The Volume of the Fundamental Domain for Some Arithmetical Subgroups of Chevalley Groups

by

R.P. Langlands

Let $\mathfrak{g}_{\mathbf{Q}}$ be a split semisimple Lie algebra of linear transformations of the finite dimensional vector space $V_{\mathbf{Q}}$ over \mathbf{Q} . Let $\mathfrak{h}_{\mathbf{Q}}$ be a split Cartan subalgebra of $\mathfrak{g}_{\mathbf{Q}}$ and choose for each root α of $\mathfrak{h}_{\mathbf{Q}}$ a root vector X_{α} so that if $[X_{\alpha}, X_{-\alpha}] = H_{\alpha}$ then $\alpha(H_{\alpha}) = 2$ and so that there is an automorphism θ of $\mathfrak{g}_{\mathbf{Q}}$ with $\theta(X_{\alpha}) = -X_{-\alpha}$. Let L be the set of weights of $\mathfrak{h}_{\mathbf{Q}}$ and if $\lambda \in L$ let

$$V_{\mathbf{Q}}(\lambda) = \{v \in V_{\mathbf{Q}} \mid Hv = \lambda(H)v \ \text{ for all } H \in \mathfrak{h}_{\mathbf{Q}}\};$$

let H_1, \ldots, H_p be a basis over **Z** of

$$\{H \mid \lambda(H) \in \mathbf{Z} \text{ if } V_{\mathbf{Q}}(\lambda) \neq 0\}.$$

As usual, there is associated to $\mathfrak{g}_{\mathbf{Q}}$ a connected algebraic group G of linear transformations of $V_{\mathbf{C}} = V_{\mathbf{Q}} \otimes_{\mathbf{Q}} \mathbf{C}$. If H is some lattice in $V_{\mathbf{Q}}$ satisfying

- (i) $M = \sum_{\lambda \in L} M \cap V(\lambda)$,
- (ii) $(X_{\alpha}^n/n!)M \subseteq M$ for all α ,

then we let $G_{\mathbf{Z}} = \{g \in G \mid gM = M\}$. Let ω be a left invariant form on $G_{\mathbf{R}}$ of highest degree which takes the value ± 1 on $(\wedge_{i=1}^p H_1) \wedge (\wedge_{\alpha > 0} X_{\alpha})$ and let [dg] be the Haar measure associated to ω . Our purpose now is to show the following.

If $\xi(\cdot)$ is the Riemann zeta function, $\Pi_{i=1}^p(t^{2a_i-1}+1)$ is the Poincaré polynomial of $G_{\mathbb{C}}$, and c is the order of the fundamental group of $G_{\mathbb{C}}$ then

$$\int_{G_{\mathbf{Z}}/G_{\mathbf{R}}} [dg] = c \prod_{i=1}^{p} \xi(a_i).$$

The method to be used to find the volume of $G_{\mathbf{Z}}\backslash G_{\mathbf{R}}$ is not directly applicable to [dg]. So it is necessary to introduce another Haar measure on the group $G_{\mathbf{R}}$. Let U be the connected subgroup of G whose Lie algebra is spanned over \mathbf{R} by $\{X_{\alpha}-X_{-\alpha},i(X_{\alpha}+X_{-\alpha}),iH_{\alpha}\mid \alpha \text{ a root}\}$ and let $K=G_{\mathbf{R}}\cap U$. Choose an order on the roots and let $N=N_{\mathbf{R}}$ be the set of real points on the connected algebraic subgroup of $G_{\mathbf{C}}$ with the Lie algebra $\sum_{\alpha>0} \mathbf{C} X_{\alpha}$. Let $A_{\mathbf{R}}$ be the normalizer of $\mathfrak{h}_{\mathbf{C}}$ in $G_{\mathbf{R}}$. Let dn be the Haar measure on N defined by a form which takes the value ± 1 on $\wedge_{i=1}^p H_i$. Let dk be the Haar measure on K such that the total volume of K is one. Let $\rho=\frac{1}{2}\sum_{\alpha>0}\alpha$ and let $\xi_{2\rho}(a)$ be the character of $A_{\mathbf{C}}$ associated to 2ρ . Finally let dg be such that

$$\int_{G_{\mathbf{R}}} \phi(g) dg = \int_{N \times A_{\mathbf{R}} \times K} |\xi_{2\rho}(a)|^{-1} \phi(nak) dn \ da \ dk.$$

If N^- is the set of real points on the group associated to $\sum_{\alpha<0} \mathbf{C} X_\alpha$ define dn^- in the same way as we defined dn. It is easy to see that

$$\int_{G} \phi(g)[dg] = \int_{N} dn \int_{A_{\mathbf{P}}} da \int_{N^{-}} dn^{-} |\xi_{2\rho}(a)|^{-1} \phi(nan^{-}).$$

Suppose $\phi(gk) = \phi(g)$ for all $g \in G_{\mathbf{R}}$ and all $k \in K$. Then

$$\int_G \phi(g) dg = \int_{N \times A_{\mathbf{R}}} dn \ da |\xi_{2\rho}(a)|^{-1} \phi(na).$$

On the other hand, if $n^- = n(n^-)a(n^-)k(n^-)$,

$$\int \phi(g)[dg] = \int_{N^{-}} dn^{-} \left\{ \int_{A} da \int_{N} dn |\xi_{2\rho}(a)|^{-1} \phi(nan(n^{-})a(n^{-})k(n^{-})) \right\}$$
$$= \left\{ \int_{A} da \int_{N} dn |\xi_{2\rho}(a)|^{-1} \phi(na) \right\} \left\{ \int_{N^{-}} |\xi_{2\rho}a(n^{-})| dn^{-} \right\}.$$

It follows from a formula of Gindikin and Karpelevich that the second factor equals

$$\begin{split} \prod_{\alpha>0} \frac{\pi^{+\frac{1^{b}}{2}}\Gamma(\rho(H_{\alpha})/2)}{\Gamma((\rho(H_{\alpha})+1)/2)} &= \prod_{\alpha>0} \frac{\pi^{-\rho(H_{\alpha})/2}\Gamma(\rho(H_{\alpha})/2)}{\pi^{-(\rho(H_{\alpha})+1)/2}\Gamma((\rho(H_{\alpha})+1)/2)} \\ &= \frac{\prod_{\alpha>0}' \pi^{-\rho(H_{\alpha})/2}\Gamma(\rho(H_{\alpha})/2)}{\prod_{\alpha>0} \pi^{-(\rho(H_{\alpha})+1)/2}\Gamma((\rho(H_{\alpha})+1)/2)}, \end{split}$$

since when α is simple $\rho(H_{\alpha}) = 1$ and

$$\pi^{-\frac{1}{2}}\Gamma(\frac{1}{2}) = 1.$$

The product in the numerator is taken over the positive roots which are not simple. By a well-known result, the numbers, with multiplicities, in the set

$$\{\rho(H_{\alpha}) + 1 \mid \alpha > 0\}$$

are just the numbers $\rho(H_{\alpha})$ with α positive and not simple, together with the numbers a_1, \ldots, a_p . So if

$$\xi(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \xi(s),$$

we have to show that

$$\int_{G_{\pmb{Z}}/G_{\pmb{R}}} dg = \frac{c\Pi_{\alpha>0}\xi(\rho(H_\alpha)+1)}{\Pi'_{\alpha>0}\xi(\rho(H_\alpha))}.$$

By the way, it is well to keep in mind that $\rho(H_{\alpha}) > 1$ if α is not simple.

Let A be the connected component of $A_{\mathbf{R}}$ and let M be the points of finite order in $A_{\mathbf{R}}$. Certainly $A_{\mathbf{R}} = AM$. Moreover, by Iwasawa, G = NAK. If g = nak and $a = \exp H$, we set H = H(g).

If ϕ is an infinitely differentiable function with compact support on $N \setminus G$ such that $\phi(gk) = \phi(g)$ for all g in G and all k in K we can write ϕ as a Fourier integral.

$$\phi(g) = \frac{1}{(2\pi)^p} \int_{\text{Re}\lambda = \lambda_0} \exp(\lambda(H(g)) + \rho(G(g))\Phi(\lambda)|d\lambda|;$$

 λ is the symbol for an element of the dual of $\mathfrak{h}_{\mathbb{C}}$; $\Phi(\lambda)$ is an entire complex-valued function of λ ; and $d\lambda = dz_1 \wedge \ldots \wedge dz_p$ with $z_i = \lambda(H_i)$. As in the lectures on Eisenstein series we can introduce

$$\hat{\phi}(g) = \sum_{\gamma \in G_{\mathbf{Z}} \cap NM \backslash G_{\mathbf{Z}}} \phi(\gamma g).$$

Our evaluation of the volume of $G_{\mathbf{Z}}\backslash G_{\mathbf{R}}$ will be based on the simple relation

$$(\hat{\phi}, 1)(1, \hat{\psi}) = (1, 1)(\Pi \hat{\phi}, \Pi \hat{\psi}).$$

The inner products are taken in $L^2(G_{\mathbf{Z}}\backslash G_{\mathbf{R}})$ with respect to dg and Π is the orthogonal projection on the space of constant functions. Since

$$(1,1) = \int_{G_{\mathbf{Z}} \backslash G_{\mathbf{R}}} dg,$$

it is enough to find an explicit formula for the other three terms. Now

$$\begin{split} (\hat{\phi},1) &= \int_{G_{\mathbf{Z}} \cap NM \backslash G_{\mathbf{R}}} \phi(g) dg \\ &= \mu(G_{\mathbf{Z}} \cap NM \backslash NM) \int_{A} |\xi_{2\rho}(a)|^{-1} \phi(a) da \\ &= \Phi(\rho) \end{split}$$

since $\mu(G_{\mathbf{Z}}\cap NM\backslash NM)=1$. To see the latter we have to observe that $M\subseteq G_{\mathbf{Z}}$ and that, as follows from results stated in Cartier's talk, $\mu(G_{\mathbf{Z}}\cap N\backslash N)=1$. It is also clear that $(1,\hat{\psi})=\bar{\Psi}(\rho)$. The nontrivial step is to evaluate

$$(\Pi \hat{\phi}, \Pi \hat{\psi}).$$

From the theory of Eisenstein series we know that

$$(\hat{\phi}, \hat{\psi} = \frac{1}{(2\pi)^p} \int_{\text{Re}\lambda = \lambda_0} \sum_{s \in \Omega} M(s, \lambda) \Phi(\lambda) \bar{\Psi}(-s\bar{\lambda}) |d\lambda|.$$

 Ω is the Weyl group, λ_0 is any point such that $\lambda_0(H_\alpha) > 1$ for every simple root, and

$$M(s,\lambda) = \Pi_{\alpha>0} \frac{\xi(1+s\lambda(H_{\alpha}))}{\xi(1+\lambda(H_{\alpha}))} = \Pi_{\alpha>0; s\alpha<0} \frac{\xi(\lambda(H_{\alpha}))}{\xi(1+\lambda(H_{\alpha}))}.$$

In the lectures on Eisenstein series I introduced an unbounded self-adjoint operator A on the closed subspace of $L^2(G_{\mathbf{Z}}\backslash G_{\mathbf{R}})$ generated by the functions $\hat{\phi}$ with ϕ of the form indicated above. Comparing the definition of A with the formula for $(\hat{\phi},1)$ we see that

$$(A\hat{\phi},1) = (\rho,\rho)(\hat{\phi},1).$$

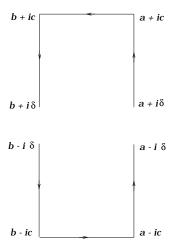
Since the constant functions are in this space $A1=(\rho,\rho)\cdot 1$. As a consequence, if $E(x),-\infty < x < \infty$, is the spectral resolution of A the constant functions are in the range of $E((\rho,\rho))-E((\rho,\rho)-0)=E$. We show that this range consists precisely of the constant functions and compute $(E\hat{\phi},\hat{\psi})=(\Pi\hat{\phi},\Pi\hat{\psi})$. Suppose $a>(\rho,\rho)>b$ and a-b is small. According to a well-known formula,

$$\frac{1}{2}\{(E(a)\hat{\phi},\hat{\psi})+(E(a-0)\hat{\phi},\hat{\psi})\}-\frac{1}{2}\{(E(b)\hat{\phi},\hat{\psi})+(E(b-0)\hat{\phi},\hat{\psi})\}$$

is equal to

$$\lim_{\delta \downarrow 0} \frac{1}{2\pi i} \int_{C(a,b,c,\delta)} (R(\mu,A)\hat{\phi},\hat{\psi}) d\mu$$

if $C(a, b, c, \delta)$ is the following contour.



Recall that, if $\operatorname{Re}\mu > (\lambda_0, \lambda_0)$,

$$(R(\mu, A)\hat{\phi}, \hat{\psi}) = \sum_{s \in \Omega} \frac{1}{(2\pi i)^p} \int_{\text{Re}\lambda = \lambda_0} \frac{1}{\mu - (\lambda, \lambda)} M(s, \lambda) \Phi(\lambda) \bar{\Psi}(-s\bar{\lambda}) d\lambda.$$

If $w=(w_1,\ldots,w_p)$ belongs to \mathbf{C}^p let $\lambda(w)$ be such that $\lambda(H_{\alpha_i})=w_i$, where α_1,\ldots,α_p are the simple roots. Set

$$\phi_p(w,s) = M(s,\lambda(w))\Phi(\lambda(w))\bar{\Psi}(-s\lambda\bar{w}),$$

$$Q_p(w) = (\lambda(w),\lambda(w)),$$

then (a) is equal to

$$\frac{1}{c} \sum_{s \in \Omega} \lim_{\delta \downarrow 0} \frac{1}{2\pi i} \int_{C(a,b,c,\delta)} d\mu \left\{ \frac{1}{(2\pi i)^p} \int_{\text{Re}w = w_0} \frac{1}{\mu - Q_p(w)} \phi_p(w,s) dw_1 \dots dw_p \right\}$$

provided each of these limits exist.² The coordinates of w_0 must all be greater than one. We shall consider the limits individually.

Let
$$w^q = (w_1, \dots, w_q)$$
 and define $\phi_q(w^q; s)$ inductively for $0 \leq q \leq p$ by

$$\phi_q(q_1, \dots, w_q; s) = \underset{w_{q+1}=1}{\text{Residue}} \phi_{q+1}(w_1, \dots, w_{q+1}; s).$$

It is easily seen that $\phi_q(w^q;s)$ has no singularities in the region defined by the inequalities $\text{Re }w_i>1, 1\leq i\leq q$; that $\phi_q(w^q;s)$ goes to zero very fast when the imaginary part of w^q goes to infinity and its

The inner integral is defined for $\text{Re}\mu > Q_p(w_0)$. However, as can be seen from the discussion to follow, the function of μ it defines can be analytically continued to a region containing $C(a, b, c, \delta)$.

real part remains in a compact subset of this region; and that there is a positive number ϵ such that the only singularities of $\phi_a(w^q;s)$ in

$$\{(w_1, \dots, w_q) \mid |\text{Re } w_i - 1| < \epsilon, 1 \le i \le q\}$$

lie on the hyperplanes $w_i=1$ and are at most simple poles. $\phi_0(s)$ is of course a constant. Set $Q_q(w^q)=Q_p(w_1,\ldots,w_q,1,\ldots,1)$.

Let us show by induction that the given limit equals

(b)
$$\lim_{\delta \downarrow 0} \frac{1}{2\pi i} \int_{C(a,b,c,\delta)} d\mu \left\{ \frac{1}{2\pi i)^q} \int_{\text{Re } w^q = w_0^q} \frac{1}{\mu - Q_q(w^q)} \phi_q(w^q; s) dw_1 \dots dw_q \right\}$$

if $w_0^q=(w_{0,1},\ldots,w_{0,q})$ with $w_{0,i}>1, 1\leq i\leq q$. Of course, the above expression is independent of the choice of such a point w_0^q . Take $w_0^q=(1+u,\ldots,1+u,1+v)$, with u and v positive but small, and $w_0^{q-1}=(1+u,\ldots,1+u)$. If $\Lambda_1,\ldots,\Lambda_q$ are such that $\Lambda_i(H_{\alpha j})=\delta_{ij}$, then $(\Lambda_i,\Lambda_j)\geq 0$. As a consequence, if u is much smaller than v, then

$$Q_q(1+u,\ldots,1+u,1-v)<(\rho,\rho).$$

Choose (b) to be larger than the number on the left. Also

Re
$$Q_q(w^q) = Q_q(\text{Re } w^q) - Q_p(\text{Im} w_1, ..., \text{Im} w_q, 0, ..., 0).$$

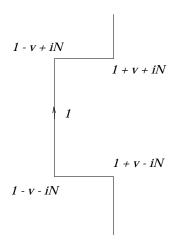
Thus there is a constant N such that if either $\operatorname{Re} w_i = 1 + u, 1 \le i \le q - 1$ and $\operatorname{Re} w_q = 1 - v$ or $\operatorname{Re} w_i = 1 + u, 1 \le i \le p$ and $|\operatorname{Re} w_q - 1| \le v$ and $|\operatorname{Im} w_q| > N$, then

Re
$$Q_q(w^q) < b - 1/N$$
.

In (b) we may perform the integrations in any order. Integrate first with respect to w_q . If C is the indicated contour, the result is the sum of (b) with q replaced by q-1 and

$$\lim_{\delta \downarrow 0} \frac{1}{(w\pi i)^q} \int_{\text{Re } w^{q-1} = w_0^{q-1}} dw_1 \dots dw_{q-1} \int_C dw_q \phi_q(w^q, s) \left\{ \frac{1}{2\pi i} \int_{C(a, b, c, \delta)} \frac{1}{\mu - Q_q(w^q)} d\mu \right\}$$

which is obviously zero.



The contour C

Taking q = 0 in (b) we get

$$\lim_{\delta \downarrow 0} \frac{\phi_0(s)}{2\pi i} \int_{C(a,b,c,\delta)} \frac{1}{\mu - (\rho,\rho)} d\mu = \phi_0(s).$$

It is clear that $\phi_0(s)$ is zero unless s sends every positive root to a negative root but that for the unique element of the Weyl group which does this

$$\phi_0(s) = \frac{\Pi'_{a>0}\xi(\rho(H_\alpha))\Phi(\rho)\overline{\Psi(\rho)}}{\Pi_{\alpha>0}\xi(\rho(H_\alpha)+1)}$$

since $s\rho = -\rho$. This is the result required.

Finally, I remark that although the method just described for computing the volume of $\Gamma \backslash G$ has obvious limitations, it can be applied to other groups. In particular it works for Chevalley groups over a numberfield.