
SEMI-GROUPS AND REPRESENTATIONS OF LIE GROUPS †

ABSTRACT

With every Lie semi-group, Π, possessing certain regularity properties, there is

associated a Lie algebra, A; and with every strongly continuous representation of Π

in a Banach space there is associated a representation A(a) of A. Certain theorems

regarding this representation are established.

The above theorems are valid for a representation of a Lie group also. In this

case, it is shown that it is possible to extend the representation to elliptic elements

of the universal enveloping algebra. It is also shown that the representatives of the

strongly elliptic elements of the universal enveloping algebra are the infinitesimal

generators of holomorphic semi-groups. Integral representations of these semi-

groups are given.

† A dissertation presented to the Faculty of the Graduate School of Yale University in candidacy for

the degree of Doctor of Philosophy, 1960
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INTRODUCTION

The study of Lie semi-groups and their representations was initiated by E. Hille in [6]. For a survey

of the basic problems and results the reader is referred to that paper and to Chapter XXV of [7]. This

thesis is a continuation of work begun there; we summarize briefly the results it contains.

In Chapter I, the “Dense Graph Theorems” suggested in [6] are proved and it is shown that

linear combinations of the infinitesimal generators form, in the precise sense of Theorems 4 and 6, a

representation of a Lie algebra canonically associated with the semi-group.

In Chapter II the study of the infinitesimal generators is continued. For the work of this chapter

it is necessary to assume that the semi-group is a full Lie group. It is shown (Theorem 7) that the

representation of the Lie algebra can be extended, in a natural manner, to a representation of the elliptic

elements of the universal enveloping algebra. Then the spectral properties of operators corresponding

to strongly elliptic elements are discussed; in particular it is shown (Theorem 8) that they are the

infinitesimal generators of semi-groups holomorphic in a sector of the complex plane. Canonical

representations of these semi-groups as integrals are given in Theorem 9.

The reader interested in other work to which that of Chapter II is related is referred to [9], [13],

[19], and a forthcoming paper by E. Nelson.

Acknowledgement. The author wishes to thank C. T. Ionescu Tulcea for his advice and encouragement

during the preparation of this dissertation.
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CHAPTER I

1. Lie semi-groups have been defined in [6] and [7]. We shall be concerned with semi-groups,

Π, whose underlying topological space is Ē+
n = {(x1, . . . , xn)|xi ≥ 0, i = 1, . . . , n}, a subset of real

Euclidean n-space. We denote the semi-group operation by either F (p, q) or p ◦ q. The following

conditions, numbered as in [7], are supposed satisfied.

P2. F (a, 0) = F (0, a)

P3. F
(
a, F (b, c)

)
= F

(
F (a, b), c

)
P5. There exists a fixed positive constant B such that for all points a1, a2 and b in Π

max{|F (a1, b) − F (a2, b)|, |F (b, a1)− F (b, a2)|} ≤ (1 +B|b|)|a1 − a2|

P6. There exists a positive, monotone increasing continuous function ω(t), 0 < t < ∞, tending to zero

with t such that

|F (a, b) − a− b| ≤ rω(s) r = min{|a|, |b|}, s = |a|+ |b|

P11. At every point of Ē+
n × Ē+

n the n coordinates of F (p, q) have continuous partial derivatives with

respect to the coordinates of p and q up to and including the third order.

Then, by Theorem 25.3.1 of [7], there is a continuous function f(a) from Π into Π such that

f
(
(ρ+ σ)a

)
= f(ρa) ◦ f(σa) for a ∈ Π, ρ, σ ≥ 0.

Let T (p) be a representation of Π in a Banach space X , which is strongly continuous in a neigh-

borhood of the origin, then for a ∈ Π, ρ ≥ 0, ρ → T
(
f(ρa)

)
is a strongly continuous one-parameter

semi-group. Denote its infinitesimal generator by A(a). In this chapter we investigate the relations

among the A(a) and their adjoints A∗(a). For the purposes of Chapter II, we remark that similar

theorems are valid for a representation of a Lie group.

We first construct a common domain for the operators, A(a), a ∈ Π, which is large enough for

our purposes. We use the following notation: ∂Fk

∂pj (p, q) = F k
j;(p, q);

∂Fk

∂qj (p, q) = F k
;j(p, q);

∂2Fk

∂qi∂pj =

F k
j;i(p, q);F

k
i;j(0, 0)− F k

j;i(0, 0) = γkij . F (p, q) may be extended to a twice continuously differentiable

function defined on En×En.1 Denote some fixed extension byF (p, q). SinceF k
j;(0, 0) = F k

;j(0, 0) = δkj

1 Cf. the construction on p. 12 of [12].
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(the Kronecker delta), there are open spheresN1,N2 ⊆ N about the origin and three times continuously

differentiable functions ψ(q, h) and χ(q, h) defined on N1 × N1 such that ψ(0, 0) = χ(0, 0) = 0,

F (h,ψ(q, h)
)
= q, and F

(
χ(q, h), h

)
= q. Moreover if F (h, p) = q [F (p, h) = q] with p, h ∈ N2, then

q ∈ N1 and ψ(q, h) = p [χ(q, h) = p]. We may also suppose that all derivatives of ψ(q, h) and χ(q, h)

up to the third order are bounded in N1, that T (p) is strongly continuous in N1 ∩ Π, and that det(
F k
j;(p, 0)

) ≥ 1/2 and det (F k
;j(p, 0)

) ≥ 1/2 for p in N1. If N ⊆ N1 is an open sphere about the origin,

set

E(N) = {y =
∫

Π

K(q)T (q)× dq|x ∈ X, K(q) ∈ C2(N ∩ Π)}.

C2(N ∩ Π) is the set of twice continuously differentiable functions which are zero outside of N ∩ Π.

We refer the reader to [7] for a proof that E(N) is dense in X .

Proposition 1. Let N3 be an open sphere about the origin with F (N3,N3) ⊆ N2. If y ∈ E(N3)

then T (p)y is a twice continuously differentiable function of p in N3 ∩Π.

Proof. We understand that some derivatives at the boundary will be one-sided. If y ∈ E(N3) and

ej = (δ1
j , . . . , δ

n
j ) we have, recalling that K(q) is zero outside of N3 ∩Π,

lim
s→0

s−1
(
T (p+ sej)y − T (p)y

)

= lim
s→0

s−1

∫
N3∩Π

K(q)
(
T

(
(p+ sej) ◦ q

) − T (p ◦ q))xdq

= lim
s→0

s−1

∫
N2∩Π

(
K

(
ψ(q, r)

)
det

(
∂ψk

∂qi
(q, r)

))∣∣∣∣
r=p+sej

r=p

T (q)xdq

=
∫
N2∩Π

∂

∂pj

(
K(ψ(q, p)

)
det

(
∂ψk

∂qi
(q, p)

))
T (q)xdq + lim

s→0

∫
N2∩Π

G(q, p, s)
)
dq

=
∫
N2∩Π

∂

∂pj

(
K(ψ(q, p)

)
det

(
∂ψk

∂qi
(q, p)

))
T (q)xdq

since G(q, p, s) converges boundedly to 0 with s. The final integral is a continuous function of p. In a

similar manner we show that it is once continuously differentiable. We remark the following formulae,

valid for y ∈ E(N3), p ∈ N3 ∩Π:

(i) lim
s→0

s−1
(
T

(
f(sa)

) − I
)
T (p)y

= lim
s→0

s−1
(
T

(
f(sa) ◦ p)y − T (p)y

)

= lim
s→0

[∑n
j=1 s

−1
(
F j

(
f(sa) ◦ p) − pj

)
∂

∂pj T (p)y + s−1o
(|f(sa) ◦ p− p|)

]
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which equals

(1.1)
n∑

j=1

( n∑
i=1

F j
i;(0, p)a

i

)
∂

∂pj
T (p)y.

So T (p)y ∈ D
(
A(a)

)
, and A(a)T (p)y is given by (1.1).

(ii) T (p)A(a)y = lim
s→0

s−1
(
T

(
p ◦ f(sa))y − T (p)y

)
, which equals

(1.2)
n∑

j=1

( n∑
k=1

F j
;k(p, 0)a

k

)
∂j

∂pj
T (p)y

(iii) Setting
(
F j

;k(p, 0)
)−1 = (γjk(p)

)
, we have

(1.3)
∂

∂pj
T (p)y =

n∑
k=1

γjk(p)T (p)A(ek)y

(iv) Setting
∑n

j=1 F
j
i;(0, p)γ

k
j (p) = βk

i (p), we have

A(a)A(b)T (p)y =
n∑

k,j=1

( n∑
i=1

βk
i (p)b

i

)( n∑
m=1

F j
m;(0, p)a

m

)
∂

∂pj
T (p)A(ek)y.

(v) (α)A(a+ b)y = A(a)y + A(b)y

(β)A(ei)A(ej)y −A(ej)A(ei)y =
∑n

k=1 γ
k
ijA(ek)y.

For a proof of the latter relation, see [7], p. 758.

2. The first theorem is known as a “Dense Graph Theorem” and has been suggested by E. Hille in

[6] and [7].

Theorem 1. Let {a1, . . . , ap} ⊆ Π. If Go is the closure in the product topology on X × . . . × X

(p + 1 factors) of {(x,A(a1)x, . . . , A(ap)x
)|x ∈ E(N3)} and G = {(x,A(a1)x, . . . , A(ap)x)|x ∈

∩p
j=1D(A(a))}, then G = Go.

Proof. G ⊇ Go since an infinitesimal generator is a closed operator. We show that Go ⊇ G. Let

{br+1, . . . , bn} be a maximal linearly independent subset of {a1, . . . , ap}; it is sufficient to prove the

theorem for the former set. Let {b1, . . . , bn} ⊆ Π be a basis for En. If t = (t1, . . . , tn) ∈ Π, set

p(t) = f(t1b1) ◦ . . . ◦ f(tnbn). p(t) is a twice continuously differentiable map of Π into Π and may be
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extended to a twice continuously differentiable map of En into En. Denote some fixed extension by

p(t). The above process is analogous to the introduction of canonical coordinates of the second kind

on a Lie group.

Since ∂pk

∂tj (0) = bkj , p(t) has a twice continuously differentiable inverse defined in a sphere N4

about the origin. We may suppose that F (N4,N4) ⊆ N3 and that all derivatives of the inverse function

up to the second order are bounded in N4. If y ∈ E(N4) and p ∈ N4 ∩ Π, then T (p)y ∈ E(N3). For

y ∈ E(N4). set

u(y, s) =
∫
R(s)

S(t)y dt

where s = (s1, . . . , sn), S(t) = T
(
p(t)

)
,R(s) is the rectangle with sides [0, sjej ], and R(s) is contained

in the image of N4 under the inverse map. By (1.1),

A(bk)u(y, s) =
∫
R(s)

A(bk)S(t)y dt =
∫
R(s)

n∑
i=1

ζik(t)
∂

∂ti
S(t)y dt

where ζik(t) =
∑n

j,m=1 F
j
m;

(
0, p(t)

)
bmk

∂ti

∂pj is once continuously differentiable. Integrate by parts to

obtain

(1.4) A(bk)u(y, s) =
n∑

i=1

∫
R(ŝi)

ζik(t)S(t)y
∣∣∣∣
(t̂i, si)

(t̂i,0)

dt̂i −
∫
R(s)

n∑
i=1

∂ϕki

∂ti
S(t)y dt.

Since the integral of a function with values lying in a closed subspace of a Banach space is contained

in that subspace,

(1.5)
(
u(y, s), A(br+1)u(y, s), . . . , A(bn)u(y, s)

) ∈ Go.

Since (1.4) is a continuous function of y and E(N4) is dense in X , for any y ∈ X, u(y, s) ∈
∩n
j=1D

(
A(bj)

)
and (1.4) and (1.5) hold. To complete the proof it is sufficient to show

(1.6) lim
σ→0

σ−nu
(
y, s(σ)

)
= y

(1.7) lim
σ→0

A(bk)σ−nu
(
y, s(σ)

)
= A(bk)y
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for k ≥ r + 1, y ∈ ∩n
k=r+1D

(
A(bk)

)
, and s(σ) = (σ, . . . , σ). (1.6) is clear; to prove (1.7) we expand

ζik(t) in a Taylor’s series and consider

lim
σ→0

σ−n

∫
R
(
ŝi(σ)

) ζik(t)S(t)y
∣∣∣∣
(t̂i, σ)

(t̂i,0)

dt̂i

= lim
σ→0

σ−n+1

∫
R(ŝi)

δikσ
−1

(
S(t̂i, σ)y − S(t̂i, 0)y

)
dt̂i

+ σ−n+1

∫
R(ŝi)

∂ζik
∂ti

(0)S(t̂i, 0)y dt̂i

+ σ−n+1

∫
R(Ŝi)

(∑
j �=i

σ−1tj
∂ζik
∂tj

(0)
)
. . .

(
S(t̂i, σ)y − S(t̂i, 0)y

)
dt̂i

= δikA(bk)y +
∂ζik
∂ti

(0)y

provided

(1.8) lim
σ→0

σ−1
(
S(tk, σ)y − S(tk, 0)y

)
= A(bk)y.

But the left side is
k−1∏
j=1

T
(
f(tjbj)

)

applied to

σ−1
(
T (f(σbk))y − y

)
+

(
T (f(σbk))− I

)( n∑
i=k+1

( i−1∏
m=k+1

T
(
f(tmbm))

)
σ−1

(
T (f(tibi))− y

))

and (1.8) follows if we recall that ti ≤ σ and that y ∈ D
(
A(bi)

)
for i ≥ k ≥ r+1. Summing over i and

taking the last term of (1.4) into account we obtain (1.7).

The following theorem is not of so much interest as the one just proved but we want to use it to

establish the analogue of a theorem of [7]. We merely sketch the proof.

Theorem 2. If Fo is the closure in the product topology of {(y,A(e1)y, . . . , A(en)y,

A(ei)A(ej)y
)|y ∈ E(N3)} and if F = {(y,A(e1)y, . . . , A(en)y,A(ei)A(ej)y

)|y ∈ ∩n
k=1D

(
A(ek)

) ∩
D

(
A(ei)A(ej)

)}, then F = Fo.

Proof. F is a closed set and thus F ⊇ Fo. We show Fo ⊇ F . Taking bk = ek we use the notation of the

proof of Theorem 1. For y ∈ E(N4),

A(ei)A(ej)u(y, s) =
∫
R(s)

A(ei)A(ej)S(t)y dt =
∫
R(s)

n∑
k,m=1

δkm(t)
∂

∂tm
(
S(t)A(ek)y

)
dt
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where δkm(t) =
∑n

r=1 β
k
j

(
p(t)

)
F r
i;

(
0, p(t)

)
∂tm

∂pr is once continuously differentiable. Integrating by parts,

we obtain the following relation (1.9)

A(ei)A(ej)u(y, s) =
n∑

m=1

∫
R(ŝm)

n∑
k=1

δkm(t)S(t)A(ek)y
∣∣∣∣
(t̂m,sm)

(t̂m,0)

dt̂m−
∫
R(s)

n∑
k,m=1

∂δkm
∂tm

(t)S(t)A(ek)y dt.

Theorem 1 implies that (1.9) holds for y ∈ ∩n
k=1D

(
A(ek)

)
. The proof is now completed as above.

3. We now consider the adjoints of the infinitesimal generators and prove the corresponding dense

graph theorem. If y∗ ∈ X∗, the dual space of X , we denote the value of y∗ at y ∈ X by (y, y∗). If

N ⊆ N1, set

E(N) = {y∗ ∈ X∗|(y, y∗) =
∫

Π

(
y,K(q)T ∗(q)x∗)dq}

with x∗ ∈ X∗, K(q) ∈ C2
(
N ∩Π), and for all y ∈ X . E∗(N) is dense in X∗ in the weak-∗ topology.

Proposition 2. If y∗ ∈ E∗(N3)T ∗(p)y∗ is twice continuously differentiable in the weak-∗ topology,

for p in N3 ∩Π.

Proof. We merely sketch the calculations since the proof is essentially the same as that of Proposition

1.

lim
s→0

s−1

∫
Π

(
y,K(q)

(
T ∗(p+ sej)− T ∗(p)

)
T ∗(q)x∗)dq

= lim
s→0

s−1

∫
Π

(
y,K(q)

(
T ∗(q ◦ (p+ sej)x∗ − T ∗(q)x∗)

)
dq

=
∫
N2∩Π

(
y,

∂

∂pj

(
K(χ(q, p)

)
det

(
∂χk

∂qi
(q, p)

)))
T ∗(q)x∗dq.

The last integral is again a continuously differentiable function of p.

We remark the following, valid for y∗ ∈ E∗(N3) and p ∈ N3 ∩Π.

(i)

(1.10) lim
s→0

s−1
(
y,

(
T ∗(f(sa))− I

)
T ∗(p)y∗

)
=

n∑
j=1

( n∑
m=1

F j
;m(p, 0)am

)
∂

∂pj
(
y, T ∗(p)y∗

)
.

This implies that T∗(p)y∗ ∈ D
(
A∗(a)

)
and that

(
y,A∗(a)T ∗(p)y∗

)
is given by the right side of

(1.10).

(ii) As in the remarks following Proposition 1 we may show, for y∗ ∈ E∗(N3),
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(α′) A∗(a+ b)y∗ = A∗(a)y∗ + A∗(b)y∗

(β′) A∗(ei)A∗(ej)y∗ −A∗(ej)A∗(ei)y∗ = −
n∑

k=1

γkijA
∗(ek)y∗.

Theorem 3. Let {a1, . . . , ap} ⊆ Π. If Ho is the closure (in the product of the weak-∗ topolo-

gies) of {(y∗, A∗(a1)y∗, . . . , A∗(ap)y∗
)|y∗ ∈ E∗(N3)} and H = {(y∗, A∗(a1)y∗, . . . , A∗(ap)y∗

)|y∗
∈ ∩p

j=1D
(
A∗(aj)

)}, then H = Ho.

Proof. H ⊇ Ho since A∗(a) is closed in the weak-∗ topology. We show Ho ⊇ H . Let {b1, . . . , br}
be a maximal linearly independent subset of {a1, . . . , ap}; it is sufficient to prove the theorem for the

former set. Let {b1, . . . , bn} be a basis for En. Again we use the notation of the proof of Theorem 1. If

y∗ ∈ E∗(N4), define u(y∗, s) by

(
y, u(y∗, s)

)
=

∫
R(s)

(
y, S∗(t)y∗

)
dt

with S∗(t) = T ∗(p(t)). As above

(1.11)

(
y,A∗(bk)u(y∗, s)

)

=
n∑

i=1

∫
R(ŝi)

ξik(t)
(
y, S∗(t)y∗

)∣∣∣∣
(t̂i,si)

(t̂i,0)

dt̂i −
∫
R(s)

n∑
i=1

∂ξik
∂ti

(t)
(
y, S∗(t)y∗

)
dt

with ξik(t) =
∑n

j,m=1 F
m
;j

(
p(t), 0)bjk

∂ti

∂pm . As above u(y∗, s) ∈ ∩n
k=1D(A∗(bk)

)
for all y∗ ∈ X∗ and

A∗(bk)y∗ is given by (1.11). Moreover,

(
u(y∗, s)A∗(b1)u(y∗, s), . . . , A∗(br)u(y∗, s)

) ∈ Ho.

The proof may be completed as before if we show that

(1.12) lim
σ→0

σ−1
(
y,

(
S∗(t̂k, σ) − S∗(t̂k, 0)

)
y∗

)
=

(
y,A∗(bk)y∗

)

for 1 ≤ k ≤ r, tj ≤ σ, and y∗ ∈ ∩r
i=1D

(
A∗(bi)

)
. But the expression on the left equals

( n∏
j=k+1

T
(
f(tjbj)

)
y, σ−1

(
T ∗(f(σbk)

) − I
)
y∗

)

+
k−1∑
i=1

( k−1∏
m=i+1

T
(
f(tmbm)

)(
T (f(σbk))− I

) n∏
j=k+1

T
(
f(tjbj)

)
y, σ−1

(
T ∗(f(tibi)

) − I
)
y∗

)
,



Semi-groups and representations of Lie groups 10

and (1.12) follows since, see [11], σ−1
(
T ∗(f(tibi)) − I

)
y∗ is uniformly bounded and

σ−1
(
T ∗(f(σbk)) − I

)
y∗ converges in the weak-∗ topology to A∗(bk)y∗.

4. If a = (a1, . . . , an) ∈ En, A(a) =
∑n

j=1 a
jA(ej)y is defined for y ∈ E(N3). By the remarks

after Proposition 2, E∗(N3) is contained in the domain of its adjoint so that A(a) has a least closed

extension which we again denote by A(a). By Theorem 1, this notation is consistent with that used

previously for a in Π.

Lemma 1. A∗(a), the adjoint of A(a), is the weak-∗ closure of the operator
∑n

j=1 a
jA∗(ej) with

domain E∗(N3).

Proof. Suppose (y, x∗
1) =

(
A(a)y, x∗

2) for all y ∈ E(N3). Then, using Theorem 1 and the notation of

its proof with bj = ej , for y ∈ X

σ−n

∫
R(s(σ))

(
S(t)y, x∗) dt

= σ−n
n∑

j=1

aj
[ n∑

i=1

∫
R(ŝi)

(ζij(t)S(t)y, x
∗
2

)∣∣∣∣
(t̂i,σ)

(t̂i,0)

dt̂i −
∫
R(s)

( n∑
i=1

∂ζii
∂ti

(t)S(t)y, x∗
2

)
dt

]
.

Transposing and taking limits, we have

lim
σ→0

σ−n
n∑

j=1

aj

∫
R(ŝj)

(
y, (S∗(t̂j , σ) − S∗(t̂j , 0)

)
x2

)
dt̂j = (y, x∗

1).

Then using (1.11), we obtain

(1.13) lim
σ→0

σ−n

(
y,

n∑
j=1

ajA∗(ej)u(x∗
2, s(σ)

))
= (y, x∗

1).

Theorem 3 implies that u
(
x∗

2, s(σ)
)

is in the domain of the weak-∗ closure of
∑

ajA∗(ej) and (1.13)

then shows that x∗2 is also. By Theorem 25.8.1 of [7] the γkij , as defined in Paragraph 1, may be used as

the structural constants of a Lie algebra A over En. Denoting the Lie product, in this algebra, of a and

b by [a, b], we have [a, b]k =
∑n

i,j=1 γ
k
ija

ibj . We can now prove the following theorem.

Theorem 4. I. The function a → A(a) defined on A has the properties

(i) If x ∈ D
(
A(a)

) ∩D
(
A(b)

)
then x ∈ D

(
A(sa+ tb)

)
and A(sa+ tb)x = sA(a)x+ tA(B)x.

(ii) If x ∈ D
(
A(a)A(b)

) ∩D
(
A(b)A(a)

)
then x ∈ D

(
A([a, b])

)
and A([a, b])x = A(a)A(b)x −

A(b)xA(a)x.

II. The function a → A∗(a) has the properties
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(i) If x∗ ∈ D
(
A∗(a)

)∩D(A∗(b)
)
then x∗ ∈ D

(
A∗([sa+ tb])

)
and A∗([sa+ tb])x∗ = sA∗(a)x∗+

tA∗(b)x∗.

(ii) If x∗ ∈ D
(
A∗(a)A∗(b)

) ∩ DA∗(b)A∗(a)
)
then x∗ ∈ D(A∗[a, b]) and A∗([a, b])x∗ =

A∗(b)A∗(a)x∗ −A∗(a)A∗(b)x∗.

Proof. If x ∈ D
(
A(a)

) ∩ D
(
A(b)

)
there is a sequence {xn} ⊆ E(N3) such that xn → x, A(a)xn →

A(a)x and A(b)xn → A(b)x; but then, using formula (α), A(sa + tb)xn = sA(a)xn + tA(b)xn →
sa(a)x + tA(b)x. Since A(sa + tb) is a closed operator, x ∈ D

(
A(sa + tb)

)
and A(sa + tb)x =

sA(a)x+ tA(b)x.

If x ∈ D
(
A(a)A(b)

) ∩D
(
A(b)A(a)

)
, then for x ∈ E∗(N3)

(
A(a)A(b)x−A(b)A(a)x, x∗) =

(
x,A∗(b)A∗(a)x∗ −A∗(a)A∗(b)x∗).

So, using formula (β′),

(1.14)
(
A(a)A(b)x− A(b)A(a)x, x∗) =

(
x,A∗([a, b])x∗).

The lemma implies that (1.14) holds for x∗ ∈ D
(
A∗([a, b])

)
. In other words, the vector u =(

A(a)A(b)x−A(b)A(a)x, x
)

inX⊕X is annihilated by the annihilator of the subspaceU = {(A([a, b])y, y)|y ∈
D

(
A([a, b])

)}. Sou ∈ U , orx ∈ D
(
A([a, b])

)
andA([a, b])x = A(a)A(b)x−A(b)A(a)x. The remainder

of the theorem is proved in a similar manner.

Recalling that if a sequence of once continuously differentiable functions and the sequences of first

order derivatives converge uniformly on some domain then the limit function is once continuously

differentiable and its partial derivatives are the limits of the sequences of partial derivatives, we have,

using (1.3) and Theorem 1, the following result.

Theorem 5. If y ∈ ∩n
j=1D

(
A(ej)

)
then T (p)y is once continuously differentiable in a neighborhood

in Π, of the origin and (1.3) holds. Consequently, T (p)y ∈ D
(
A(a)

)
for a ∈ En and p in this

neighborhood and (1.1) and (1.2) hold for a ∈ Π.

The following theorem, analogous to Theorem 10.9.4 of [7], is an immediate consequence of

Theorem 2.

Theorem 6. If y ∈ ∩n
k=1D

(
A(ek)

) ∩D
(
A(ej)A(ej)

)
then y ∈ D

(
A(ej)A(ei)

)
.

The only properties of E(N3) used in the proof of Theorem 1 were that T (p)E(N4) ⊆ E(N3) for

p in a neighborhood of the origin, that E(N4) was dense in X , and that equation (1.1) was valid. Thus,

using Theorem 5, we could repeat the proof of Theorem 1 to obtain
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Theorem 1′. Let F ⊆ E ⊆ X be the two dense subspaces of X contained in ∩a∈ΠD
(
A(a)

)
and let

T (p)F ⊆ E for p in a neighborhood of the origin, then Theorem 1 is valid with E(N3) replaced by

E.

In the next chapter we shall consider strongly continuous representations of Lie groups only. The

group will be denoted by G and its Lie algebra by A. A little care is necessary in the definition of A in

order that the formulae above remain valid. A is taken as an algebra isomorphic to the algebra of left-

invariant infinitesimal transformations with the multiplication XY −Y X (Cf. [2]). Then if e(a)denotes

the exponential map of A into G, and the representation is T (p), A(a) is the infinitesimal generator

of the one parameter group T
(
e(ta)

)
. With a we associate the following left- and right-invariant

infinitesimal transformations

Laf(p) = lim
t→0

t−1
(
f(pe(ta))− f(p)

))
Raf(p) = lim

t→0
t−1

(
f
(
e(−ta)p

) − f(p)
)
.

These mappings are isomorphisms of the Lie algebras involved. Formulae (1.1) and (1.2) may now

be written very simply.
(1.1′) A(a)T (p)y = −RaT (p)y,

(1.2′) T (p)A(a)y = LaT (p)y.

The adjoint representation p → dαp of G is defined in [2]. With respect to a fixed basis {ei, . . . , en}
ofA let the matrix of the representation be

(
αi
j(p)

)
so thatdαp

(∑n
j=1 a

jej
)
=

∑n
i=1

(∑n
j=1 α

i
j(p)a

j
)
ei.

We state formally the following simple lemma.

Lemma 2. If x ∈ D
(
A(a)

)
, then T (p)x ∈ D

(
A(dαp(a))

)
and

(1.15) A
(
dαp(a)

)
T (p)x = T (p)A(a)x.

Proof. x ∈ D
(
A(a)

)
if and only if

lim
t→0

t−1
(
T (e(ta)

)
x− x) = A(a)x

exists, or

lim
t→0

t−1T (p)
(
T (e(ta)

)
x− x

)
= T (p)A(a)x

exists, or

lim
t→0

t−1T (p)
(
T

(
e(ta)

)− I
)
T (p−1)T (p)x = lim

t→0
t−1T

(
e
(
tdαp(a)

))
T (p)x− T (p)x = A

(
dαp(a)

)
T (p)x
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exists.

This proves the lemma. We may write (1.15) as A(dαp(a)
)
x = T (p)A(a)T (p−1)x. Formula (1.15)

is implicit in formulae (1.1), (1.2), and (1.3).

Using the basis of A previously introduced we set Ai = A(ei). If {Xi}, i = 1, . . . , n is a

set of n indeterminates and α = (α1, . . . , αm), is an m-tuple of integers 1 ≤ αi ≤ n, we write

Xα = Xα1Xα2 · · ·Xαm
. The absolute value ofα, |α|, is equal tom. This notation is slightly unorthodox

but it is necessary to allow for the fact that the Ai’s do not commute. We shall be interested in forms∑
|α|≤m aαAα in the set {Ai}.

Let E be the set of vectors y in x which can be written in the form

y =
∫
G

K(p)T (p)xµ(dp)

with µ a left-invariant Haar measure, x in X , and K(p) an infinitely differentiable function with

compact support in G. E satisfies the conditions of Theorem 1′. Similarly E∗ is the set of y∗ in X∗ such

that for x ∈ X

(x, y∗) =
∫
G

K(p)
(
x, T ∗(p)x∗)µ(dp).

With any form
∑

|α|≤m aαXα we may associate the operator Bo, with domain E, defined by

Box =
∑

|α|≤m aαAαx and the operator B∗
o , with domain E∗, defined by B∗

ox
∗ =

∑
|α|≤m aαA

∗
α∗x∗.

If α = (α1, . . . , α|α|) then α∗ = (α|α|, . . . , α1).

The following simple proposition is of some interest. A special case has been considered in [17].

Proposition 3. If, for x in E, BoT (p)x = T (p)Box, then the adjoint of Bo is the weak-∗ closure

of B∗
o .

Proof. Suppose that for all x in E

(Box, x
∗
1) = (x, x∗

2).

Then, for x in E,
(∫

G

K(p)T (p)x, x∗
2

)
µ(dp) =

( ∫
G

K(p)BoT (p)xµ(dp), x∗
1

)

=
( ∫

G

K(p)T (p)Boxµ(dp), x∗
1

)
.

We may write this as
(
x,

∫
G

K(p)T ∗(p)x∗
2µ(dp)

)
=

(
x,B∗

o

∫
G

K(p)T ∗(p)x∗
1µ(dp)

)
.
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The integrals in the final formula are taken in the weak-∗ topology. We now let K(p) approach the δ-

function and obtain
∫
G
K(p)T ∗(p)x∗

1µ(dp) → x∗
1 andB∗

o

∫
G
K(p)T ∗(p)x∗

1µ(dp) =
∫
G
K(p)T ∗(p)x∗

2µ(dp) →
x∗

2 in the weak-∗ topology.
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CHAPTER II

1. Before proving the principal theorems of this chapter we must establish some estimates for

the fundamental solutions of strongly elliptic differential equations and a differeintability property of

weak solutions of elliptic equations. The estimates are deduced from familiar ones for the fundamental

solutions of parabolic equations (cf. [3], [15], [18]). Since we are unable to refer the reader to complete

proofs of the latter estimates we establish them below. Although the required property of weak

solutions of elliptic equations is known (cf. [1]) we have included a proof.

2. A differential operator,
∑

|α|≤m(−i)|α|aα ∂α

∂xα , with constant coefficients, is called strongly

elliptic if for any real n-vector ξ, Re {∑|α|=m aαξ
α} ≥ ρ|ξ|m, with a fixed ρ > 0. A fundamental

solution for the operator
∑

|α|≤m(−i)|α|aα ∂α

∂xα + λ is

G(x, λ) ∼ 1
(2π)n

∫
En

eix.ξ∑
|α|≤m aαξα + λ

dξ.

If

g(x, t) =
1

(2π)n

∫
En

e−(
∑

aαξα)t eix·ξdξ

then

G(x, λ) =
∫ ∞

0

e−λtg(x, t) dt.

This is a basic observation since it allows us to obtain estimates for G(x, λ) from those for g(x, t).

We shall be interested in the case that aα = aα(y), |α| ≤ m, depends on a parameter, y, varying in

a region, U , of n-dimensional real space. We shall suppose that aα(y), |α| ≤ m, is m times continuously

differentiable in U and that, in U ,

(i)
∣∣∣∣ ∂γ

∂yγ
aα(y)

∣∣∣∣ ≤ M ; |γ| ≤ m

(ii) Re
{ ∑

|α|=m

aα(y)ξα
}

≥ ρ|ξ|m.
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We want to estimate the mixed partial derivatives of g(x, y, t) and G(x, y, λ) up to the order m.

We notice that, for t > 0,

∂γ

∂yγ
∂β

∂xβ
g(x, y, t) =

1
(2π)n

∫
En

i|β|
ξβ

e−(
∑

aαξα)tMγ(ξ, t) eix·ξdξ

=
1

(2π)nt|β|/m

∫
En

i|β|ξβt|β|/m e−(
∑

aαξα)tMγ(ξ, t) eix·ξdξ

and that the integrand in the final integral (with the factor eix·ξ removed) as a function of the complex

n-vector ξ = σ1 + σ + iτ, σ1, σ, and τ real, is dominated by an expression c1e
−ρ1|σ1|mtea1t|σ+iτ |m ea2t

when |γ + β| ≤ m. The constants c1, ρ1, a1, a2 depend on n,m,M , and ρ only. Consequently

∣∣∣∣ ∂
k

∂ξki

{
ξβt|β|/mMγ(ξ, t)e−(

∑
aαξα)t

}∣∣∣∣
=

∣∣∣∣ k!
(2π)n

∫
|ζ1−ξ1|=r

dζ1 · · ·
∫
|ζn−ξn|=r

dζn{ζβt|β|/mMγ(ζ, t)e−(
∑

aαϕ
α)t

/ ∏
(ϕi − ξi)}

∣∣∣∣
≤ c2k! ea2te−ρ1|ξ|mt e

a3tr
m

rk
.

Here and in the following all constants, unless the contrary is mentioned, depend only on n,m,M , and

ρ. Since r, in the above inequality, is arbitrary we choose it to be (k/t)1/m and obtain

∣∣∣∣ ∂
k

∂ξki

{
ξβt|β|/mMγ(ξ, t)e−(

∑
aαξ

α)t
}∣∣∣∣ ≤ c2k! ea2t e−ρ1|ξ|mtck3

(
t

k

) k
m

.

Then

|x|2k
∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x, y, t)

∣∣∣∣ ≤ n2k−1

( n∑
i=1

x2k
i

)∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x, y, t)

∣∣∣∣

=
∣∣∣∣n

2k−1

(2π)n
1

t|β|/m

∫
En

n∑
i=1

∂2k

∂ξ2k
i

{ξβt|β|/mMγ(ξ, t)e−(
∑

aαξαt)}eix·ξdξ
∣∣∣∣

≤ c4
ea2t

t|β|/m
(c5)2k(2k)!

(
t

2k

)2k/m ∫
En

e−ρ1|ξ|mtdξ

≤ c7
ea2t

t(n+|β|)/m (c6t)2k/m(2k)2k(m−1
m )+1/2e−2k.

If |x|/(c6t)1/m > 2, set

k =
[
1
2

|x|m/m−1

(c6t)1/m−1

]

to obtain ∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x, y, t)

∣∣∣∣ ≤ c8
ea2t

t(n+|β|)/m e
−ρ2(

|x|
t1/m

)
m

m−1
.
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If |x| ≤ 2(c6t)1/m, then ∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x, y, t)

∣∣∣∣ ≤ c9
ea2t

t(n+|β|)/m .

Now we observe that

Re {eiϕ( ∑
|α|=m

aα(y)ξα
)} ≥ (cosϕρ− k sinϕ)|ξ|m.

So there exists φ1 and φ2 with π/2 < φ1 < 0 < φ2 < π/2 such that, for φ1 ≤ ϕ ≤ φ2,

Re {eiϕ
∑

|α|=m

aα(y)ξα)} ≥ ρ/2|ξ|m.

Consequently we have proved

Lemma 3. Let all the above conditions be fulfilled. Then for φ1 ≤ arg t ≤ φ2 and |γ + β| ≤ m, the

following inequalities are valid.

(i) If |x|/|t|1/m ≥ b1, then
∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x, y, t)

∣∣∣∣ ≤ b2
eb3|t|

|t|(n+|β|)/m e
−ρ3(

|x|
|t|1/m

)
m

m−1

.

(ii) If |x|/|t|1/m ≤ b1, then
∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x, y, t)

∣∣∣∣ ≤ b4
eb3|t|

|t|(n+|β|)/m .

The constants depend only on n,m, ρ, and M .

As a consequence, if |γ + β| ≤ m,
∫
U

∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x− z, x, t)

∣∣∣∣dx
is at most

b4
eb3|t|

t|β|/m

∫
|x−z|≤b1|t|1/m

1
|t|n/m dx+ b2

eb3|t|

t|β|/m

∫
|x−z|≥b1|t|1/m

e
−ρ1(

|x|
|t|1/m

)
m

m−1

|t|n/m dx ≤ b5
eb3|t|

|t||β|/m .

Let S be the sector in the complex plane defined by

S = {z|Re (zeiφ1) ≤ b3 and Re (zeiφ2) ≤ b3}.

If λ is not in S we can find a ϕ, φ1 ≤ ϕ ≤ φ2, such that Re (λeiϕ)− b3 ≥ ρ(λ, S), the distance from λ

to S.
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Lemma 4. If λ is not in S, then for |β| < m and |γ + β| ≤ m

∫
U

∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
G(x− z, x, λ)

∣∣∣∣dx ≤ C(
ρ(λ, S)

)1−|β|/m .

Proof. Choose ϕ as above; then

∫
U

∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
G(x− z, x, λ)

∣∣∣∣dx ≤
∫
U

∫ eiϕ∞

0

|e−λt|
∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
g(x− z, x, t)

∣∣∣∣ |dt|

≤ b5

∫ ∞

0

e−(Re(λ·eiϕ)−b3)t

t|β|/m
dt

≤ C

{Re (λ · eiϕ) = b3}1−|β|/m

≤ C

ρ(λ, S)1−|β|/m .

We must now estimate ∂γ

∂yγ
∂β

∂xβ G(x− z, x, λ) pointwise for |x| ≤ R,R > 0. Choose y as above;

then ∣∣∣∣ ∂γ

∂yγ
∂β

∂xβ
G(x− y, x, λ)

∣∣∣∣,
is at most

≤ b4

∫
t≥

( |x−z|
b1

)m

e−(Re (λeiϕ)−b3)t

t(n+|β|)/m dt+ b2

∫
t≤

( |x−z|
b1

)m

e−(Re (λeiϕ)−b3)t

t(n+|β|)/m e
−ρ3

( |x|
t1/m

) m
m−1

dt

= b4I1 + b2I2.

We estimate the two terms separately for Re (λeiϕ)− b3 = ω ≥ δ0 > 0. For simplicity we replace

x− z by x.

(i) 0 < δ1 ≤ |x| ≤ R.

I1 ≤ e
−ω

( |x|
b1

)m
∫ ∞

0

e−ωt

∣∣∣∣
( |x|
b1

)m

+ t

∣∣∣∣
−(n+|β|)/m

dt

≤ e
−ω

( |x|
b1

)m

M(δ0, δ1, R).

(ii) |x| ≤ δ1.

I1 ≤
∫ ∞

1

e−ωt

t(n+|β|)/m dt+
∫ 1

( |x|
b1

)m

1
t(n+|β|)/m dt

≤
{
c1 + c2|x|m−n−|β| m− n− |β| �= 0
c1 + c2| log |x| | m− n− |β| = 0.
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We remark that, for |β| = m − 1,m − n − |β| = 1 − n = 0 only if n = 1, in which case∣∣∣ ∂γ

∂yγ
∂β

∂xβ G(x− z, x, λ)
∣∣∣ ≤ C(λ) for |x − z| ≤ δ. This is a simple fact about Fourier transforms in one

variable and we do not prove it.

(iii) 0 < δ1 = |x| ≤ R.

I2 ≤ ω
n+|β|

m −1

{∫ (ω|x|m)
1
m

0

e
−ρ3

(
ω|x|m

t

) 1
m−1

t(n+β)/m
dt+

∫ ∞

(ω|x|m)
1
m

eρ3t

t(n+|β|)/m dt

}
= ω

n+|β|
m −1{J1 + J2}.

J2 = e−ω
1
m |x|

∫ ∞

0

e−ρ3t

(ω|x|m + t)(n+|β|)/m dt ≤ c3e
−ω

1
m |x|.

J1 = (ω|x|m)1−
n+|β|

m

∫ ∞

(ω|x|m)
m−1

m

e−ρ3t
1

m−1
t

n+|β|
m −2 dt

≤ c4(ω|x|m)1−
n+|β|

m

∫ ∞

ω
1
m |x|

e−ρ3tt(m−1)
(

n+|β|
m −2

)
+m−2dt

≤ c5e
−ρ3ω

1
m |x|{(ω|x|m)q1 + (ω|x|m)q2}.

with certain exponents q1 and q2.

(iv) |x| ≤ δ1.

I2 =
∫ ( |x|

b1

)m

0

e−ρ3(|x|/t1/m)
m−1

m

t(n+|β|)/m dt

= |x|m−n−|β|
∫ b5

0

e−ρ3/t
1

m−1

t(n+|β|)/m dt

≤ c6|x|m−n−|β|.

The estimates are precise enough for our purposes. All we need to know is that G(x − y, x, λ)

goes to zero uniformly as ω increases provided |x − y| remains between two fixed positive constants

and that the derivatives of order m− 1 go to infinity like |x− y|1−n as |x− y| goes to zero.

3. The differential operator,
∑

|α|=m aα
∂α

∂xα , with constant coefficients, is elliptic if Q(ξ) =∑
|α|=m aαξ

α �= 0 for any real n-vector ξ. F. John, in [10], has constructed fundamental solutions for

such differential operators. These are, for n, the number of variables, odd and even respectively,

(2.1) K(x− y) =
1

4(2πi)n−1(m− 1)!
∆

n−1
2

x

∫
Ωξ

((x− y) · ξ)m−1sgn
(
(x− y) · ξ)

Q(ξ)
dωξ

(2.2) K(x− y) =
−1

(2πi)nm!
∆n/2

x

∫
Ωξ

((x− y) · ξ)m log |(x− y) · ξ|
Q(ξ)

dωξ
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where Ωξ is the unit sphere and ∆ is the Laplacian. Actually John was concerned only with the

case that the coefficients are real; however, a repetition of his argument shows that (2.1) and (2.2) are

fundamental solutions when the coefficients are complex. In order to use these fundamental solutions

we must perform the indicated differentiations. Let Lij = xi
∂

∂xj
− xj

∂
∂xi

; then

(2.3) ∆ =
1
2r2

n∑
i,j=1

L2
ij +

n− 1
r

∂

∂r
+

∂2

∂r2

(2.4)
∂

∂xk
=

1
2r2

n∑
i,j=1

(δkjxi − δkixj)Lij +
xi
r

∂

∂r
.

With a suitable skew-symmetric matrix, Aij ,

Lij

∫
Ωξ

g(x · ξ)f(ξ)dξ = lim
t→0

1
t

[ ∫
Ωξ

g(etAijx · ξ)f(ξ)dωξ −
∫

Ωξ

g(x · ξ)f(ξ)dωξ

]

= lim
t→0

1
t

[ ∫
Ωξ

g(x · ξ){f(etAijξ)− f(ξ)}dωξ

]

=
∫

Ωξ

g(x · ξ)Lijf(ξ)dωξ.

Of course, in the last integrand, x has been replaced by ξ in the operator Lij . Setting x̃ = x
|x| , we have

for n odd

(2.5) K(x) =
1

4(2πi)n−1(m− 1)!
rm−n

∫
Ωξ

(x̃ · ξ)m−1sgn (x̃ · ξ) P (ξ)
{Q(ξ)}ndωξ.

P (ξ) is a polynomial in ξ. A similar formula is valid for n-even. We may also show that, for n odd,

∂α

∂xα
K(x) =

1
4(2πi)n−1(m− 1)!

rm−n−|α|
∫

Ωξ

(x̃ · ξ)m−1sgn (x̃ · ξ) P (x̃, ξ)
{Q(ξ)}n+|α| dωξ

P (x̃, ξ) is a polynomial in x̃ and ξ. Again, a similar formula is valid for n even. For x �= 0,∑
aα

∂α

∂xα K(x) = 0. If ϕ(y) is an infinitely differentiable function with compact support and ϕ(x) ≡ 1

in a neighborhood of 0, then (cf. p. 57 of [10])

1 = ϕ(0) =
∫
En

K(−x)
∑

|α|=m

aα
∂α

∂xα
ϕ(x)

= lim
ε→0

∫
|x|=ε

{∑
aα

(
∂α̂

∂xα̂
K

)
(−x)xα|α|

}
ϕ(x)
ε

dω
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with α̂ = (α1, . . . , α|α|−1); or

(2.6) 1 = lim
ε→0

∫
|x|=ε

∑
aα

(
∂α̂

∂xα̂
K

)
(−x)xα|α|/rdω.

(2.6) is also valid for the fundamental solutions discussed in Paragraph 1.

We can now prove the lemma of this paragraph. We consider a differential operator B =∑
|α|≤m aα(x) ∂α

∂xα which is defined and uniformly elliptic in a domain V of Euclidean n-space; that

is, for any real n-vector ξ and any x ∈ V, |∑|α|=m aα(x)ξk| ≥ ρ|ξ|m with some fixed constant ρ. We

suppose that aα(x) is |α|-times continuously differentiable in V and that its derivatives up to the |α|th
order are bounded in V . C∞

c (V ) is the set of infinitely differentiable functions with compact support

in V . Then we have:

Lemma 5. Suppose u(x) and f(x) are two continuous functions in V such that

(2.7)
∫
V

Bϕ(x)u(x)dx =
∫
V

ϕ(x)f(x)dx

for all functions ϕ in C∞
c (V ). Then u(x) is m− 1 times continuously differentiable in V and the

modulus of continuity of any (m − 1)st order derivative is 0(δ log 1/δ) uniformly in any compact

subset, U , of V .

Proof. By the usual arguments it can be shown that (2.7) holds for ϕ(x) m-times continuously

differentiable with compact support in V . Let K(x− z, y) be the fundamental solution of the operator∑
|α|=m aα(y) ∂α

∂xα ; let ψ(y) be infinitely differentiable with compact support in V and be identically

1 in a neighborhood, W , of U . Let jk(y) be infinitely differentiable; jk(y) ≥ 0;
∫
En

jk(y)dy = 1; and

jk(y) = 0 if |y| > 1
k . Then, for large k, (2.7) is valid with

ϕ(y) =
∫
En

jk(y − z)ψ(z)K(x− z, y)dz.

We calculate
∑

|α|≤m

aα(y)
∂α

∂yα

∫
En

jk(y − z)ψ(z)K(x− z, y)dz

=
∫
En

∑
|α|≤m

aα(y)
∑

α1+α2=α

(−1)|α1| ∂α1
∂zα1

jk(y − z)
∂α2

∂yα2
K(x− z, y)ψ(z)dz

=
∫
En

(−1)m
∑

|α|=m

aα(y)
∂α

∂zα
jk(y − z)ψ(z)K(x− z, y)dz

+
∑

|α|≤m

∑
α1 + α2 = α
|α1| < m

∫
En

aα(y)jk(y − z)
∂α1

∂zα1
{ψ(z) ∂α2

∂yα2
K(x− z, y)}dz.
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With our unorthodox notation the symbol α1 + α2 = α is a little difficult to explain. It means that α1

and α2 are subsequences of the sequence α whose union exhausts α. Integrate the first term by parts

to obtain

− lim
ε→0

∫
|x−z|=ε

∑
|α|=m

aα(y)jk(y − z)
∂α̂

∂zα̂
K(x− z, y)

(x− z)α|α|

|x− z| dω

+
∫
V−W

jk(y − z)
∑

|α|=m

aα(y)
∂α

∂zα
{K(x− z, y)ψ(z)}dz

= jk(y − x) +
∫
V−W

jk(y − z)
∑

|α|=m

∂α

∂zα
{ψ(z)K(x− z, y)}dz.

Substituting these formulae into (2.7) and letting k → ∞ we obtain, for x ∈ W ,

u(x) =
∫
V

ψ(y)K(x− y, y)f(y)dy

−
∫
V−W

∑
|α|=m

aα(y)
∂α

∂zα
{ψ(z)K(x− z, y)}u(y)dy∣∣

z=y
(2.8)

−
∑

|α|=m

∑
α1 + α2 = α
|α1| < m

∫
V

aα(y)
∂α1

∂zα1

{
ψ(z)

∂α2

∂yα2
K(x− z, y)

}
u(y)dy.

∣∣
z=y

We use this representation of u(x) to prove the lemma. We first show that if ω(δ) is the modulus

of continuity, in a compact subset of W , of a typical term of the right hand side, as a function of x, then

ω(δ) = 0(δ log 1/δ). This is obvious for the second term since it is an infinitely differentiable function

of x. The only terms which give trouble are those which contain derivatives of K , with respect to z, of

order m− 1. Consider then

L(x) =
∫
V

u(y)aα(y)
∂α1

∂yα1
ψ(y)

∂α2

∂zα2

∂α3

∂yα3
K(x− y, y)dy

with |α2| = m− 1. We estimate L(x+ w) − L(x), which is

∫
En

u(y + x)aα(y + x)
∂α1

∂yα1
ψ(y + x)

{
∂α2

∂zα2

∂α3

∂yα3
K(w − y, y + x)− ∂α

2

∂zα2

∂α3

∂yα3
K(−y, y + x)

}
dy.

We remark that ∂α2

∂zα2
∂α3

∂yα3 K(w−y, y+x) is ∂α2

∂z
α2
1

∂α3

∂y
α3
1

K(x1−z1, y1) evaluated at x1−z1 = w−y

and y1 = y + x. This notation is perhaps a little confusing; but it is desirable to keep the number of

letters and subscripts introduced to a minimum. Also K(w − y, y + x) is defined only for y + x ∈ V ;
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but since we are multiplying by a derivative of ψ(y+x) there is no difficulty in taking the integral over

En. Now

∂α2

∂zα2

∂α3

∂yα3
K(w− y, y + x) = |y − w|1−n

∫
g(w̃ − y · ξ)P (w̃ − y, ξ, y + x)dwξ

= |y − w|1−n G(w − y, y + x).

G(w − y, y + x) is once continuously differentiable, with respect to w, when w �= y and
∣∣∣∣ ∂

∂wi
G(w − y, y + x)

∣∣∣∣ ≤ K

|w − y|

for y + x in V .

Write L(x+ w)− L(x) as

∫
En

u(y + x)aα(y + x)
∂α1

∂yα1
ψ(y + x)

{
G(w − y, y + x)−G(−y, y + x)

|y|n−1

}
dy

+
∫
En

u(y + x)aα(y + x)
∂α1

∂yα1
ψ(y + x)G(w − y, y + x)

{
1

|y − w|n−1
− 1

|y|n−1

}
dy

= I1 + I2.

If |w| is small enough

|I1| ≤
∫
|y|≤|w| log 1/|w|

+
∫
|y|≥|w| log 1/|w|

≤ 0(|w| log 1/|w|) +K1

∫
R≥|y|≥|w| log 1/|w|

|G(w − y, y + x)−G(−y, y + x)|
|y|n−1

dy.

The integrand in the second term is dominated by

K|w|
|y|n−1|y − θw| ≤

K

|y|n
|w|

|ỹ − θw
|y|

≤ K0|w|
|y|n ,

0 ≤ θ ≤ 1. Integrating

I1 = O

(
|w| log 1

|w|
)
+O

(
|w| log

(
1
|w| log

1
|w|

))

= O

(
|w| log 1

|w|
)

|I2| ≤ K2

∫
|y|≤R

∣∣∣∣ 1
|y − w|n−1

− 1
|y|n−1

∣∣∣∣ dy

= O

(
|w| log 1

|w|
)
.
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If m = 1, there is nothing more to prove. We suppose m > 1. Now we observe that the equations

dβ

dyβ

[
∂γ

∂yγ
K(w − y, y)

]
=

∑
β1+β2=β

∂β1

∂zβ1

∂β2+γ

∂yβ2+γ
K(x− y, y)

allow us to replace, in (2.8), partial derivatives of K(x − y, y) by sums of total derivatives of terms
∂γ

∂yγ K(x− y, y). To avoid confusion, we explain this in detail.

Until now we have when differentiating the function K = K(x− z, y) regarded it as a function of

the three variables x, y, and z and only after taking derivatives have we substituted y for z. However, in

the following it will be necessary to integrate by parts. To do this it is necessary to replace the function

∂β

∂zβ
∂γ

∂yγ
K(x− z, y)

∣∣∣∣
z=y

by partial derivatives of some function of y. The above formula is the means to do this. The right

hand side is obtained by taking ∂γ

∂yγ of K(x− z, y); setting z = y; and then taking ∂β

∂yβ of the resulting

function of x and y. We have indicated this by writing the sign for a total derivative.

We wish to invoke the lemmas of E. Hopf [8]. First we must observe that if we replace u(y) by 1

in the terms of (2.8) containing partial derivatives of K(x− z, y) with respect to z of order m − 1 we

may replace partial derivatives by total derivatives and integrate by parts, for the aα(y) involved in

these expressions will be once continuously differentiable. This lowers the order of the singularity of

the integrand so that we may now differentiate with respect to x to obtain a continuous function. The

lemmas just mentioned now imply that u(x) is once continuously differentiable in a neighborhood of

U .

Now that we know u(x) is once continuously differentiable in a neighborhood of U we return to

the expression (2.8). We replace ψ(y), which has served its purpose, by another infinitely differentiable

function which has its support in a neighborhood of U in which we know u(x) to be once continuously

differentiable. We write all partial derivatives as sums of total derivatives; integrate those terms

involving total derivatives of order m − 1 by parts; and then take the derivative, with respect to x, of

the integrand in every integral on the right hand side of (2.8). This gives us an expression similar to

(2.8) for u′(x). The lemma is now established by induction. It is only necessary to observe that the

derivatives of the coefficients and of K(x − z, y), with respect to y, which are taken in the proof all

exist. For the purposes of this thesis it may be assumed that the coefficients are infinitely differentiable;

then this difficulty does not arise.
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4. We return now to the study of representations of Lie groups. We use the same notation as

before. Set Wk =
{
x ∈ X|x ∈ ∩a1,...,ak∈AD(A(a1) . . . A(ak)

)} and set W ∗
k =

{
x∗ ∈ X∗|x∗ ∈

∩a1,...,ak∈AD(A∗(a1) . . . A∗(ak)
)}.

In analogy to the terminology in the theory of partial differential equations, we call the form∑
|α|≤m aαXα elliptic if when we substitute a real non-zero n-vector ξ for X ,

∑
|α|=m aαξα �= 0.

With an elliptic form,
∑

|α|≤m aαXα, we associate the operator B0 with domain Wm, defined by

B0x =
∑

|α|≤m aαAαx. We shall need to consider also the operator B∗
0 , with domain W∗

m, defined

by B∗
0x

∗ =
∑

|α|≤m aαA
∗
α∗x

∗. Since the domain of B0 is dense and that of B∗
0 is dense in the weak-*

topology and since they are adjoint, the closureB and the weak-* closure, B∗, ofB0 andB∗
0 , respectively,

are well defined. The following theorem shows this notation to be justified.

Theorem 7. B∗ is the adjoint of B.

Proof. Suppose that for all x ∈ Wm

( ∑
|α|≤m

aαAαx, x
∗
1

)
= (x, x∗

2).

We shall show that x∗1 ∈ W ∗
m−1. Let µ be a left-invariant Haar measure on G and set Ri = R(ei). If

K(p) is infinitely differentiable with compact support in G,

∑
aαAα

{∫
G

K(p)T (p)xµ(dp)
}
=

∫
G

{ ∑
aαRαK(p)

}
T (p)xµ(dp).

Consequently
∫
G

∑
aαRαK(p)

(
T (p)x, x∗

1

)
µ(dp) =

∫
G

K(p)
(
T (p)x, x∗

2

)
µ(dp).

Let {ti} be an analytic coordinate system of the second kind [14] corresponding to the basis {ei}, in a

neighborhood, V , of the identity; then, assuming that K has support in V ,
∫
V

{ ∑
|α|≤m

bα(t)
∂α

∂tα
K

(
p(t)

)}{(
T (p(t))x, x∗

1

)}
F (t) dt =

∫
V

K
(
p(t)){(T (p(t))x, x∗

2

)}F (t) dt.

Here F (t) and bα(t) are analytic functions; F (t) is nowhere zero; and
∑

|α|≤m bα(t) ∂α

∂tα is elliptic in

a neighborhood U ⊆ V of the origin since bα(0) = aα. It is then a consequence of Lemma 5 that(
T (p)x, x∗

1

)
is m − 1 times continuously differentiable. This implies that x∗1 ∈ W ∗

m−1. If x ∈ Wm,

(x, x∗
2) =

∑
aα(Aαx, x

∗
1) =

∑
aα(Aα|α|x,A

∗
α̂∗x∗

1). Since E ⊆ Wm, Theorem 1′ implies that

(2.9) (x, x∗
2) =

∑
aα(Aα|α|x,A

∗
α̂∗x∗

1)
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for all x ∈ W1. Since {ti} is a canonical coordinate system of the second kind we may infer as in the

proof of Theorem 1 that
∫
R(s(σ))

S(t)xdt is in W1 for all x ∈ X . The notation is the same as in the proof

of that theorem; in particular, S(t) = T
(
ρ(t)

)
. Also

Ai

∫
R(s)

S(t)xdt =
∫
R(ŝi)

S(t̂i, σ)x− S(t̂i, 0)xdt̂i +G(σ)

with limσ→0
G(σ)
σn = 0. Then, using (2.9),

lim
σ→0

{∑
α

aα
1
σn

∫
R(ŝ

α|α| )
,
(
S(t̂α|α| , σ)x− S(t̂α|α| , 0)x,A∗

α̂∗x∗
1)dt̂

α|α| +
G1(σ)
σn

}
=

lim
σ→0

1
σn

∫
R(s)

(
S(t)x, x∗

2

)
dt.

Here G1(σ)
σn → 0 as σ → 0 for all x ∈ X . Consequently

(2.10) lim
σ→0

1
σn

[∑
α

aα

∫
R(ŝ

α|α| )

(
S(t̂α|α| , σ

)
x− S(t̂α|α| , 0)xA∗

α̂∗x∗
1dt̂

α|α|

]
= (x, x∗

2).

Now
∫
R(s)

S∗(t)x∗
1dt (the integral is taken in the weak-∗ topology) is in W∗

m; and by Lemma 2 and

formula (1.2′) we have, for x ∈ Wm,

∫
R(s)

(Aα1 . . . Aα|α|x, S
∗(t)x∗

1) dt =
∫
R(s)

(
S(t)Aα1 . . . Aα|α|x, x

∗
1) dt

=
∫

R(s)
∑

|β|=|α|
cαβ(t)(AβS(t)x, x∗

1) dt

=
∫
R(s)

∑
cαβ(t)(Aβ|β|S(t)x,A

∗
β̂∗x

∗
1) dt

=
∫
R(s)

∑
β

cαβ(t)
∑
j

ζjβ|β|

∂

∂tj

(
S(t)x,A∗

β̂∗x
∗
1

)
dt.

We may choose the cαβ(t) so that cαβ(0) = 0 unless α = β and cαα(0) = 1. Also ζji (0) = δji . Integrate

by parts to obtain

∫
R(ŝ

α|α| )
(S(t̂α|α| , σ)x− S(t̂α|α| , 0)x,A∗

α̂∗x∗
1)dt̂

α|α| +G2(σ, x).

We observe that G2(σ, x) is a linear function of x which is uniformly bounded as σ → 0. Since it clearly

converges to 0 for x ∈ Wm it converges to 0 for all x. Consequently, summing over α and using (2.10),

lim
σ→0

(x,
∑

aαA
∗
α∗

∫
R(s)

S∗(t)x∗
1 dt) = (x, x∗

2).
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This completes the proof of the theorem.

The form
∑

|α|≤m aαxα is called strongly elliptic if

Re
{ ∑

|α=m

aαξα

}
≥ ρ|ξ|m, ρ > 0,

for any real n-vector ξ. Let
∑

|α|≤m aαxα be strongly elliptic and let B be the operator associated, by

the previous theorem, to the form −∑
|α|=m(−i)|α|aαxα. Then we have the following theorem.

Theorem 8. B is the infinitesimal generator of a semi-group, U(t), of class H(φ1, φ2) [7].

Proof. If x ∈ Wm and λ is a complex number

(
Bx− λx, T ∗(p)x∗) =

(
−

∑
(−i)|α|aαAαx− λx, T ∗(p)x∗)

= −
∑

(−i)|α|aα
(
T (p)Aαx, x

∗)− λ
(
T (p)x, x∗)

= −
∑

(−i)|α|aαLα

(
T (p)x, x∗) − λ

(
T (p)x, x∗).

Let t = (t1, . . . , tn) be a canonical coordinate system of say, the first kind associated with

{e1, . . . , en}, in a neighborhood, V , of the identity and let

−
∑

|α|≤m

(−i)|α|aαLα = −
∑

|α|≤2m

(−i)|α|bα(t)
∂α

∂tα

in this coordinate system. Since we may choose the bα(t) in such a manner that bα(0) = aα, the

right hand side is uniformly strongly elliptic in a neighborhood U ⊂ V of 0. Let K(s− t, r, λ) be the

fundamental solution of
∑

(−i)|α|bα(r) ∂α

∂tα +λ considered in Section 1. We have established estimates

for K(s − t, r, λ) for ρ(λ, S) ≥ δ > 0, with S a certain sector in the complex plane. Let ϕ(t) be an

infinitely differentiable function with support in U and with ϕ(t) = 1 if |t| ≤ δ1 for some small δ1.

Then, if |s| ≤ δ1/2,

∫
U

ϕ(t)K(s− t, t, λ)
(
Bx− λx, S∗(t)x∗) dt

= −
∫
U

ϕ(t)K(s− t, t, λ)
{(∑

(−i)|α|bα(t)
∂α

∂tα
+ λ

}
(x, S∗(t)x∗) dt

= − lim
ε→0

∫
|s−t|=ε

∑
(−i)|α| bα(t)

∂α̂

∂sα̂
K(s− t, t, λ)

(s− t)α|α|

|s− t| (x, S∗(t)x∗)dω

−
∫
|s−t|≥δ1

ϕ(t)
∑

(−i)|α|bα(t)
∂α

∂sα
K(s− t, t, λ)(x, S∗(t)x∗) dt
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−
∑
α

∑
α1+α2+α3=α

|α1|<|α|

∫
i|α|

∂α3

∂tα3
bα(t)

∂α2

∂rα2

∂α1

∂tα1
K(s− t, t, λ)

(
x, S∗(t)x∗) dt

= − lim
ε→0

∫
|s−t|=ε

∑
(−i)|αbα(s)

∂α̂

∂sα̂
K(s− t, s, λ)

(s− t)α|α|

|s− t|
(
x, S∗(t)x∗)dω − · · ·

= −(
x, S∗(x)x∗) − · · ·

Here, as before, S∗(t) = T ∗(p(t)). Also we have used our usual convention regarding partial deriva-

tives of the function K(s− t, r, λ). Since |bα(s)− bα(t)| ≤ M0|s− t| and

∣∣∣∣ ∂
α̂

∂sα̂
K(s− t, s, λ) − ∂α̂

∂sα̂
K(s− t, t, λ)

∣∣∣∣ ≤ M1

|s− t|n−2
,

we could replace s by t in the appropriate places in the surface integral. We now set s = 0, choose an

x∗ such that ‖x∗‖ = 1, (x, x∗) = ‖x‖, and make use of the estimates of Paragraph 2 to obtain

N1

ρ(λ, S)
‖Bx− λx‖ ≥ ‖x‖ − N2‖x‖

ρ(λ, S)
− N3‖x‖

ρ(λ, S)
1
m

.

Consequently, for ρ(λ, S) ≥ N4,

‖x‖ ≤ N5

ρ(λ, S)
‖Bx− λx‖.

This inequality remains valid for x ∈ D(A). For x∗ ∈ W ∗
m, consider

(
T (p)x,B∗x∗ − λx∗) =

(
T (p)x,−

∑
(−i)|α|aαA∗

α∗x∗ − λx∗)
= −

∑
(i)|α|aαRα∗

(
T (p)x, x∗)− λ

(
T (p)x, x∗).

Change into local coordinates and perform the same calculations as above to obtain

(2.11)
∫
U1

ϕ1(t)K1(s− t, t, λ)
(
S(t)x,B∗x∗ − λx∗) dt = −(

S(s)x, x∗) − · · ·

By the proof of the previous theorem, if x∗ ∈ D(B∗) we can choose a sequence {x∗
n} ∈ W ∗

m such that

(x, x∗
n) → (x, x∗) and (x,B∗x∗

n) → (x,B∗x∗) for all x ∈ X . By the principle of uniform boundedness,

‖x∗
n‖ and ‖B∗x∗

n‖ are uniformly bounded. Consequently, in u1,
(
S(t)x,B∗x∗

n) →
(
S(t)x,B∗x∗−λx∗)

boundedly and
(
S(t)x, x∗

n

) → (
S(t)x, x∗) boundedly. The dominated convergence theorem now

allows us to assert the validity of (2.11) for all x∗ ∈ D(B∗). Now, given an x∗ ∈ D(B∗), we choose an

x ∈ X such that ‖x‖ ≤ 1, (x, x∗) ≥ ‖x∗‖
2 , and set s = 0 in (2.11) to obtain the inequality

N ′
1

ρ(λ, S′)
‖B∗x∗ − λx∗‖ ≥ ‖x∗‖

2
− N ′

2

ρ(λ, S′)
‖x∗‖ − N ′

3

ρ(λ, S′)
1
m

‖x∗‖.



Semi-groups and representations of Lie groups 29

Here we make use of the estimates for the function K1(s− t, r, λ) established in Paragraph 2. Conse-

quently, for ρ(λ, S′)) ≥ N ′
4,

‖x∗‖ ≤ N ′
5

ρ(λ, S′)
‖B∗x∗ − λx∗‖.

Thus the resolvent R(λ,B) exists for ρ(λ, S′) ≥ N ′
4 and ‖R(λ,B)‖ ≤ N5 if ρ(λ, S) ≥ N4. The theorem

is now a consequence of Theorem 12.8.1 of [7].

5. In this paragraph the strongly elliptic form
∑

aαxα will be fixed. We denote the operator

associated with −∑
|α|≤m(−i)|α|aαxα by B and the semi-group it generates by U(t). Since the space,

X , on which the group G acts will vary in the course of the proof, we shall specify the space by writing

B(X) and U(t,X) when there is a danger of confusion.

Let µ be left-invariant Haar measure on G and let L1(µ) be the Banach space of functions on G

integrable with respect to µ. Two representations of G in L1(µ) of particular interest are {L(p)f}(q) =
f(p−1q) and {R(p)f}(q) = f(qp). It is easily shown that these representations are strongly continuous.

We may call them, respectively, the representation by left translations and by right translations. A linear

operator on L1(µ) is said to commute with right translations if it commutes with all operators R(p).

We shall need the following lemma, proved in the general case just as it is for the line [7].

Lemma 6. Let S be a bounded linear operator on L1(µ) which commutes with right translations.

Then there is a finite, countably additive Borel set function, ν, such that

(2.12) Sf(p) =
∫
G

f(q−1p)ν)dq)

for almost all p. Moreover var (ν) = ‖S‖.

Proof. Let {gk(p)} be an approximation to the identity on G and let f be a function in L1(µ) with

compact support. Set

hk(p) =
∫
G

f(q−1p)gk(q)µ(dq)

=
∫
G

f(q−1)gk(pq)µ(dq).

Then

Thk(p) =
∫
G

f(q−1)(Tgk)(pq)µ(dq)

=
∫
G

f(q−1p)(Tgk)(q)µ(dq)(2.13)

=
∫
G

f(q−1p)νk(dq)
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with νk(dq) = (Tgk)(q)µ(dq). Since ‖gk‖L1(µ) = 1, var (νk) ≤ ‖T‖. Let ν be an accumulation point of

the sequence {νk} in the space of bounded, countably additive set functions with its weak-∗ topology

as the conjugate space of C0, the space of continuous functions on G vanishing at infinity. For any f in

L1(µ), hk is defined and (2.13) is valid. Moreover hk → f as k → ∞; and, then, Thk → Tf . But if f is

continuous with compact support,
∫
G
f(q−1p)ν(dq) is an accumulation point of (Thk)(p), as given by

(2.13). Consequently, for all f ∈ L1(µ),

(Tf)(p) =
∫
G

f(q−1p)ν(dq)

for almost all p. Clearly var (ν) ≤ ‖T‖ and ‖T‖ ≤ var ν.

We remark that the ν satisfying (2.12) is unique. We may now state the theorem of this paragraph.

Theorem 9. There exist finite, countably additive Borel set functions, µ(t, ·), depending only on

the form
∑

aαXα, and G such that

(2.14) U(t)x =
∫
G

T (p)xµ(t, dp)

at least for ψ1 ≤ arg t ≤ ψ2; ψ1 < 0 < ψ2.

The integral is, of course, a Bochner integral. As the theorem is stated ψ1 and ψ2 may vary with

the representation. It is true, however, that ψ1 and ψ2 may be taken to depend only on the form and on

G. To establish this we have only to observe that the angles of the sector, outside of which the estimates

for R(λ,B) were established, depend only on the form and on G.

Proof. Consider first the representation L(p) of G in L1(µ). The semi-group U
(
t, L1(µ)

)
generated

by the operator B
(
L1(µ)

)
associated with the form −∑

(−i)|α|aαXα in this representation commutes

with right translations and, consequently, is given by

(2.15) U
(
t, L1(µ)

)
f(p) =

∫
f(q−1p)µ(t, dq).

This establishes the theorem in this case. We next establish it for the case of the representation by left

translations in C0. If f is in L1(µ) and g is in C0, the function

h(p) =
∫
G

f(pg)g(q−1)µ(dq)

is in C0 and ‖h‖C0 ≤ ‖f‖L1(µ)‖g‖C0 . Let ft = u
(
t, L1(µ)

)
f and set

ht(p) =
∫
G

ft(pq)g(q−1)µ(dq).
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We assert that ht = U(t, C0)h. To prove this we notice that

‖ht‖C0 ≤ ‖ft‖L1(µ)‖g‖C0(i)

≤ |U(
t, L1(µ)

)‖ ‖f‖L1(µ)‖g‖C0

≤ Keωt‖f‖L1(µ)‖g‖C0 .

Here ω and K are some constants and t is greater then or equal to zero.

‖ht − h‖C0 ≤ ‖ft − f‖L1(µ)‖g‖C0 → 0 as t → 0.(ii)

d

dt
ht =

d

dt

∫
G

ft(· q)g(q−1)µ(dq)(iii)

=
∫
G

d

dt
ft(· q)g(q−1)µ(dq)

=
∫
G

B
(
L1(µ)

)
ft(· q)g(q−1)µ(dq)

= B(C0)ht.

The derivatives are taken in the strong topology.

For t ≥ 0 the asserted equality now follows from Theorem 23.7.1 of [7]. By analytic continuation

ht = u(t, C0)h in the domain common to the two sectors in which they are defined. We may now write

(2.16)
u(t, C0)h(p) =

∫
G

{ ∫
G

f(r−1pq)µ(t, dr)
}
g(q−1)µ(dq)

=
∫
G

h(r−1p)µ(t, dr).

Since functions, h, of the above form are dense in C0 the theorem is established for C0. In order to

complete the proof we must introduce two new spaces of functions. These function spaces are closely

related to the given representation, T (p), of G in X . Let Y be the space of continuous functions, f , on

G satisfying

(a) ‖f‖Y = sup
q

|f(q)|
λ(q)

< ∞

(b) ‖f(p−1·)− f(·)‖Y → 0 as p → 1.

For brevity, we have set ‖T (q)‖+ ‖T (q−1)‖ = λ(q). Y is a Banach space and the representation by left

translations of G in Y is strongly continuous. In particular

‖L(p)f‖Y = sup
q

|f(p−1q)|
λ(q)

= sup
q

|f(p−1q)|
λ(p−1q)

λ(p−1q)
λ(q)

≤ λ(p)‖f‖Y
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for λ(p) = λ(p−1) and λ(pq) ≤ λ(p)λ(q). It is important to notice that if x is in X and x∗ is in X∗ then(
T (p−1)x, x∗) and ‖T (p−1)x‖ are functions in Y . Moreover, if x is in W1(x) and a is in A, then

sup
q

|t−1{(T (q−1e(ta))x, x∗) − (
T (q−1)x, x∗)} − (

T (q−1)A(a)x, x∗)|
λ(q)

≤ ‖x∗‖ ‖t−1{T (
e(ta)

)
x− x} − (

A(a)x‖ → 0

as t → 0. Consequently
(
T (p−1)x, x∗) is in W1(Y ) and A(a, Y )(T (p−1)x, x∗) =

(
T (p−1)A(a)x, x∗).

The same relation holds between Wk(X) and Wk(Y ). The converse statement is weaker. If fx∗(p) =(
T (p−1)x, x∗) is in W1(Y ) for every x∗ in x∗ and

(
L(e(ta))− I

)
A(a, Y )fx∗ = 0(tα) as t → 0 for some

α > 0, then x is in W1(x). First of all A(a, Y )fx∗(0) = x0(x∗) defines a bounded linear functional x0

on X∗. But

t−1{(L(e(ta))x− x, x∗) − (x0, x
∗)} =

1
t

∫ t

0

(
L(e(ta))− I

)
A(a, Y )fx∗(0) dt = 0(tα).

Consequently ∥∥∥∥∥
L

(
e(ta)

)
x− x

t
− x0

∥∥∥∥∥
X∗∗

= 0(tα).

Thus x0 is in X and x0 = A(a)x. The same relation holds between Wk(Y ) and Wk(X).

The second space, Z , to be introduced is, in a certain sense, dual to Y . It is the space of measurable

functions, f , on G satisfying

(c)
∫
G

|f(q)|λ(q)µ(dq) = ‖f‖Z < ∞.

It is essential to observe that λ(q) is lower semi-continuous and therefore measurable. The representa-

tion by left translations of G in Z is strongly continuous. Z is a subset of L1(µ) and ‖f‖Z ≥ ‖f‖L1(µ).

Moreover, if f ∈ D
(
B(Z)

)
, then f ∈ D

(
B(L1(µ))

)
and B(Z)f = B

(
L1(µ)

)
f . Thus a solution of

normal type of the abstract Cauchy problem forB(Z) is a solution of normal type of the abstract Cauchy

problem for B
(
L1(µ)

)
. Again, Theorem 23.7.1 of [7] allows us to assert that U(t, z)f = U

(
t, L1(µ)

)
f .

We make use of (2.15) to write

(2.17) U(t, Z)f(p) =
∫
G

f(q−1p)µ(t, dq).

This is a weaker assertion, in this case, than that of the theorem. We have not yet shown that∫
G
f(q−1.)µ(t, dq) exists as a Bochner integral. Let f be in Z and g be in Y . Consider

h(p) =
∫
G

f(pq)g(q−1)µ(dq).
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Then

|h(p)| ≤
∫
G

|f(pq)| |g(q−1)|µ(dq)

≤ ‖g‖Y
∫
G

|f(pq)|λ(q)µ(dq)

≤ ‖g‖Y
∫
G

|f(q)|λ(p−1q)µ(dq)

≤ λ(p)‖g‖Y ‖f‖Z.
In other words, ‖h‖Y ≤ ‖g‖Y ‖f‖Z . We remark another simple fact, which allows us to assert that

functions, h, of the above form are dense in Y . If f has compact support and
∫
G
f(p)µ(sp) = 1 then

|h(p)− g(p)|
λ(p)

=
1

λ(p)

∣∣∣∣
∫
G

f(pq){g(q−1)− g(p)}µ)(dq)
∣∣∣∣

≤ 1
λ(p)

∫
G

|f(q)| |g(q−1p)− g(p)|µ(dq)

≤ sup
q∈ supp f

‖g(q−1·) − g(·)‖Y
∫
G

|f(q)|µ(dq).

Using the same technique as before, we set ft = U(t, Z)f and then set

ht(p) =
∫
G

ft(pq)g(q−1)µ(dq).

Again the uniqueness theorem for the abstract Cauchy problem assures us that ht = U(t, Y )h. Making

use of (2.17) we may write

(2.18) U(t, Y )h(p) =
∫
G

{ ∫
G

f(r−1pq)µ(t, dr)
}
g(q−1)µ(dq).

Formally changing the order of integration, we obtain

U(t, Y )h(p) =
∫
G

h(r−1p)µ(t, dr).

However, we have not yet provided that the integral in (2.18) is absolutely convergent and we are,

consequently, unable to justify the change in the order of integration.

C0 is a subset of Y and ‖g‖Y = ‖g‖C0 . Consequently, U(t, C0)g is a solution of normal type of the

abstract Cauchy problem for B(Y ). The uniqueness theorem again implies that U(t, C0)g = U(t, Y )g.

Making use of (2.16), we write

U(t, Y )g(p) =
∫
G

g(q−1p)µ(t, dg).
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Then ∣∣∣∣
∫
G

g(q−1p)µ(t, dq)
λ(p)

∣∣∣∣ ≤ ‖U(t, Y )‖ ‖g‖Y .

By the usual argument it follows that

∫
G

|g(q−1p)| |µ|(t, dq)
λ(p)

≤ ‖U(t, Y )‖ ‖g‖Y .

But if f(q) is in Y we can find a sequence {gn(q)} in C0 such that gn → |f |. Consequently

∫
G

|f(q−1p)| |µ|(t, dq) ≤ λ(p)|U(t, Y )‖ ‖f‖Y .

In particular, setting f(q) = ‖T (q−1)x‖ and setting p = 1, we obtain

∫
G

‖T (q)x‖ |µ|(t, dq) ≥ 2‖U(t, Y )‖ ‖x‖.

We are now able to justify the inversion of the order of integration in (2.18). We apply the last inequality

to the space Z and to the representation L(p) of G in Z .

∫
G

∫
G

|f(r−1pq)| |g(q−1)| |µ|(t, dr)µ(dq)

≤
∫
G

∫
G

|f(r−1q)|λ(p)λ(q)|µ|(t, dr)µ(dq)

= λ(p)
∫
G

‖L(r)f‖Z|µ|(t, dr)
< ∞.

We now show that if x(t) =
∫
G
T (p)xµ(t, dp) then x(t) = U(t,X)x. We first observe that

(
T (q−1)x(t), x∗) =

∫
G

(
T (q−1)T (p)x, x∗)µ(t, dp)

=
∫
G

(
T (q−1p)x, x∗)µ(t, dp)

= U(t, Y )
(
T (q−1)x, x∗).

We know that ‖x(t)‖ ≤ 2‖U(t, Y )‖ ‖x‖ ≤ K1e
ω1t‖x‖, with some constants c1 and ω1 when t ≥ 0.

If x ∈ Wm(x) then
(
T (q−1x, x∗) is in Wm(Y ) and, taking q = 1 in the above equality, it follows

that t−1{(x(t), x∗) − (x, x∗)} converges to (Bx, x∗) as t → 0. In particular, applying the principle

of uniform boundedness, ‖x(t) − x‖ → 0 as t → 0. Since U(t, Y ) is a holomorphic semi-group,(
x(t), x∗) is a holomorphic function and x(t) is a holomorphic function. Moreover

(
T (q−1)x(t), x∗)

is in D
(
Bk(Y )

)
for any k; the work of the next paragraph shows that

(
T (q−1)x(t), x∗) is in Wk(Y ) for

any k. Consequently x(t) is in Wk(x) for any k. We observe finally that d
dt

(
x(t), x∗) =

(
Bx(t), x∗)
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and, thus, d
dtx(t) = Bx(t). Another application of the uniqueness theorem for the abstract Cauchy

problem shows that x(t) = U(t,X)x when x is in Wm(X). Since Wm(X) is dense in x, the equation

is valid for all x in X .

6. In this paragraph we establish the basic analytical properties of U(t)x and of µ(t, dp). U(t)x is

an analytic function of t and

BkU(t)x =
dk

dtk
U(t)x =

k!
2πi

∫
|ρ−t|=r(t)

U(ζ)x
(ζ − t)k+1

dζ.

We observe that Bk, as a power of B, is the operator associated, by Theorem 7, with the elliptic

form (−1)k
(∑

(−i)|α|aαxα)k for it is equal to that operator on Wmk and its adjoint is equal to that

operator’s adjoint on W∗
mk. Let ν be a right-invariant Haar measure on G and let K(p) be an infinitely

differentiable function on G with compact support. If x is in Wmk, then

∫
G

K(p)
(
Bkx, T ∗(p)x∗)ν(dp) =

∫
G

K(p)
∑

|α|≤mk

bα(Aαx, T
∗(p)x∗)ν(dp)

=
∫
G

{
−

∑
(−1)|α|bαLαK(p)

}
(x, T ∗(p)x∗)ν(dp).

{Li} is the set of left-invariant differential operators introduced in Chapter I. This formula remains

valid for x in D(Bk). As above, by Lemma 5, if x in D(Bk) then x is in Wmk−1. In particular, U(t)x

is in ∩kWk and T (p)U(t)x is an infinitely differentiable function of p. AαU(t)x is defined for all x

in X ; we show that it is a bounded linear function of x. If |α| = 1, AαU(t) is a closed, everywhere

defined linear operator on X ; consequently, it is bounded. By induction, it is apparent that AαU(t) is a

bounded linear operator. Consequently ‖AαS(t)x‖ ≤ Nα(t)‖x‖. T (p)U(t)x is infinitely differentiable

as a function of p and t and

∥∥∥∥ dk

dtk
AαU(t)x

∥∥∥∥ =
∥∥∥∥ K!
2πi

∫
|ζ−t|=r(t)

AαU(ζ)x
(ζ − t)k+1

dζ

∥∥∥∥ ≤ N(k, α, t)‖x‖.

The equation
∂

∂t

(
T (p)U(t)x, x∗) =

(
T (p)BU(t)x, x∗)

= −
∑

(−i)|α|aαLα

(
T (p)U(t)x, x∗)

when written in an analytic coordinate system, {si}, about the identity is a parabolic equation with

analytic coefficients. We now apply the results of [3]. The facts which we need from this paper are not

explicitly stated as theorems and the proofs are not given in complete detail. However, since the proofs
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are quite complicated and the assertions to be derived from these facts ancillary to the rest of the thesis,

we prefer not to perform the calculations in detail here.

The work in the paper shows that
(
T (p(s))U(t)x, x∗) = u(s, t) may be extended to an analytic

function in a complex neighborhood, N(t) of the origin in s-space. N(t) may be taken locally in t, to

be independent of t; and the upper bound of |u(s, t)| in N(t) depends only on upper bounds for the

absolute value of u(s, t) and a certain number of its derivatives for real s. Thus u(s, t) may be extended

to an analytic function of s and t in a certain open set, M , of complex (s, t)-space, which contains all the

points (s, t) with t in the sector in which U(t) was shown to exist and s real and close to the origin. In a

neighborhood of any point (s0, t0), |u(s, t)| is bounded by an expression K(s0, t0)‖x‖ ‖x∗‖. For fixed

x and varying x∗, u(s, t) defines a bounded linear functional v(s, t, x) on X∗. v(s, t, x) is an analytic

map of M into X∗∗. But v(s, t, x) is in X for s real and close to the origin; so v(s, t, x) is in X for all

(s, t) in M . In particular, U(t)x is a well-behaved vector, in the sense of [5], in the interior of the sector

in which U(t) was shown to exist. Since U(t)x → x as t → 0, we have

Theorem 10. The well-behaved vectors are dense for any strongly continuous representation of G.

We now show that there is a function, h(t, p), analytic to t and p such that µ(t, dp) = h(t, p)µ(dp).

µ is a left-invariant Haar measure on G. If f(x), in L1(µ), is infinitely differentiable with compact

support and {si} is an analytic coordinate system in a neighborhood of the identity, then there are

analytic functions, aij(s), independent of f such that, for small s,

∂

∂si
f(s) =

n∑
j=1

aij(s)Ljf(s).

Consequently, for small δ,

∫
|s|≤δ

∣∣∣∣ ∂

∂si
f(s)

∣∣∣∣ds ≤
n∑

j=1

k

∫
|s|≤δ

|Ljf(s)|ds

≤ K1

n∑
j=1

‖Ljf‖L1(µ).

Theorem 1′ implies that if f is in W1

(
L1(µ)

)
then it may be approximated by a sequence {fn} of

infinitely differentiable functions with compact support in such a manner that Ljfn → Ljf in L1(µ).

Thus, if f is in W1

(
L1(µ)

)
, its distribution derivatives, with respect to {si}, in a neighborhood, N , of

the origin are in L1(µ,N) and

∫
|s|≤δ

∣∣∣∣ ∂

∂si
ft(s)

∣∣∣∣ds ≤ K1

n∑
j=1

‖Ljf‖L1(µ).
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Similar remarks apply to the higher-order derivatives. Since, when f is in L1(µ), ft = U(t, L1(µ)
)
f is

in Wk

(
L1(µ)

)
for any k, we have

∫
|s|≤δ

∣∣∣∣ ∂
α

∂sα
ft(s)

∣∣∣∣ds ≤ Cα(t)‖f‖.

It is well-known [1] that this implies that ft may be taken as an infinitely differentiable function in a

neighborhood O, of the origin and that

(i) |ft(s)| ≤ D1(t)‖f‖

(ii)
∣∣∣∣ ∂

∂sift
(s)

∣∣∣∣ ≤ D2(t)‖f‖

in O. Consequently, for every p = p(s), s in O, there is a bounded measurable function g(t, p, q) such

that

ft(p) =
∫
G

f(q)g(t, p, q)µ(dq).

Moreover ‖g(t, p, ·)− g(t, 1, ·)‖L∞(µ) → 0 as p → 1. If f is continuous with compact support

ft(p) =
∫
G

f(q−1p)µ(t, dq)

=
∫
G

f(q)µ(t, pdq−1).

Consequently µ(t, pdq−1) = g(t, p, q)µ(dq). In particular (cf. [4], p. 265)

µ(t, dq) = g(t, 1, q−1)∆(q−1)µ(dq) = h(t, q)µ(dq)µ(dq · r) = ∆(r)µ(dq).

Then

µ(t, pdq) = h(t, pq)µ(dq) = g(t, p, q−1)∆(q−1)µ(dq),

so that h(t, pq) = g(t, p, q)−1∆(q−1). h(t, p) satisfies the following two conditions.

(i) ‖h(t, ·)‖V = ess−supq|∆(q)h(t, q)| = ess−supq|g(t, 1, q−1)| < ∞.

(ii) ess−supq|∆(q){h(t, p−1q)− h(t, q)}| = ess−supq|g(t, p−1, q−1)− g(t, 1, q−1)| → 0 as p → 1.

As anticipated in the notation, we call the Banach space of functions satisfying (i) and (ii), with

the norm given by (i), V . The functions in V are equivalent to continuous functions so we take V to

be a space of continuous functions. The representation, L(p), by left-translations of G in V is strongly

continuous. In order to use this fact we must observe that

∫
G

h(t1, q−1p)h(t2, q)µ(dq) = h(t1 + t2, p).
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To prove this we notice that for f in C0

∫
G

f(q−1r)h(t1 + t2, q)µ(dq) = u(t1 + t2, C0)f(r)

= u(t1, C0)u(t2, C0)f(r)

=
∫
G

{f(p−1q−1r)h(t1, p)µ(dp)}h(t2, q)µ(dq)

=
∫
G

{∫
G

f(p−1r)h(t1, q−1p)µ(dp)}h(t2, q)µ(dq)

=
∫
G

f(p−1r)
{∫

G

h(t1, q−1p)h(t2, q)µ(dq)
}
µ(dp).

However, setting u(t2, V )h(t1, ·) = ht2(t1, ·), we also have ht2(t1, p) =
∫
G
h(t1, q−1p)h(t2, q)µ(dq).

Consequently h(t1 + t2, p) = ht2(t1, p). Then h(t1 + t2, q
−1·) = L(q)ht2(t1, ·) is an analytic function

of t2 and q with values in Z . Applying the linear functional which evaluates a function at the identity

we see that h(t, p) is an analytic function of t and p.
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