The Volume of the Fundamental Domain for Some Arithmetical Subgroups of Chevalley Groups

by

R.P. Langlands

Let $\mathfrak{g}_{\mathbf{Q}}$ be a split semisimple Lie algebra of linear transformations of the finite dimensional vector space $V_{\mathbf{Q}}$ over \mathbf{Q}. Let $\mathfrak{h}_{\mathbf{Q}}$ be a split Cartan subalgebra of $\mathfrak{g}_{\mathbf{Q}}$ and choose for each root α of $\mathfrak{h}_{\mathbf{Q}}$ a root vector X_{α} so that if $\left[X_{\alpha}, X_{-\alpha}\right]=H_{\alpha}$ then $\alpha\left(H_{\alpha}\right)=2$ and so that there is an automorphism θ of $\mathfrak{g}_{\mathbf{Q}}$ with $\theta\left(X_{\alpha}\right)=-X_{-\alpha}$. Let L be the set of weights of $\mathfrak{h}_{\mathbf{Q}}$ and if $\lambda \in L$ let

$$
V_{\mathbf{Q}}(\lambda)=\left\{v \in V_{\mathbf{Q}} \mid H v=\lambda(H) v \text { for all } H \in \mathfrak{h}_{\mathbf{Q}}\right\} ;
$$

let H_{1}, \ldots, H_{p} be a basis over \mathbf{Z} of

$$
\left\{H \mid \lambda(H) \in \mathbf{Z} \text { if } V_{\mathbf{Q}}(\lambda) \neq 0\right\} .
$$

As usual, there is associated to $\mathfrak{g}_{\mathbf{Q}}$ a connected algebraic group G of linear transformations of $V_{\mathbf{C}}=$ $V_{\mathbf{Q}} \otimes{ }_{\mathbf{Q}} \mathbf{C}$. If H is some lattice in $V_{\mathbf{Q}}$ satisfying
(i) $M=\sum_{\lambda \in L} M \cap V(\lambda)$,
(ii) $\left(X_{\alpha}^{n} / n!\right) M \subseteq M$ for all α,
then we let $G_{\mathbf{Z}}=\{g \in G \mid g M=M\}$. Let ω be a left invariant form on $G_{\mathbf{R}}$ of highest degree which takes the value ± 1 on $\left(\wedge_{i=1}^{p} H_{1}\right) \wedge\left(\wedge_{\alpha>0} X_{\alpha}\right)$ and let [dg] be the Haar measure associated to ω. Our purpose now is to show the following.

If $\xi(\cdot)$ is the Riemann zeta function, $\Pi_{i=1}^{p}\left(t^{2 a_{i}-1}+1\right)$ is the Poincaré polynomial of $G_{\mathbf{C}}$, and c is the order of the fundamental group of $G_{\mathbf{C}}$ then

$$
\int_{G_{\mathbf{Z}} / G_{\mathbf{R}}}[d g]=c \Pi_{i=1}^{p} \xi\left(a_{i}\right) .
$$

The method to be used to find the volume of $G_{\mathbf{Z}} \backslash G_{\mathbf{R}}$ is not directly applicable to $[d g]$. So it is necessary to introduce another Haar measure on the group $G_{\mathbf{R}}$. Let U be the connected subgroup of G whose Lie algebra is spanned over \mathbf{R} by $\left\{X_{\alpha}-X_{-\alpha}, i\left(X_{\alpha}+X_{-\alpha}\right), i H_{\alpha} \mid \alpha\right.$ a root $\}$ and let $K=G_{\mathbf{R}} \cap U$. Choose an order on the roots and let $N=N_{\mathbf{R}}$ be the set of real points on the connected algebraic subgroup of $G_{\mathbf{C}}$ with the Lie algebra $\sum_{\alpha>0} \mathbf{C} X_{\alpha}$. Let $A_{\mathbf{R}}$ be the normalizer of $\mathfrak{h}_{\mathbf{C}}$ in $G_{\mathbf{R}}$. Let $d n$ be the Haar measure on N defined by a form which takes the value ± 1 on $\wedge_{i=1}^{p} H_{i}$. Let $d k$ be the Haar measure on K such that the total volume of K is one. Let $\rho=\frac{1}{2} \sum_{\alpha>0} \alpha$ and let $\xi_{2 \rho}(a)$ be the character of $A_{\mathbf{C}}$ associated to 2ρ. Finally let $d g$ be such that

$$
\int_{G_{\mathbf{R}}} \phi(g) d g=\int_{N \times A_{\mathbf{R}} \times K}\left|\xi_{2 \rho}(a)\right|^{-1} \phi(n a k) d n d a d k .
$$

If N^{-}is the set of real points on the group associated to $\sum_{\alpha<0} \mathbf{C} X_{\alpha}$ define $d n^{-}$in the same way as we defined $d n$. It is easy to see that

$$
\int_{G} \phi(g)[d g]=\int_{N} d n \int_{A_{\mathbf{R}}} d a \int_{N^{-}} d n^{-}\left|\xi_{2 \rho}(a)\right|^{-1} \phi\left(n a n^{-}\right) .
$$

Suppose $\phi(g k)=\phi(g)$ for all $g \in G_{\mathbf{R}}$ and all $k \in K$. Then

$$
\int_{G} \phi(g) d g=\int_{N \times A_{\mathbf{R}}} d n d a\left|\xi_{2 \rho}(a)\right|^{-1} \phi(n a) .
$$

On the other hand, if $n^{-}=n\left(n^{-}\right) a\left(n^{-}\right) k\left(n^{-}\right)$,

$$
\begin{aligned}
\int \phi(g)[d g] & =\int_{N^{-}} d n^{-}\left\{\int_{A} d a \int_{N} d n\left|\xi_{2 \rho}(a)\right|^{-1} \phi\left(\operatorname{nan}\left(n^{-}\right) a\left(n^{-}\right) k\left(n^{-}\right)\right)\right\} \\
& =\left\{\int_{A} d a \int_{N} d n\left|\xi_{2 \rho}(a)\right|^{-1} \phi(n a)\right\}\left\{\int_{N^{-}}\left|\xi_{2 \rho} a\left(n^{-}\right)\right| d n^{-}\right\}
\end{aligned}
$$

It follows from a formula of Gindikin and Karpelevich that the second factor equals

$$
\begin{aligned}
\prod_{\alpha>0} \frac{\pi^{+\frac{1}{2}}}{\Gamma\left(\left(\rho\left(H_{\alpha}\right) / 2\right)\right.} & =\prod_{\alpha>0} \frac{\pi^{-\rho\left(H_{\alpha}\right) / 2} \Gamma\left(\rho\left(H_{\alpha}\right) / 2\right)}{\pi^{-\left(\rho\left(H_{\alpha}\right)+1\right) / 2} \Gamma\left(\left(\rho\left(H_{\alpha}\right)+1\right) / 2\right)} \\
& =\frac{\prod_{\alpha>0}^{\prime} \pi^{-\rho\left(H_{\alpha}\right) / 2} \Gamma\left(\rho\left(H_{\alpha}\right) / 2\right)}{\prod_{\alpha>0} \pi^{-\left(\rho\left(H_{\alpha}\right)+1\right) / 2} \Gamma\left(\left(\rho\left(H_{\alpha}\right)+1\right) / 2\right)}
\end{aligned}
$$

since when α is simple $\rho\left(H_{\alpha}\right)=1$ and

$$
\pi^{-\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)=1
$$

The product in the numerator is taken over the positive roots which are not simple. By a well-known result, the numbers, with multiplicities, in the set

$$
\left\{\rho\left(H_{\alpha}\right)+1 \mid \alpha>0\right\}
$$

are just the numbers $\rho\left(H_{\alpha}\right)$ with α positive and not simple, together with the numbers a_{1}, \ldots, a_{p}. So if

$$
\xi(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \xi(s)
$$

we have to show that

$$
\int_{G_{\mathbf{Z}} / G_{\mathbf{R}}} d g=\frac{c \Pi_{\alpha>0} \xi\left(\rho\left(H_{\alpha}\right)+1\right)}{\Pi_{\alpha>0}^{\prime} \xi\left(\rho\left(H_{\alpha}\right)\right)} .
$$

By the way, it is well to keep in mind that $\rho\left(H_{\alpha}\right)>1$ if α is not simple.
Let A be the connected component of $A_{\mathbf{R}}$ and let M be the points of finite order in $A_{\mathbf{R}}$. Certainly $A_{\mathbf{R}}=A M$. Moreover, by Iwasawa, $G=N A K$. If $g=n a k$ and $a=\exp H$, we set $H=H(g)$.

If ϕ is an infinitely differentiable function with compact support on $N \backslash G$ such that $\phi(g k)=\phi(g)$ for all g in G and all k in K we can write ϕ as a Fourier integral.

$$
\phi(g)=\frac{1}{(2 \pi)^{p}} \int_{\operatorname{Re} \lambda=\lambda_{0}} \exp (\lambda(H(g))+\rho(G(g)) \Phi(\lambda)|d \lambda| ;
$$

λ is the symbol for an element of the dual of $\mathfrak{h}_{\mathbf{C}} ; \Phi(\lambda)$ is an entire complex-valued function of λ; and $d \lambda=d z_{1} \wedge \ldots \wedge d z_{p}$ with $z_{i}=\lambda\left(H_{i}\right)$. As in the lectures on Eisenstein series we can introduce

$$
\hat{\phi}(g)=\sum_{\gamma \in G_{\mathbf{Z}} \cap N M \backslash G_{\mathbf{Z}}} \phi(\gamma g) .
$$

Our evaluation of the volume of $G_{\mathbf{Z}} \backslash G_{\mathbf{R}}$ will be based on the simple relation

$$
(\hat{\phi}, 1)(1, \hat{\psi})=(1,1)(\Pi \hat{\phi}, \Pi \hat{\psi}) .
$$

The inner products are taken in $L^{2}\left(G_{\mathbf{Z}} \backslash G_{\mathbf{R}}\right)$ with respect to $d g$ and Π is the orthogonal projection on the space of constant functions. Since

$$
(1,1)=\int_{G_{\mathbf{Z} \backslash G_{\mathbf{R}}}} d g
$$

it is enough to find an explicit formula for the other three terms. Now

$$
\begin{aligned}
(\hat{\phi}, 1) & =\int_{G_{\mathbf{Z}} \cap N M \backslash G_{\mathbf{R}}} \phi(g) d g \\
& =\mu\left(G_{\mathbf{Z}} \cap N M \backslash N M\right) \int_{A}\left|\xi_{2 \rho}(a)\right|^{-1} \phi(a) d a \\
& =\Phi(\rho)
\end{aligned}
$$

since $\mu\left(G_{\mathbf{Z}} \cap N M \backslash N M\right)=1$. To see the latter we have to observe that $M \subseteq G_{\mathbf{Z}}$ and that, as follows from results stated in Cartier's talk, $\mu\left(G_{\mathbf{Z}} \cap N \backslash N\right)=1$. It is also clear that $(1, \hat{\psi})=\bar{\Psi}(\rho)$. The nontrivial step is to evaluate

$$
(\Pi \hat{\phi}, \Pi \hat{\psi})
$$

From the theory of Eisenstein series we know that

$$
\left(\hat{\phi}, \hat{\psi}=\frac{1}{(2 \pi)^{p}} \int_{\operatorname{Re} \lambda=\lambda_{0}} \sum_{s \in \Omega} M(s, \lambda) \Phi(\lambda) \bar{\Psi}(-s \bar{\lambda})|d \lambda|\right.
$$

Ω is the Weyl group, λ_{0} is any point such that $\lambda_{0}\left(H_{\alpha}\right)>1$ for every simple root, and

$$
M(s, \lambda)=\Pi_{\alpha>0} \frac{\xi\left(1+s \lambda\left(H_{\alpha}\right)\right)}{\xi\left(1+\lambda\left(H_{\alpha}\right)\right)}=\Pi_{\alpha>0 ; s \alpha<0} \frac{\xi\left(\lambda\left(H_{\alpha}\right)\right)}{\xi\left(1+\lambda\left(H_{\alpha}\right)\right)} .
$$

In the lectures on Eisenstein series I introduced an unbounded self-adjoint operator A on the closed subspace of $L^{2}\left(G_{\mathbf{Z}} \backslash G_{\mathbf{R}}\right)$ generated by the functions $\hat{\phi}$ with ϕ of the form indicated above. Comparing the definition of A with the formula for $(\hat{\phi}, 1)$ we see that

$$
(A \hat{\phi}, 1)=(\rho, \rho)(\hat{\phi}, 1) .
$$

Since the constant functions are in this space $A 1=(\rho, \rho) \cdot 1$. As a consequence, if $E(x),-\infty<x<\infty$, is the spectral resolution of A the constant functions are in the range of $E((\rho, \rho))-E((\rho, \rho)-0)=E$. We show that this range consists precisely of the constant functions and compute $(E \hat{\phi}, \hat{\psi})=(\Pi \hat{\phi}, \Pi \hat{\psi})$.

Suppose $a>(\rho, \rho)>b$ and $a-b$ is small. According to a well-known formula,

$$
\frac{1}{2}\{(E(a) \hat{\phi}, \hat{\psi})+(E(a-0) \hat{\phi}, \hat{\psi})\}-\frac{1}{2}\{(E(b) \hat{\phi}, \hat{\psi})+(E(b-0) \hat{\phi}, \hat{\psi})\}
$$

is equal to

$$
\begin{equation*}
\lim _{\delta \downarrow 0} \frac{1}{2 \pi i} \int_{C(a, b, c, \delta)}(R(\mu, A) \hat{\phi}, \hat{\psi}) d \mu \tag{a}
\end{equation*}
$$

if $C(a, b, c, \delta)$ is the following contour.

Recall that, if $\operatorname{Re} \mu>\left(\lambda_{0}, \lambda_{0}\right)$,

$$
(R(\mu, A) \hat{\phi}, \hat{\psi})=\sum_{s \in \Omega} \frac{1}{(2 \pi i)^{p}} \int_{\operatorname{Re} \lambda=\lambda_{0}} \frac{1}{\mu-(\lambda, \lambda)} M(s, \lambda) \Phi(\lambda) \bar{\Psi}(-s \bar{\lambda}) d \lambda .
$$

If $w=\left(w_{1}, \ldots, w_{p}\right)$ belongs to \mathbf{C}^{p} let $\lambda(w)$ be such that $\lambda\left(H_{\alpha_{i}}\right)=w_{i}$, where $\alpha_{1}, \ldots, \alpha_{p}$ are the simple roots. Set

$$
\begin{aligned}
\phi_{p}(w, s) & =M(s, \lambda(w)) \Phi(\lambda(w)) \bar{\Psi}(-s \lambda \bar{w})), \\
Q_{p}(w) & =(\lambda(w), \lambda(w)),
\end{aligned}
$$

then (a) is equal to

$$
\frac{1}{c} \sum_{s \in \Omega} \lim _{\delta \downarrow 0} \frac{1}{2 \pi i} \int_{C(a, b, c, \delta)} d \mu\left\{\frac{1}{(2 \pi i)^{p}} \int_{\operatorname{Re} w=w_{0}} \frac{1}{\mu-Q_{p}(w)} \phi_{p}(w, s) d w_{1} \ldots d w_{p}\right\}
$$

provided each of these limits exist. ${ }^{2}$ The coordinates of w_{0} must all be greater than one. We shall consider the limits individually.

Let $w^{q}=\left(w_{1}, \ldots, w_{q}\right)$ and define $\phi_{q}\left(w^{q} ; s\right)$ inductively for $0 \leqq q \leqq p$ by

$$
\phi_{q}\left(q_{1}, \ldots, w_{q} ; s\right)=\underset{w_{q+1}=1}{\operatorname{Residue}} \phi_{q+1}\left(w_{1}, \ldots, w_{q+1} ; s\right) .
$$

It is easily seen that $\phi_{q}\left(w^{q} ; s\right)$ has no singularities in the region defined by the inequalities $\operatorname{Re} w_{i}>$ $1,1 \leqq i \leqq q$; that $\phi_{q}\left(w^{q} ; s\right)$ goes to zero very fast when the imaginary part of w^{q} goes to infinity and its
${ }^{2}$ The inner integral is defined for $\operatorname{Re} \mu>Q_{p}\left(w_{0}\right)$. However, as can be seen from the discussion to follow, the function of μ it defines can be analytically continued to a region containing $C(a, b, c, \delta)$.
real part remains in a compact subset of this region; and that there is a positive number ϵ such that the only singularities of $\phi_{q}\left(w^{q} ; s\right)$ in

$$
\left\{\left(w_{1}, \ldots, w_{q}\right)\left|\left|\operatorname{Re} w_{i}-1\right|<\epsilon, 1 \leqq i \leqq q\right\}\right.
$$

lie on the hyperplanes $w_{i}=1$ and are at most simple poles. $\phi_{0}(s)$ is of course a constant. Set $Q_{q}\left(w^{q}\right)=Q_{p}\left(w_{1}, \ldots, w_{q}, 1, \ldots, 1\right)$.

Let us show by induction that the given limit equals

$$
\begin{equation*}
\lim _{\delta \downarrow 0} \frac{1}{2 \pi i} \int_{C(a, b, c, \delta)} d \mu\left\{\frac{1}{2 \pi i)^{q}} \int_{\operatorname{Re} w^{q}=w_{0}^{q}} \frac{1}{\mu-Q_{q}\left(w^{q}\right)} \phi_{q}\left(w^{q} ; s\right) d w_{1} \ldots d w_{q}\right\} \tag{b}
\end{equation*}
$$

if $w_{0}^{q}=\left(w_{0,1}, \ldots, w_{0, q}\right)$ with $w_{0, i}>1,1 \leqq i \leqq q$. Of course, the above expression is independent of the choice of such a point w_{0}^{q}. Take $w_{0}^{q}=(1+u, \ldots, 1+u, 1+v)$, with u and v positive but small, and $w_{0}^{q-1}=(1+u, \ldots, 1+u)$. If $\Lambda_{1}, \ldots, \Lambda_{q}$ are such that $\Lambda_{i}\left(H_{\alpha j}\right)=\delta_{i j}$, then $\left(\Lambda_{i}, \Lambda_{j}\right) \geqq 0$. As a consequence, if u is much smaller than v, then

$$
Q_{q}(1+u, \ldots, 1+u, 1-v)<(\rho, \rho) .
$$

Choose (b) to be larger than the number on the left. Also

$$
\operatorname{Re} Q_{q}\left(w^{q}\right)=Q_{q}\left(\operatorname{Re} w^{q}\right)-Q_{p}\left(\operatorname{Im} w_{1}, \ldots, \operatorname{Im} w_{q}, 0, \ldots, 0\right)
$$

Thus there is a constant N such that if either $\operatorname{Re} w_{i}=1+u, 1 \leqq i \leqq q-1$ and $\operatorname{Re} w_{q}=1-v$ or $\operatorname{Re} w_{i}=1+u, 1 \leqq i \leqq p$ and $\left|\operatorname{Re} w_{q}-1\right| \leqq v$ and $\left|\operatorname{Im} w_{q}\right|>N$, then

$$
\operatorname{Re} Q_{q}\left(w^{q}\right)<b-1 / N .
$$

In (b) we may perform the integrations in any order. Integrate first with respect to w_{q}. If C is the indicated contour, the result is the sum of (b) with q replaced by $q-1$ and

$$
\lim _{\delta \downarrow 0} \frac{1}{(w \pi i)^{q}} \int_{\operatorname{Re} w^{q-1}=w_{0}^{q-1}} d w_{1} \ldots . . d w_{q-1} \int_{C} d w_{q} \phi_{q}\left(w^{q}, s\right)\left\{\frac{1}{2 \pi i} \int_{C(a, b, c,, \delta)} \frac{1}{\mu-Q_{q}\left(w^{q}\right)} d \mu\right\}
$$

which is obviously zero.

The contour C

Taking $q=0$ in (b) we get

$$
\lim _{\delta \downarrow 0} \frac{\phi_{0}(s)}{2 \pi i} \int_{C(a, b, c, \delta)} \frac{1}{\mu-(\rho, \rho)} d \mu=\phi_{0}(s) .
$$

It is clear that $\phi_{0}(s)$ is zero unless s sends every positive root to a negative root but that for the unique element of the Weyl group which does this

$$
\phi_{0}(s)=\frac{\Pi_{a>0}^{\prime} \xi\left(\rho\left(H_{\alpha}\right)\right) \Phi(\rho) \overline{\Psi(\rho)}}{\Pi_{\alpha>0} \xi\left(\rho\left(H_{\alpha}\right)+1\right)}
$$

since $s \rho=-\rho$. This is the result required.
Finally, I remark that although the method just described for computing the volume of $\Gamma \backslash G$ has obvious limitations, it can be applied to other groups. In particular it works for Chevalley groups over a numberfield.

