometry, from B(µα
s
2

F , να
− s

2

F ) to B(µ, ν) and M(µ, ν, s) extends to an isometry from

B(µα
s
2

F , να
− s

2

F ) to B(να
− s

2

F , µα
s
2

F ). In particular

M∗(µ, ν, s) = M(ν, µ,−s).

Suppose (µ, ν) is in P and, for some r, ν = µαrF and µ = να−r
F . Replacing µ by µα

r
2

F and ν by

να
− r

2

F if necessary we may suppose that µ = ν. We may also suppose that if (µ, ν) is in P and is not

equivalent to (ν, µ) then (ν, µ) is also in P . Let L be the Hilbert space sum

⊕PB(µ, ν)

and let L be the algebraic sum
⊕PB(µ, ν).

If we define L(s) to be

⊕pB
(
µα

s
2

F , να
− s

2

F

)

and L(s) to be

⊕PB
(
µα

s
2

F , να
− s

2

F

)

we can introduce the map

Ts : L(s) → L.

The representation g → ρ(g, s) is the representation

g → ⊕ρ(g, µ, ν, s)

on L(s). M(s) will be the operator on L(s) which takes ⊕ϕ(µ, ν) to ⊕ϕ1(µ, ν) with

ϕ1(ν, µ) = M(µ, ν, s)ϕ(µ, ν).

It is unitary.

If F has characteristicO letH be the space of all square integrable functions ϕ from the imaginary
axis to L such that

T−1
−s ϕ(−s) = M(s)T−1

s ϕ(s)

with the norm
c

π

∫ i∞

−i∞

‖ϕ(s)‖2 d|s|



Chapter 3 271

c is a positive constant relating various Haar measures. It will be defined more precisely later. If F is

a function field with field of constants Fq the functions in H are to be periodic of period log q
2π

i and the

norm is to be
c log u

π

∫ 2π
log q

0

‖ϕ(s)‖2 d|s|.

On the whole we shall proceed as though F had characteristic O merely remarking from time to time

the changes to be made when the characteristic is positive.

If ϕ = ⊕ϕ(µ, ν) is in L we set

E(g, ϕ, s) =
∑

E
(
g, ϕ(µ, ν), s

)
.

If ϕ in H takes values in L

lim
T→∞

1

2π

∫ iT

−iT

E
(
g, ϕ(s), s

)
d|s| = ϕ̃(g)

exists in A(η). The map ϕ → ϕ̃ extends to an isometry of H with a subspace A1(η) of A(η). If g is in
GA and ϕ′ is defined by

ϕ′(s) = Ts ρ(g, s)T
−1
s ϕ(s)

then ϕ̃′ is ρ(g)ϕ̃.
The orthogonal complement of A1(η) is A+

0 (η). Thus if E is the orthogonal projection of A(η) on

A1(η) the trace of ρ+
0 (Φ) is the trace of ρ(Φ) − Eρ(Φ) which, according the the Selberg trace formula,

is the sum of the following expressions which we first write out and then explain.

(i)

measure(ZA GF \GA)Φ(e).

(ii)
1

2

∑

Q1

∑

γ∈ZF \BF
γ 6∈ZF

measure(ZA BF \BA)

∫

BA\GA

Φ(g−1γg)ωB(g).

(iii) ∑

Q2

∑

γ∈ZF \BF
γ 6∈ZF

measure(ZA BF \BA)

∫

BA\GA

Φ(g−1γg)ωb(g).

(iv)

−c
∑

γ∈ZF \AF
γ 6∈ZF

∑

v

{ ∏

w 6=v

ω(γ, fw)
}
ω(γ, fv).

(v)

c
[
λ0

∏

v

θ(0, fv) + λ−1

{∑

v

θ′(0, fv)
∏

w 6=v

θ(0, fw)
}]
.

(vi) If F is a number field

−
1

4
traceM(0) ρ(Φ, 0),

but

−
log q

4

{
traceM(0) ρ(Φ, 0) + traceM

( π

log q

)
ρ
(
Φ,

π

log q

)}
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if F is a function field.
(vii) If F is a number field

1

4π

∫ i∞

−i∞

tracem−1(s)m′(s) ρ(Φ, s) d|s|,

but
log q

4π

∫ 2π
log q

0

tracem−1(s)m′(s) ρ(Φ, s) d|s|

if F is a function field.

(viii) The sum over (µ, ν) and v of

1

4π

∫ i∞

−i∞

{
trR−1(µv, νv, s)R

′(µv, νv, s) ρ(f, µv, νv, s)
}{ ∏

w 6=v

tr ρ(fw, µw, νw, s)
}
d|s|

if F is a number field and of

log q

4π

∫ 2π
log q

0

{
trR−1(µv, νv , s)R

′(µv, νv, s) ρ(f, µv, νv, s)
}{ ∏

w 6=v

trρ(fw, µw, νw, s)
}
d|s|

if F is a function field.

The function Φ is of the form
Φ(g) =

∏

v

fv(gv).

Let Q be a set of representatives for the equivalence clases of quadratic extensions of F . For each E in

Q fix an imbedding of E in the matrix algebra M = M(2, F ). Let BF = BF (E) be the multiplicative
group of E, considered as a subalgebra of M . BF is the centralizer of E in GF . Let BA = BA(E) be

the centralizer of E in GA. Q1 is the collection of separable extensions in Q and Q2 is the collection of

inseparable extensions. AF is the group of diagonal matrices in GF .
Choose on NA that Haar measure which makes the measure of NF \NA equal to 1. Choose on K

the normalized Haar measure. On the compact group H obtained by taking the quotient of

{(
α 0
0 β

)
∈ AA

∣∣ |α| = |β|

}

by ZAAF choose the normalized Haar measure. H is the kernel of the map

(
α 0
0 β

)
→ log

∣∣∣α
β

∣∣∣
1
2

of AF ZA \ AA onto R or log qZ. On R one has the standard measure dx and on log qZ one has the

standard measure which assigns the measure 1 to each point. The measures onH and onH \ (AF ZA \
AA) together with the measure on ZA \ AF ZA which assigns the measure 1 to each point serve to
define a measure da on ZA \AA. The constant c is defined by demanding that

∫

ZA\GA

f(g)ω0(g)
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be equal to

c

∫

ZA\AA

∫

NA

∫

K

f(ank) da dn dk

if f is an integrable function on ZA \GA. We may suppose that the measures on ZA \AA, NA, and K
are given as product measures and in particular that

∫

Kv

dkv = 1

and ∫

Nv

χ(nv) dnv = 1

for almost all v if χ is the charcteristic function of

{(
1 x
0 1

) ∣∣x ∈ OFv

}
.

The factors ω(γ, fv) and ω1(γ, fv) appearing in the fourth expression are defined by

ω(γ, fv) =

∫

Nv

∫

Kv

fv(k
−1
v n−1

v γnvkv) dnv dkv

and

ω1(γ, fv) =

∫

Nv

∫

Kv

fv(k
−1
v n−1

v γnvkv) log λ(nv) dnv dkv.

If (
0 1
−1 0

)
n =

(
α′ 0
0 β′

)
n′k′

then

λ(n) =
∣∣∣α

′

β′

∣∣∣.

Set θ(s, fv) equal to

1

L(1 + s, 1v)

∫

Zv\Av

∫

Kv

fv(k
−1
v a−1

v n0avkv)
∣∣∣αv
βv

∣∣∣
−1−s

dav dkv

where

av

(
αv 0
0 βv

)

and

n0 =

(
1 1
0 1

)
.

1v is the trivial character of F×
v . Then θ(s, fv) is analytic at least for Re s > −1. It derivative at 0 is

θ′(0, fv). If

L(1 + s, 1F ) =
∏

v

L(1 + s, 1v)
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the Laurent expansion of L(1 + s, 1F ) about s = 0 is

λ−1

s
+ λ0 + · · · .

The operator m(s) is the operator on L(s) which for each (µ, ν) multiplies every element of

B(µα
s
2

F , να
− s

2

F ) by

L(1 − s, νµ−1)

L(1 + s, µν−1)
.

We may represent B(µα
s
2

Fv
, να

− s
2

F ) as

⊗vB(µvα
s
2

Fv
, νvα

− s
2

Fv
)

when s is purely imaginary. If Re s > 0 let R(µv, νv, s) be the operator from B(µvα
s
2

Fv
, νvα

− s
2

Fv
) to

B(νvα
− s

2

Fv
µvα

s
2

Fv
) defined by setting

R(µv, νv, s)ϕ(g)

equal to

ε(1− s, µ−1
v νv, ψv)

L(1 + s, µvν
−1
v )

L(s, µvν
−1
v )

∫

Nv

ϕ

((
0 1
−1 0

)
ng

)
dn.

These operators can be defined for s purely imaginary by analytic continuation. They are then scalar

multiples of unitary operators and for a given µ, ν are in fact unitary for almost all v. ThusR(µv, νv, s)

can be defined as an operator B(µvα
s
2

Fv
, νvα

− s
2

Fv
) when s is purely imaginary and

M(s) =
∑

(µ,ν)

{
⊗v R(µv, νv, s)

} L(1 − s, νµ−1)

L(1 + s, µν−1)
.

Set
N(s) = TSM(s)T−1

S

and if N ′(s) is the deriviative of N(s) set

M ′(s) = T−1
s N ′(s)Ts

Define R′(µv, νv, s) in a similar fashion. Then

traceM−1(s)M ′(s) ρ(Φ, s)

is the sum of

tracem−1(s)m′(s) ρ(Φ, s)

and ∑

(µ,ν)

∑

v

{
trR−1(µv, νv, s)R

′(µv, νv, s) ρ(fv, µv, νv, s)
}{ ∏

w 6=v

trρ(fw, µw, νw, s)
}
,

where ρ(fv, µv, νv, s) is the restriction of ρ(fv) to B(µvα
s
2

Fv
, νvα

− s
2

Fv
).



Chapter 3 275

If E(µ, ν, s) is the projection of L(s) on B(µα
s
2

F , να
− s

2

F ) we can write

m(s) =
∑

a(µ, ν, s)E(µ, ν, s)

where the a(µ, ν, s) are scalars. Thus

tracem−1(s)m′(s) ρ(Φ, s)

is equal to
∑ a′(µ, ν, s)

a(µ, ν, s)

{∏

v

traceρ(fv, µv, νv, s)
}
.

We can also write
M(0) =

∑
a(µ, ν)E(µ, ν, 0)

so that
traceM(0) ρ(Φ, 0)

is equal to ∑
a(µ, ν)

{∏

v

traceρ(fv, µv, νv, 0)
}
.

If F is a function field
M
( π

log q

)
=
∑

B(µ, ν)E
(
µ, ν,

π

log q

)
.

If ∫

Kv

∫

Nv

fv(k
−1ank) dn dk = 0 (16.1.7)

for all a in Av = AFv
then ω(γ, fv) = 0 for all γ, θ(0, fv) = 0, and

traceρ(fv, µv, νv, s) = 0

for all µv , νv , and s. In particular if (16.1.7) is satisifed for at least two v the expressions (iv) to (viii)

vanish and the trace formula simplifies considerably.
We now apply this formula to the function

Φ(g) =
{ ∏

v∈S1

ζv(gv)
}{ ∏

v∈S2

ξv(gv)
}
f(ĝS)

where f = f1 ∗ f2 with f1 and f2 in B is of the form

f(ĝS) =
∏

v 6∈S

fv(gv).

Since S has at least two elements and the functions ζv and ξv satisfy (16.1.7) only the expressions (i) to

(iii) do not vanish identically. The expression (i) is now equal to

{ ∏

v∈S1

ζv(e)
}{ ∏

v∈S2

d(σv)
}
f(e)
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We recall that d(σv) = d(σ′
v) if v is in S2.

We may suppose that Q2 is equal to Q′
2 and that Q′

1 is a subset of Q1. If E is in Q1 or Q2 and γ is

in BF = BF (E) but not in ZF ∫

BA\GA

Φ(g−1γg)ωB(g)

is equal to the product of

{ ∏

v∈S1

∫

Bv\Gv

ζv(g
−1
v γgv)ωB(v)

}{ ∏

v∈S2

∫

Bv\Gv

ξv(g
−1
v γgv)ωB(v)

}

and ∫

B̂S\ĜS

f(g−1γg)ωB .

If v is in S and E ⊗F Fv is not a field so that Bv is conjugate to Av the corresponding factor in the first

of these two expressions vanishes. Thus the sum in (ii) need only be taken overQ′
1. If E is in Q′

1 or Q2

the first of these two expressions is equal to

∏

v∈S

χσv
(γ−1)

measureZv \Bv
.

Thus, in the special case under consideration, (ii) is equal to (16.1.5) and (iii) is equal to (16.1.6) so
that

trace τ(f)−
{ ∏

v∈S1

ζv(e)
}{ ∏

v∈S2

d(σ)
}

measure(ZAGF \GA) f(e)

is equal to

trace τ ′(f)−
{∏

v∈S

d(σ′
v)
}

measure(Z ′
A G

′
F \G′

A) f(e).

We may take η to be trivial and apply Lemmas 16.1.1 and 16.1.2 to see that, in this case,

trace τ(f) = trace τ ′(f)

and {∏

v∈S

d(σ′
v)
}

measure(Z ′
A G

′
F \G′

A)

is equal to { ∏

v∈S1

ζv(e)
}{ ∏

v∈S2

d(σv)
}

measure(ZA GF \GA).

Still taking η trivial we choose the σ′v so that none of them are one­dimensional and conclude that

measure(Z ′
A G

′
F \G′

A) = measure(ZAGF \GA). (16.1.8)

Then we take exactly one of them to one­dimensional and conclude that ζv(e) = d(σ′
v). Thus ζv(e) =

d(σ′
v) and

trace τ(f) = trace τ ′(f)
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in general.
The relation (16.1.8) is well­known. One can hope however that the proof of it just given can

eventually be used to show that the Tamagawa numbers of two groups which differ only by an inner
twisting are the same or at least differ only by an explicitly given factor. Since the method of [33] can

probably be used to evaluate the Tamagawa numbers of quasi­split groups the problem of evaluating

the Tamagawa numbers of reductive groups would then be solved. However a great deal of work on
the representation theory of groups over local fields remains to be done before this suggestion can be

carried out.
To complete our formal argument we need to sketch a proof of the trace formula itself. One must

use a bootstrap method. The first step, which is all we shall discuss, is to prove it for some simple class
of functions Φ. We take Φ of the form Φ = f ′ ∗ f ′′ with

f ′(g) =
∏

v

f ′
v(gv)

and
f ′′(g) =

∏

v

f ′′
v (gv)

where f ′v and f ′′v satisfy the five conditions on page 325. The function fv is f ′
v ∗ f

′′
v .

Supposeϕ is aK­finite compactly supported function inA(η). For each purely imaginary s define

ϕ̃(s) in L by demanding that

1

2c

∫

GF ZA\GA

ϕ(g) Ē(g, ϕ′, s)ω0(g) =
(
ϕ̃(s), ϕ′

)

be valid for all ϕ′ in L. The map ϕ → ϕ̃(s) extends to a continuous map of A(η) onto H . ϕ̃(s) is the
function in H corresponding to Eϕ in A1(η).

For each (µ, ν) in P choose an orthonormal basis {ϕi(µ, ν)} of B(µ, ν). We may suppose that any
elementary idemotent in H annihilates all but finitely many elements of this basis. If

ϕ̃(s) =
∑

(µ,ν)

∑

i

ai(µ, ν, s)ϕi(µ, ν)

then

ai(µ, ν, s) =
1

2c

∫

GF ZA\GA

ϕ(g) Ē
(
g, ϕi(µ, ν), s

)
ω0(g).

Let
ρ(Φ, s)T−1

S ϕi(µ, ν) =
∑

j

ρji(Φ, µ, ν, s)T
−1
S ϕj(µ, ν).

For all but finitely many µ, ν, i and j the functions ρji(Φ, µ, ν, s) vanish identically. Eρ(Φ)ϕ is equal to

lim
T→∞

∑

µ,ν

∑

i,j

∫ iT

−iT

ρij(Φ, µ, ν, s) aj(µ, ν, s)E
(
g, ϕi(µ, ν), s

)
d|s|.

A typical one of these integrals is equal to the integral over GF ZA \GA of the product of ϕ(g) and

∫ iT

−iT

ρij(Φ, µ, ν, s)E
(
g, ϕi(µ, ν), s

)
Ē
(
h, ϕj(µ, ν), s

)
d|s|.
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Thus the kernel of E ρ(Φ) is the sum over (µ, ν) and i, j of

1

4πc

∫ i∞

−i∞

ρij(Φ, µ, ν, s)E
(
g, ϕi(µ, ν), s

)
Ē
(
h, ϕj(µ, ν), s

)
d|s|.

The kernel of ρ(Φ) is

Φ(g, h) =
∑

ZF \GF

Φ(g−1γh).

To compute the trace of ρ(Φ)−E ρ(Φ) we integrate the difference of these two kernels over the diagonal.
The function Φ(g, g) may be written as the sum of

∑

δ∈PF \GF

∑

γ∈NF
γ 6=e

Φ(g−1δ−1γ δg), (16.2.1)

where PF is the group of super­triangular matrices in GF ,

1

2

∑

γ∈ZF \AF
γ 6∈ZF

∑

δ∈AF \GF

Φ(g−1δ−1γδg), (16.2.2)

where AF is the group of diagonal matrices in GF ,

1

2

∑

Q1

∑

γ⊂ZF \BF
γ 6∈ZF

∑

δ∈BF \GF

Φ(g−1δ−1γδg) (16.2.3)

and ∑

Q2

∑

γ∈ZF \BF
γ 6∈ZF

∑

δ∈BF \GF

Φ(g−1δ−1γδg) (16.2.4)

together with
Φ(e). (16.2.5)

The constant Φ(e) can be integrated over GF ZA \ GA immediately to give the first term of the

trace formula. The standard manipulations convert (16.2.3) and (16.2.4) into the second and third terms

of the trace formula.
The expressions (16.2.1) and (16.2.2) have to be treated in a more subtle fashion. We can choose a

constant e1 > 0 so that if

g =

(
1 x
0 1

)(
α 0
0 β

)
k

with x in A, α and β in I such that |αβ | ≥ c1, and k in K and if

γg =

(
1 x′

0 1

)(
α′ 0
0 β′

)
k′

with γ in GF , x′ in A, α′ and β′ in I such that |α
′

β′ | ≥ c1, and k′ in K then γ belongs to PF . Let χ be the

characteristic function of {(
1 x
0 1

)(
α 0
0 β

)
k
∣∣
∣∣∣α
β

∣∣∣ ≥ c1

}
.
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The expression (16.2.2) is the sum of

1

2

∑

δ∈PF \GF

∑

γ∈ZF \PF
γ 6∈ZF NF

Φ(g−1δ−1γδg)
(
χ(δg) + χ(ε(γ)δg)

)

and
1

2

∑

δ∈PF \GF

∑

γ∈ZF \PF
γ 6∈ZF NF

Φ(g−1δ−1γδg)
(
1 − χ(δg)− χ(ε(γ)δg)

)
.

Here ε(γ) is any element of GF not in PF such that

ε(γ) γ ε−1(γ) ∈ PF .

There is always at least one such ε(γ). The integral of the second sum over GF ZA \GA converges. It

is equal to
1

2

∫

ZAPF \GA

∑

γ⊂ZF \PF
γ 6∈ZF NF

Φ(g−1γg)
(
1 − χ(g)− χ(ε(γ)g)

)
ω0(g).

Every γ occurring in the sum can be written as δ−1γ0δ with γ0 in AF and δ in PF . Then

(
δ−1ε(γ0)δ

)
(δ−1γ0δ)

(
δ−1ε(γ0)δ

)−1
= δ−1

(
ε(γ0)γ0ε

−1(γ0)
)
δ

so that we can take ε(γ) = δ−1ε(γ0)δ. We take

ε(γ0) = w =

(
0 1
−1 0

)
.

Since χ(δg) = χ(g) and

χ(δ−1wδg) = χ(wδg)

the integrand is ∑

γ∈ZF \AF
γ 6∈ZF

∑

δ∈AF \PF

Φ(g−1δ−1γδg)
(
1 − χ(δg)− χ(wδg)

)
.

The integral itself is equal to

1

2

∑

γ∈ZF \AF
γ 6∈ZF

∫

ZAAF \GA

Φ(g−1γg)
(
1 − χ(g)− χ(wg)

)
ω0(g).

All but a finite number of the integrals in this sum are 0.

It is convenient to write each of them in another form. If

g =

(
α 0
0 β

)
nk
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then χ(g) is 1 if |αβ | ≥ c1 and is 0 if |αβ | < c1. If

wn =

(
α′ 0
0 β′

)
n′k′

and λ(n) is |α
′

β′ | then χ(wg) is 1 if |αβ | ≤
λ(n)
c1

and is 0 if |αβ | >
λ(n)
c1

. It is easily seen that λ(n) ≤ 1. Thus

if c1 > 1, as we may suppose, one of χ(g) and χ(wg) is always 0. The integral

∫

ZAAF \GA

Φ(g−1γg)
(
1 − χ(g) − χ(wg)

)
ω0(g)

is equal to

c

∫

NA

∫

K

Φ(k−1n−1γnk)
(
2 log c1 − log λ(n)

)
dn dk

which we write as the sum of

2c log c1

∫

NA

∫

K

Φ(k−1n−1γnk) dn dk (16.2.6)

and

−
∑

v

c

∫

NA

∫

K

Φ(k−1n−1γnk) log λ(nv) dn dk.

if we express each of the integrals in the second expression as a product of local integrals we obtain the

fourth term of the trace formula. All but a finite number of the integrals are 0 so that the sum is really
finite. We will return to (16.2.6) later. If F is a function field over Fq it is best to take c1 to be a power

of qn of q. Then 2 log c1 is replaced by 2n− 1.

The expression (16.2.1) is the sum of

∑

δ∈PF \GF

∑

γ∈NF
γ 6=e

Φ(g−1δ−1γδg)χ(δg)

and ∑

δ∈PF \GF

∑

γ∈NF
γ 6=e

Φ(g−1δ−1γδg)
(
1 − χ(δg)

)
.

The integral of the second expression over GF ZA \GA converges. It is equal to

∫

PFZA\GA

∑

γ∈NF
γ 6=e

Φ(g−1γg)
(
1 − χ(g)

)
ω0(g).

If

n0 =

(
1 1
0 1

)

the integrand is equal to ∑

NFZF \PF

Φ(g−1δ−1n0δg)
(
1 − χ(δg)

)
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so that the integral itself is equal to

∫

NFZA\GA

Φ(g−1n0g)
(
1 − χ(g)

)
ω0(g)

which is

c

∫

ZA\AA

∫

K

Φ(k−1a−1n0ak)
(
1 − χ(a)

) ∣∣∣α
β

∣∣∣
−1

da dk

if

a =

(
α 0
0 β

)
.

The integrand vanishes outside of a compact set. Thus the integral is the limit as s approaches 0 from

above of

c

∫

ZA\AA

∫

K

Φ(k−1a−1n0ak)
(
1 − χ(a)

) ∣∣∣α
β

∣∣∣
−1−s

da dk,

which is the difference of

c

∫

ZA\AA

∫

K

Φ(k−1a−1n0ak)
∣∣∣α
β

∣∣∣
−1−s

da dk

and

c

∫

ZA\AA

∫

K

Φ(k−1a−1n0ak)
∣∣∣α
β

∣∣∣
−1−s

χ(a) da dk.

The first of these two expressions is equal to

c
{∏

v

∫

Zv\Av

∫

Kv

fv(k
−1
v a−1

v n0avkv)
∣∣∣αv
βv

∣∣∣
−1−s

dav dkv

}

which is

cL(1 + s, 1F )
{∏

v

θ(s, fv)
}
. (16.2.7)

Observe that if v is non­archimedean and fv is 0 outside of ZvKv and is 1 on the elements of ZvKv of

determinant 1 then ∫

Zv\Av

∫

Kv

fv(k
−1
v a−1

v n0avkv)
∣∣∣αv
βv

∣∣∣
−1−s

dav dkv

is the product of the measure of

{(
α 0
0 β

)
∈ Zv \Av

∣∣ |α| = |β|

}

and
∞∑

n=0

|$n
v |

1+s = L(1 + s, 1v),

so that ∏

v

θ(s, fv) = θ(s,Φ)
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is analytic for Re s > −1 and its derivative at 0 is

∑

v

θ′(s, fv)
{ ∏

w 6=v

θ(s, fw)
}
.

The function (16.2.7) has a simple pole at s = 0. The constant term in its Laurent expansion is

c
[
λ0

∏

v

θ(0, fv) + λ−1

{∑

v

θ′(0, fv)
∏

w 6=v

θ(0, fw)
}]

which is the fifth term of the trace formula.

The expression

c

∫

ZA\AA

∫

K

Φ(k−1a−1n0ak)
∣∣∣α
β

∣∣∣
−1−s

χ(a) da dk

is equal to

c

∫

ZAAF \AA

∫

K

∑

γ∈NF
γ 6=e

Φ(k−1a−1γak)
∣∣∣α
β

∣∣−1−s
χ(a) da dk.

Choose a non­trivial character ψ of F \ A and let

Ψ(y, g) =

∫

A

Φ

(
g−1

(
1 x
0 1

)
g

)
ψ(xy) dx.

Then

Ψ(y, ag) =
∣∣∣β
α

∣∣∣
−1

Ψ
(α
β
y, g
)
.

Moreover by the Poisson summation formula

∑

γ∈NF
γ 6=e

Φ(k−1a−1γak)

is equal to
∑

y 6=0

∣∣∣β
α

∣∣∣
−1

Ψ
(α
β
y, k
)

+
∣∣∣β
α

∣∣∣
−1

Ψ(0, k)− Φ(e).

The integral

c

∫

ZAAF \AA

∫

K

∣∣∣α
β

∣∣∣
−s

χ(a)
{∑

y 6=0

Ψ
(α
β
y, k
)}

da dk

is a holomorphic function of s and its value at s = 0 approaches 0 as c1 approaches ∞. Since we shall

eventually let c1 approach ∞ it contributes nothing to the trace formula. If F is a number field

c

∫

ZAAF \AA

∫

K

Φ(e)
∣∣∣α
β

∣∣∣
−1−s

χ(a) da dk

is a multiple of
1

1 + s
·

1

c1+s1
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which is defined at s = 0. Its value there approaches 0 as c1 approaches ∞. Finally

c

∫

ZAAF \AA

∫

K

Ψ(0, k)
∣∣∣α
β

∣∣∣
−s

χ(a) da dk

is equal to
c

s cs1

∫

K

Ψ(0, k) dk.

The pole of this function at s = 0 must cancel that of (16.2.7). Consequently

∫

K

Ψ(0, k) dk = λ−1 θ(0,Φ).

The constant term in its Laurent expansion about 0 is

−c log c1

∫

K

Ψ(0, k) dk.

Not this expression but its negative

c log c1

∫

K

Ψ(0, k) dk (16.2.8)

enters into the integral of the kernel of ρ(Φ) − E ρ(Φ) over the diagonal. If F is a function field c
s cs

1
is

to be replaced by
cq−ns

1 − q−s

and log c1 by n− 1
2

.

The Poisson summation formula can be used to simplify the remaining part of (16.2.1). We recall
that it is ∑

δ∈PF \GF

∑

γ∈NF
γ 6=e

Φ(g−1δ−1γδg)χ(δg).

We subtract from this ∑

δ∈PF \GF

Ψ(0, δg)χ(δg)

to obtain the difference betwen ∑

δ∈PF \GF

∑

y 6=0

Ψ(y, δg)χ(δg)

and ∑

δ∈PF \GF

Φ(e)χ(δg).

The integrals of both these functions over ZA GF \GA converge and approach 0 as c1 approaches ∞.

They may be ignored.
The remaining part of (16.2.2) is the sum of

1

2

∑

δ∈PF \GF

∑

γ∈ZF \PF
γ 6∈ZF NF

Φ(g−1δ−1γδg)χ(δg)
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and
1

2

∑

δ∈PF \GF

∑

γ∈ZF \PF
γ 6∈ZF NF

Φ(g−1δ−1γδg)χ
(
ε(γ)δg

)
.

These two sums may be written as

1

2

∑

γ∈ZF \AF
γ 6∈ZF

∑

AF \GF

Φ(g−1δ−1γδg)χ(δg)

and
1

2

∑

γ∈ZF \AF
γ 6∈ZF

∑

AF \GF

Φ(g−1δ−1γδg)χ(wδg).

Replacing δ by w−1δ in the second sum we see that the two expressions are equal. Their sum is equal
to twice the first which we write as

∑

γ1∈ZF \AF
γ1 6∈ZF

∑

δ∈PF \GF

∑

γ2∈NF

Φ(g−1δ−1γ1γ2δg)χ(δg).

For a given Φ all but finitely many of the sums

∑

δ∈PF \GF

∑

γ2∈NF

Φ(g−1δ−1γ1γ2δg)χ(δg) (16.2.9)

are zero. Set

Ψ(y, γ1, g) =

∫

A

Φ

(
g−1γ1

(
1 x
0 1

)
g

)
ψ(xy) dx.

The expression (16.2.9) is the sum of

∑

δ∈PF \GF

∑

y 6=0

Ψ(y, γ1, δg)χ(δg)

and ∑

δ∈PF \GF

Ψ(0, γ1, δg)χ(δg).

The first of these two expressions is integrable on GF ZA \ GA and its integral approaches 0 as c1
approaches ∞.

Since Ψ(0, g) = Ψ(0, e, g) we have expressed Φ(g, g) as the sum of

∑

δ∈PF \GF

∑

γ∈ZF \AF

Ψ(0, γ, δg)χ(δg) (16.2.10)

and a function which can be integrated overGF ZA \GA to give the first five terms of the trace formula,

the sum of (16.2.8) and one­half of the sum over γ in ZF \AF but not in ZF of (16.2.6) which is

c log c1
∑

γ∈ZF \AF

∫

NA

∫

K

Φ(k−1γnk) dn dk, (16.2.11)



Chapter 3 285

and an expression which goes to 0 as c1 approaches ∞.
Now we discuss the kernel of E ρ(Φ) in the same way. Set H(g;µ, ν, i, j, s) equal to

ρij(Φ, µ, ν, s)E
(
g, ϕi(µ, ν), s

)
Ē
(
g, ϕj(µ, ν), s

)
.

On the diagonal the kernel of E ρ(Φ) is equal to

∑

µ,ν

∑

i,j

1

4πc

∫ i∞

−i∞

H(g;µ, ν, i, j, s) d|s|

if F is a number field and to

∑

µ,ν

∑

i,j

log q

4πc

∫ 2π
log q

0

H(g;µ, ν, i, j, s) d|s|

if F is a function field. We set E1(g, ϕ, s) equal to

∑

PF \GF

{
T−1
s ϕ(δg) +M(s)T−1

S ϕ(δg)
}
χ(δg)

and let
E2(g, ϕ, s) = E(g, ϕ, s) −E1(g, ϕ, s).

If, for m = 1, 2, n = 1, 2, Hmn(g;µ, ν, i, j, s) is

ρij(Φ, µ, ν, s)Em
(
g, ϕi(µ, ν), s

)
Ēn
(
g, ϕj(µ, ν), s

)

and Φmn(g) is, at least when F is a number field,

∑

µ,ν

∑

i,j

1

4πc

∫ i∞

−i∞

Hm,n(g;µ, ν, i, j, s) d|s|,

the kernel of E ρ(Φ) is
n∑

m=1

2∑

n=1

Φmn(g)

on the diagonal.
If m or n is 2 ∫

GF ZA\GA

Φmn(g)ω0(g)

is equal to

1

4πc

∫ i∞

−i∞

∑

µ,ν

∑

i,j

{∫

GF ZA\GA

Hm,n(g, µ, ν, i, j, s)ω0(g)
}
d|s|. (16.2.12)

Take first m = n = 2. If F is a number field a formula for the inner product

∫

GF ZA\GA

E2(g, ϕ1, s) Ē2(g, ϕ2, s)ω0(g)
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can be inferred from the formulae of [26] and [27]. The result is the sum of

c lim
t→0

1

2t

{
c2t1 (ϕ1, ϕ2) − c−2t

1

(
N(t+ s)ϕ1, N(t+ s)ϕ2

)}
,

where N(t+ s) = Tt+sM(t+ s)T−1
t+s, and

c lim
t→0

1

2s

{
c2s1
(
ϕ1, N(t+ s)ϕ2

)
− c−2s

1

(
N(t+ s)ϕ1, ϕ2

)}
.

The second expression is equal to

c

2s

{
c2s1
(
ϕ2, N(s)ϕ2

)
− c−2s

1

(
N(s)ϕ1, ϕ2

)}
.

The first is the sum of
2c log c1(ϕ1, ϕ2)

and

−
c

2

{(
N−1(s)N ′(s)ϕ1, ϕ2

)
+
(
ϕ1, N

−1(s)N ′(s)ϕ2

)}
.

If F is a function field over Fq and c1 = qnthe inner product is the sum of

c log q

{
1 − qs + q−s

1 − q−2s

(
ϕ1, N(s)ϕ2

)
q2(n−1)s +

1 − q−s + qs

1− q2s
(
N(s)ϕ1, ϕ2

)
q−2(n−1)s

}

and
(2n− 1)c(ϕ1, ϕ2)

and

−
c

2

{(
N−1(s)N ′(s)ϕ1, ϕ2

)
+
(
ϕ1, N

−1(s)N ′(s)ϕ2

)}
.

Certainly ∑

µ,ν

∑

i,j

ρij(Φ, µ, ν, s)
(
ϕi(µ, ν), ϕj(µ, ν)

)
= traceρ(Φ, s)

which equals
∑

µ,ν

c

∫

NA

∫

ZA\AA

∫

K

Φ(k−1ank)µ(α) ν(β)
∣∣∣α
β

∣∣∣
s+1
2

dn da dk

or ∑

µ,ν

c

∫

NA

∫

ZAAF \AA

∫

K

∑

γ∈ZF \AF

Φ(k−1aγnk)µ(α) ν(β)
∣∣∣α
β

∣∣∣
s+1
2

.

Thus if H is the set of all (
α 0
0 β

)

in ZAAF \AA for which |α| = |β|

1

4πc

∫ i∞

−i∞

traceρ(Φ, s) d|s| (16.2.13)
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is equal to
1

2

∑

µ,ν

∫

H

∫

NA

∫

K

∑

γ

Φ(k−1aγnk)µ(α) ν(β) dn dk da

which is
1

2

∫

NA

∫

K

Φ(k−1γnk) dn dk.

When multiplied by 2c log c1 the effect of this is to cancel the term (16.2.11). If F is a function field
(16.2.13) is said to be replaced by

log q

4πc

∫ 2π
log q

0

traceρ(Φ, s) d|s|

but the conclusion is the same.

The expression ∑

µ,ν

∑

i,j

ρij(Φ, µ, ν, s)
(
ϕi(µ, ν), N(s)ϕj(µ, ν)

)

is equal to
traceM−1(s) ρ(Φ, s)

when s is purely imaginary and

∑

µ,ν

∑

i,j

ρij(Φ, µ, ν, s)
(
N(s)ϕi(µ, ν), ϕj(µ, ν)

)

is equal to

traceM(s) ρ(Φ, s).

Since M(0) = M−1(0)

lim
c1→∞

1

8π

∫ i∞

−i∞

1

2

{
c2s1 traceM−1(s) ρ(Φ, s)− c−2s

1 traceM(s) ρ(Φ, s)
}
d|s|

is equal to
1

4
traceM(0) ρ(Φ, 0).

When multiplied by −1 this is the sixth term of the trace formula. For a function field it is to be replaced

by
log q

4

{
traceM(0) ρ(Φ, 0) + traceM

( π

log q

)
ρ
(
Φ,

π

log q

)}
.

When s is purely imaginary

(
N−1(s)N ′(s)ϕ1, ϕ2

)
=
(
ϕ1, N

−1(s)N ′(s)ϕ2

)
.

Moreover ∑

µ,ν

∑

i,j

ρij(Φ, µ, ν, s)
(
N−1(s)N ′(s)ϕi(µ, ν), ϕj(µ, ν)

)
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is equal to
traceM−1(s)M ′(s) ρ(Φ, s).

Thus
1

4π

∫ i∞

−i∞

traceM−1(s)M ′(s) ρ(Φ, s) d|s|

is to be added to the trace formula. It gives the seventh and eighth terms.
Next we consider (16.2.12) when m = 2 and n = 1. If ϕ′

2 = T−1
S ϕ2 and ϕ′′

2 = M(s)T−1
s ϕ2 the

integral ∫

GFZA\GA

E2(g, ϕ1, s) Ē1(g, ϕ2, s)ω0(g) (16.2.14)

is the sum of ∫

PFZA\GA

E2(g, ϕ1, s) ϕ̄
′
2(g)χ(g)ω0(g)

and ∫

PFZA\GA

E2(g, ϕ1, s) ϕ̄
′′
2(g)χ(g)ω0(g).

Since ϕ′
2, ϕ′′

2 and χ are all functions on ZANAPF \GA while, as is known,

χ(g)

∫

NA

E2(ng, ϕ1, s) dn = 0

when c1 is sufficiently large, the integral (16.2.14) is 0. Thus (16.2.12) is 0 when m = 2 and n = 1 and
also when m = 1 and n = 2.

Set
F (g, ϕ, s) = T−1

s ϕ(g) +M(s)T−1
s ϕ(g)

and set H0(g, µ, ν, i, j, s) equal to

ρij(Φ, µ, ν, s)F
(
g, ϕi(µ, ν), s

)
F̄
(
g, ϕj(µ, ν), s

)
χ(g).

If c1 is so large that χ(δ1g)χ(δ2g) = 0 when δ1 and δ2 do not belong to the same coset of PF the

function Φ1,1(g) is equal to

∑

µ,ν

∑

i,j

∑

PF \GF

1

4πc

∫ i∞

−i∞

H0(δg, µ, ν, i, j, s) d|s|.

If ϕ′
i(g, µ, ν) is the value of T−1

S ϕi(µ, ν) at g then

∑

i,j

ρij(Φ, µ, ν, s)ϕ
′
i(h, µ, ν) ϕ̄

′
j(g, µ, ν)

is the kernel of ρ(Φ, µ, ν, s) which is

c

∫

NA

∫

ZA\AA

Φ(g−1anh)
∣∣∣α
β

∣∣∣
s+1
2

µ(α) ν(β) dn da.
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If we set h = g, divide by 4πc, integrate from −i∞ to i∞, and then sum over µ and ν we obtain

1

2

∑

γ∈ZF \AF

Ψ(0, γ, g).

If ϕ′′
i (g, µ, ν) is the value of M(s)T−1

S ϕi(µ, ν) at g

∑

i,j

ρij(Φ, µ, ν, s)ϕ
′′
i (h, µ, ν) ϕ̄

′′
j (g, µ, ν)

is the kernel of

M(µ, ν, s) ρ(Φ, µ, ν, s)M(ν, µ,−s) = ρ(Φ, ν, µ,−s).

Thus Φ1,1(g) is the sum of ∑

δ∈PF \GF

∑

γ∈ZF \AF

Ψ(0, γ, δg)χ(δg) (16.2.15)

and ∑

µ,ν

∑

i,j

∑

PF \GF

χ(δg)

4πc

∫ i∞

−i∞

{
H1(δg, µ, ν, i, j, s) +H2(δg, µ, ν, i, j, s)

}
d|s|

where H1(g, µ, ν, i, j, s) is
ρij(Φ, µ, ν, s)ϕ

′
i(g, µ, ν) ϕ̄

′′
j (g, µ, ν)

and H2(g, µ, ν, i, j, s) is
ρij(Φ, µ, ν, s)ϕ

′′
i (g, µ, ν) ϕ̄

′
j(g, µ, ν).

The expression (16.2.15) cancels (16.2.10). If g = nak with

a =

(
α 0
0 β

)
,

H1(g, µ, ν, i, j, s) is equal to

ρij(Φ, µ, ν, s)µ
(α
β

) ∣∣∣α
β

∣∣∣
s+1

ϕ′
i(k) ϕ̄

′′
j (k).

The functions ρij(Φ, µ, ν, s) are infinitely differentiable on the imaginary axis. Thus

1

4πc

∫ i∞

−i∞

H1(g, µ, ν, i, j, s) d|s|

is, O
(
|αβ |

M
)

as |αβ | → ∞ for any real M . Thus if this expression is multiplied by χ(g) and averaged

over PF \GF the result is integrable on ZA GF \GA and its integral approaches 0 as c1 approaches ∞.

Thus it contributes nothing to the trace. Nor do the analogous integrals for H2(g, µ, ν, i, j, s).
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