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O. Introduction

In this paper | want to consider not just the L-functions introduced by Artin [1] but the more
general functions introduced by Weil [15]. To define these one needs the notion of a Weil group as
described in [3]. This notion will be explained in the first paragraph. For now a rough idea will suffice.
If £ is a global field, that is an algebraic number field of finite degree over the rationals or a function
field over a finite field, C'rz will be the idéle class group of E. If E is a local field, that is the completion
of a global field at some place [16], archimedean or nonarchimedean, Cr will be the multiplicative
group of E. If K/E is a finite Galois extension the Weil group Wi is an extension of &(K/E), the
Galois group of K/E, by Ck. Itis a locally compact topological group.

If £ C £ C K and K/FE is finite and Galois W,z may be regarded as a subgroup of Wy /. It
is closed and of finite index. If £ C K C L there is a continuous map of Wy, onto W, g. Thus any
representation of Wi, may be regarded as a representation of Wr, 5. In particular the representations
p1 of Wi g and ps of W, /g will be called equivalent if there is a Galois extension L/FE containing
K, /F and K,/ F such that p; and p, determine equivalent representations of W1, - This allows us to
refer to equivalence classes of representations of the Weil group of E' without mentioning any particular
extension field K.

In this paper a representation of Wy, is understood to be a continuous representation p in
the group of invertible linear transformations of a finite-dimensional complex vector space which
is such that p(w) is diagonalizable, that is semisimple, for all w in Wg, 5. Any one-dimensional
representation of Wy, can be obtained by inflating a one-dimensional representation of Wg = CEg.
Thus equivalence classes of one-dimensional representations of the Weil group of E correspond to
quasi-characters of C'g, that is, to continuous homomorphisms of Cf into C*.

Suppose F is a local field. There is a standard way of associating to each equivalence class w
of one-dimensional representations a meromorphic function L(s,w). Suppose w corresponds to the
quasi-character xg. If E' is nonarchimedean and wg is a generator of the prime ideal Pg of O, the
ring of integers in E, we set

1

I —
(59 = T wn) el

if xz is unramified. Otherwise we set L(s,w) = 1. If E = R and
xe(z) = (sgnz)™ |z|"
with m equal to 0 or 1 we set

L(s.w) = n—} (s+rm) T (w) ,

2
If E = Cand z € E then, for us, |z| will be the square of the ordinary absolute value. If
xe(2) = |z["2"2"

where m and n are integers such that m + n > 0, mn = 0, then

L(s,w) -9 (27r)—(s+r+m+n) F(S +r4+m+ n)
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It is not difficult to verify, and we shall do so later, that it is possible, in just one way, to define
L(s,w) for all equivalence classes so that it has the given form when w is one-dimensional, so that

L(s,w1 ® wz) = L(s,w1) L(s,ws)

so that if £ is a separable extension of E and w is the equivalence class of the representation of the Weil
group of E induced from a representation of the Weil group of E’ in the class © then L(s,w) = L(s, 9).

Now take E to be a global field and w an equivalence class of representations of the Weil group of
E. 1t will be seen later how, for each place v, w determines an equivalence class w,, of representations
of the Weil group of the corresponding local field F,. The product

Hv L(s,w,)

which is taken over all places, including the archimedean ones, will converge if the real part of s is
sufficiently large. The function it defines can be continued to a function L(s,w) meromorphic in the
whole complex plane. This is the Artin L-function associated to w. It is fairly well-known that if @ is
the class contragredient to w there is a functional equation connecting L(s,w) and L(1 — s,w).

The factor appearing in the functional equation can be described in terms of the local data. To see
how this is done we consider separable extensions E of the fixed local field F'. If U is a non-trivial
additive character of ' let ¢;,  be the non-trivial additive character of £’ defined by

Ye/r(z) = Yr(SE/Fr)

where Sg/px is the trace of x. We want to associate to every quasi-character xx of C'rz and every non-
trivial additive character 15 of E a non-zero complex number A(xg, % ). If E is nonarchimedean, if
P’ is the conductor of x g, and if " is the largest ideal on which v is trivial choose any ~ with
Opy = PR+ and set

Jue e (2) X' (@)da
e 0 (2) X&' (@)dal

A(xe,YE) = xe(7)

The right side does not depend on ~. If E = R,
xe(z) = (sgnz)™ [z|"
with m equal to 0 or 1, and g (z) = €274 then
A(xe,¥r) = (i sgnu)™ |u]",

If E =C, wc(z) — pdmi Re(wz), and
xc(z) = [z]"2zmz"

withm +n >0, mn = 0then
A(xc, ve) =" xe(w).
The bulk of this paper is taken up with a proof of the following theorem.

Theorem A
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Suppose F' is a given local field and i) a given non-trivial additive character of I'. It is possible
in exactly one way to assign to each separable extension E of F' a complex number \(E/F,{r) and to
each equivalence class w of representations of the Weil group of E a complex number e(w, Vg /) such
that

(i) Ifw corresponds to the quasi-character x g then
e(w,Ye/r) = AXE, YE/F)

(i)
e(w1 ®wa, Yp/r) = (w1, Ye/r) e(wa, YE/F).

(iii) Ifw is the equivalence class of the representation of the Weil group of I’ induced from a represen-
tation of the Weil group of E in the class 0 then

e(w,¥r) = ME/F, ¢p)"™ £(0,¢5/r).

a3, will denote the quasi-character x — |z|% of C'r as well as the corresponding equivalence
class of representations. Set

1
e(s,w,p) =¢ (aSF 2 Quw, ¢F> .
The left side will be the product of a non-zero constant and an exponential function.

Now take F' to be a global field and w to be an equivalence class of representations of the Weil group
of F'. Let A be the adéle group of F' and let ) be a non-trivial character of A/F'. For each place v let
1, be the restriction of ¢)r to F,. 1, is non-trivial for each v and almost all the functions (s, wy, ¥)
are identically 1 so that we can form the product

Hv e(s,wu, P).

Its value will be independent of ¢z and will be written (s, w).
Theorem B

The functional equation of the L-function associated to w is

L(s,w) =¢(s,w) L(1 — s,w).

This theorem is a rather easy consequence of the first theorem together with the functional equa-
tions of the Hecke L-functions.

For archimedean fields the first theorem says very little. For nonarchimedean fields it can be
reformulated as a collection of identities for Gaussian sums. Four of these identities which we formulate
as our four main lemmas are basic. All the others can be deduced from them by simple group-theoretic
arguments. Unfortunately the only way at present that | can prove the four basic identities is by long
and involved, although rather elementary, computations. However Theorem A promises to be of such
importance for the theory of automorphic forms and group representations that we can hope that
eventually a more conceptual proof of it will be found. The first and the second, which is the most
difficult, of the four main lemmas are due to Dwork [6]. | am extremely grateful to him not only for
sending me a copy of the dissertation of Lakkis [9] in which a proof of these two lemmas is given but
also for the interest he has shown in this paper.
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Chapter One.

Weil Groups

The Weil groups have many properties, most of which will be used at some point in the paper. It
is impossible to describe all of them without some prolixity. To reduce the prolixity to a minimum |
shall introduce these groups in the language of categories.

Consider the collection of sequences
S:c2La e

of topogical groups where A is a homeomorphism of C' with the kernel of ¢ and p induces a homeo-
morphism of G/AC with &. Suppose

S0y 2L G e,

is another such sequence. Two continuous homomorphisms ¢ and ¢ from G to G; which take C' into
C1 will be called equivalent if there is a ¢ in Cy such that ¥(g) = cp(g)c™! for all g in G. S will
be the category whose objects are the sequences S and Homg, (S, S1) will be the collection of these
equivalence classes. S will be the category whose objects are the sequences S for which C is locally
compact and abelian and & is finite; if S and S; belongto S

Homgs(S,S;) = Homg, (S, Sq).

Let P; be the functor from S to the category of locally compact abelian groups which takes .S to C and
let P, be the functor from S to the category of finite groups which takes S to &. We have to introduce
one more category S; o. The objects of S; will be the sequences on S for which G¢, the commutator
subgroup of G, is closed. Moreover the elements of Homg, (S, S1) will be the equivalence classes in
Homgs(S, S1) all of whose members determine homeomorphisms of G with a closed subgroup fo finite
index in G75.

If S'isin S; let V/(.S) be the topological group G/G¢. If ® € Homg, (S, S1) let ¢ be a homeomor-
phism in the class ® and let G = o(G). Composing the map G, /G¢ — G/G° given by the transfer
with the map G/G~ — G//G¢ determined by the inverse of  we obtain amap ®, : V(S;) — V(9)
which depends only on ®. The map S — V/(S) becomes a contravariant functor from S; to the
category of locally compact abelian groups. If S is the sequence

C—G— 06

the transfer from G to C determines a homomorphism 7 from G /G to the group of G-invariant
elements in C'. 7 will sometimes be regarded as a map from G to this subgroup.

The category & will consist of all pairs K/F where F' is a global or local field and K is a finite
Galois extension of F'. Hom(K/F, L/FE) will be a certain collection of isomorphisms of K with a
subfield of L under which F' corresponds to a subfield of E. If the fields are of the same type, that is all
global or all local we demand that E be finite and separable over the image of F'. If F'is global and E
is local we demand that E be finite and separable over the closure of the image of F'. | want to turn the
map which associates to each K/ F the group C into a contravariant functor which I will denote by
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C*. Ifp: K/F — L/F and F and E are of the same type let K; be the image of K in L and let o+
be the composition of Ny, ,x, with the inverse of ¢. If F'is global and £ is local let K7 be the closure in
L of the image of K. As usual C'x, may be considered a subgroup of the group of ideles of K. ¢~ is
the composition of Ny, x, with the projection of the group of idéles onto C’.

If K is given let £ be the subcategory of £ whose objects are the extensions with the larger field
equal to K and whose maps are equal to the identity on K. Let C, be the functor on £ which takes
K/F to Cp. If Fis given let £ have as objects the extensions with the smaller field equal to F. Its
maps are to equal the identity on F'.

A Weil group is a contravariant functor W from £ to S with the following properties:
(i) PLoW isC*.
(il) P,oW isthe functor® : L/F — &(L/F).

(ili) If o € &(L/F) € Hom(L/F, L/F) and g is any element of Wy, ,, the middle group of the
sequence W (L/F), whose image in &(L/F) is p then the map h — ghg~1! is in the class p,,.

(iv) The restriction of W to £X takes values in S;. Moreover, if K/ F belongs to £X

T:WK/F/WIC(/F—>CF

is a homeomorphism. Finally, if ¢ : K/F — K/E is the identity on K and ® = ¢, then the

diagram
c ., c
WK/F/WK/F R WK/E/WK/E
T T
CF — CE
Po*

is commutative and if1y : F//F — K/ F is the imbedding, 1y isT.

Since the functorial properties of the Weil group are not all discussed by Artin and Tate, we should
review their construction of the Weil group pointing out, when necessary, how the functorial properties
arise. There is associated to each K/F a fundamental class ax,r in H*(&(K/F), Ck). The group
W (K/F)isany extension of (K /F') by Cx associated to this element. We have to show, at least, that
if o : K/F — L/FE the diagram

1 e | ve

can be completed to a commutative diagram by inserting ¢ : W ,g — Wg/p. The map ¢c-
commutes with the action of &(L/E) on Cr, and Ck so that ¢ exists if and only if oc- (o /) is the
restriction ¢ (g, r) of px/r to &(L/E). If this is so, the collection of equivalence classes to which
© may belong is a principal homogeneous space of H'(&(L/E), Ck). In particular, if this group is
trivial, as it is when g is an injection, the class of ¢ is uniquely determined.

An examination of the definition of the fundamental class and shows that it is canonical. In other
words, if ¢ is an isomorphism of K and L and of F'and E, then ¢}, (ak/r) = ¢ 'ar/p = o= (ar/E).
If K = L and ¢ is the identity on K, the relation oy (akx/r) = ar/p = wc-(ar /) is one of the
basic properties of the fundamental class. Thus in these two cases ¢ exists and its class is unique.
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Now take K to be global and L local. Suppose at first that K is contained in L, that its closure is
L, and that ' = K N E. Then, by the very definition of ax,r, vg(akx/r) = vc-(ar/g). More
generally, if K is the image of K in L, and F} the image of F'in E, we can write ¢ as @1 p2¢s Where
Y3 K/F — Kl/Fl, Y2 : Kl/Fl — Kl/Kl N E, and ©1 Kl/Kl NE — L/E @3 and 9/52
exist. If the closure of K is L then ¢ and therefore ¥ = 30> also exist. The class of ¢ is uniquely
determined.

Artin and Tate show that Wf(/F is a closed subgroup of W, and that 7 is a homeomorphism

of WK/F/Wf(/F and Cr. Granted this, it is easy to see that the restriction of W to ¢X takes values in
S1. Suppose we have the collection of fields in the diagram with L and K normal over F and L and
K’ normal over F’. Let «, 3, and v be the imbeddingsa : L/F — L/K, 3:L/F' — L/K', v:

L/F — LJF".
\

K/

e

F/
F

We have shown the existence of &, 3 and 7. Itis clear that DB(WL/K,) is contained in a(Wp /). Thus
we have a natural map

T UB(Wr k) [VB(WY ) — @(Wr k) /(W] )
Let us verify that the diagram
W k/Wi  r — aﬂ(WL/K’)/ﬁﬁ(WE/K’) L’a(WL/K)/a(WIC(/K) — WL/K/WE/K
7 I 7

Ngi )k
Cy Ck (A)

L

K

is commutative. To see this let W7,k be the disjoint union

Then we can choose A, g5, 1 <i<r, 1<j<ssothat W, is the disjoint union

U U, cxan

and ﬁﬁ(h;) = a(h;). Using these coset representatives to compute the transfer one immediately verifies
the assertion. We should also observe that the transitivity of the transfer implies the commutativity of
the diagram

Wkip/Wip  — Wi/p /Wi g
Tl l

Cr — Cpr
Por
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if @ is the class of an imbedding @ where ¢ is an imbedding K/F — K/F".

We have still not defined ¢y for all . However we have defined it when ¢ is an isomorphism of
the two larger fields or when the second large field is the closure of the first. Moreover the definition is
such that the third condition and all parts of the fourth condition except the last are satisfied. The last
condition of (iv) can be made a definition without violating (i) and (ii). What we do now is show that
there is one and only one way of extending the definition of ¢y to all ¢ without violating conditions
(i) or (ii) and the functorial property.

Suppose FF C K C L, K/F and L/F are Galois, and v is the imbedding L/F — L/K. It
is observed in Artin and Tate that there is one and only class of maps {6} which make the following
diagram commutative

1 — Wrk /Wi xk — QZJ\WL/K/QZJ\WE/K — WL/F/leIf/K — WL/F/{Z]\WL/K —1
Tl N7 !
| Ox Wi /p ——— &(K/F) —— 1.

The homomorphism on the right is that deduced from
Wip/Wryx = 6(L/F)/6(L/K) ~ &(K/F).

Let ¢, 4, and v be imbeddings ¢ : K/F — L/F, pn: K/K — L/K, v: K/F — K/K. Then
Yop=pov,sothatvou = po qp Moreover v o [i is the composmon ofthemap 7 : WL/K — Ok
and the imbedding of C in W, . Thus the kernel of ¢ contains ¢W£/K sothat p o ¢ restricted to

WL/K/WL/K must be 7 and the only possible choice for ¢ is, apart from equivalence, 6. To see that
this choice does not violate the second condition observe that the restriction of 7 to Cy, will be Ny /x

and that QZ is the identity on C..

Denote the map ¢ : Wi, p — W, r by 01,k and the map 7: Wg/p — Ck by T p. Itis clear
that TK/F o 01,k is the transfer from WL/F/WL/F to QpWL/K/QpWE/K followed by the transfer from
¢WL/K/¢WL/K to sz’L = CF. By the transitivity of the transfer 7 ,p o 01,/ = 71/F. It follows
immediately that if / C K C L C L’ and all extensions are Galois the map 0, and 6,011, are
in the same class.

Suppose that ¢ is an imbedding K/F — K’/F’ and choose L so that K’ C L and L/F is Galois.
Lety: K'/F' — L/F', u:K/F — L/F, v:L/F — L/F’beimbeddings. Thenyop=vopu
sothatfiov = potp. Ifa: L/F — L/K, :L/F — L/K' are the imbeddings then the kernel of
1Z is ﬁBWE/K, which is contained in awg/K the kernel of . Thus there is only one way to define ¢ so
thatiov =(po J The diagram

<)

Wik /WE A, Wie /BWE Wit
v )

WL/F//V\BWIS/K/ —>I/VL/F/aWE/1KL> Wk/F
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will be commutative. Since Jo B = 7/Kk and io@ = Tk diagram (A) shows that & has the required
effect on C'k.

To define ¢y in general, we observe that every ¢ is the composition of isomorphisms, imbeddings
of fields of the same type, and amap K/F — K'/F' where K is global, K’ is local, K’ is the closure
of K,and F = F’ N K. Of course the identity

(po)w = Yweow

must be verified. | omit the verification which is easy enough. The uniqueness of the Weil groups in
the sense of Artin and Tate implies that the functor W is unique up to isomorphism.

The sequence
S(n,C) : GL(n,C) % GL(n,C) — 1

belongsto S;. If S : C — G — & belongs to S; then
Homsg, (S, S(n,C))

is the set of equivalence classes of n-dimensional complex representations of GG. Let ,,(.S) be the set
of all ® in Homg, (.5, S(n,C)) such that, for each ¢ € ®, p(g) is semi-simple for all g in G. §,,(S)
is a contravariant functor of S and so is Q(S) = [J,—, 2,(S). On the category S, it can be turned
into a covariant functor. If ¢ : S — Sy, if & € Q(S5), and if ¢ € ®, let ¢ associate to ¢ the matrix
representations corresponding to the induced representation Ind(Gy,¥(G), ¢ o ¢~ 1). It follows from

the transitivity of the induction process that €2 is a covariant functor of ;.
To be complete a further observation must be made.

Lemma 1.1 Suppose H is a subgroup of finite index in G and p is a finite-dimensional complex
representation of H such that p(L) is semi-simple for all h in H. If

o =Ind(G,H,p)

then o(g) is semi-simple for all g.

H contains a subgroup H; which is normal and of finite index in GG, namely, the group of elements
acting trivially on H\G. To show that a non-singular matrix is semi-simple one has only to show that
some power of it is semi-simple. Since 0" (g) = o(¢™) and g™ belongs to H; for some n we need only
show that o(g) is semi-simple for g in H;. In that case o(g) is equivalentto >/, ®p(gigg; ') if G is
the disjoint union

Ui:l Hg;

Suppose L/F and K/F belong to £ and ¢ € Homg, (L/F,K/F). Since the maps of the
class @y all take Wi/ p onto Wy, the associated map Q(W (L/F)) — Q(W (K/F)) is injective.
Moreover it is independent of ¢. If L, /F and Lo/ F belong to £ there is an extension K /F and maps
¢1 € Homg, (L1 /F,K/F), @3 € Homg, (Ly/F,K/F). wy in QW (L1/F)) and wy in Q(W (Ly/F))
have the same image in Q(W (K/F)) for one such K if and only if they have the same image for all
such K. If this is so we say that w; and ws are equivalent. The collection of equivalence classes will
be denoted by Q(F'). Its members are referred to as equivalence classes of representations of the Weil
group of F'.
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Let F be the category whose objects are local and global fields. If F' and E are of the same type
Homz(F, E) consists of all isomorphisms of F' with a subfield of E over which E' is separable. If
F is global and E is local Homz(F, E) consists of all isomorphisms of F' with a subfield of E over
whose closure E is separable. (F') is clearly a covariant functor on F. Let Fy, and Fj,. be the
subcategories consisting of the global and local fields respectively. Suppose F' and E are of the same
type and ¢ € Homz(F, E). If w € Q(E) choose K so that w belongs to Q(W(K/E)). We may
assume that there is an L/F and an isomorphism v from L onto K which agrees with ¢ on F'. Then
Yw : Wi, g — Wi, p isan injection. Let 6 be the equivalence class of the representation

o = Ind(Wy,r, ¥w(Wk/E), po @Z’Jvl)

with p in w. | claim that 4 is independent of K and depends only on w and . To see this it is enough
to show thatif L C L', L’/F is Galois, ¢ is an isomorphism from L’ to K’ which agrees with ¢) on L,
and p’ is a representation of Wi r inw the class of

O', = Ind(WL//F7 w{N(WK’/E)a Pl © wi)v_l)

is also ©. Suppose y is a map from Wy ;i to Wi, associated to the imbedding K/E — K'/E and
v is a map from Wy, to Wy, associated to the imbedding L/F — L'/F. We may suppose that
thw o p = v oy,. The kernel of y is WIC{,/K if, for simplicity of notation, Wy, is regarded as a
subgroup of Wy, and that of v is W, ;. Moreover ¢y, (Wi, i) = Wi, ;. Take p’ = po p. Then
o acts on the space V' of functions f on Wy, satisfying f(vw) = p(1y," (h)) f(w) for v in ¥, (Wi /).
Let V'’ be the analogous space on which ¢’ acts. Then

V' ={fov|feV}]

The assertion follows. Thus 2(F') is a contravariant functor on F,, and Fiq..

After this laborious and clumsy introduction we can set to work and prove the two theorems. The
first step is to reformulate Theorem A.
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Chapter Two.

The Main Theorem

It will be convenient in this paragraph and at various later times to regard Wy, i as a subgroup of
Wgpif FCECK.IfFFCFECLC K weshall also occasionally take Wy, to be WK/E/WIC(/L.

If K/F is finite and Galois, P(K/F') will be the set of extensions E'/E with F C E C E' C K
and P, (K /F) will be the set of extensions in P (K /F') with the lower field equal to .

Theorem 2.1

Suppose K is a Galois extension of the local field F' and 1 is a given non-trivial additive character
of F'. There is exactly one function A\(E/ F,{r) defined on P,(K/F') with the following two properties

(i)
NF/F,vp) = 1.

(i) IfEy,...,E,., Ei,...,E! arefields lying between F and K, if xg,, 1 <i < r, isaquasi-character
of Cg,, ifXE]/., 1 < j <s, is a quasi-character ofCEg, and if

@;:1 Ind(Wk/F, WK/EH XEl)

is equivalent to
@5=1 Ind(Wk/r, Wk/p/, XE/)

then B
Hi:l A(XE: Ve, ) P)NE/F, Yr)

is equal to
szl A(XE]/. ) QpE;/F))\(E;/F’ Vr).

A function satisfying the conditions of this theorem will be called a A-function. It is clear that
the function A\(E/F, ¢r) of Theorem A when restricted to P, (K /F') becomes a A-function. Thus the
uniqueness in this theorem implies at least part of the uniqueness of Theorem A. To show how this
theorem implies all of Theorem A we have to anticipate some simple results which will be proved in
paragraph 4.

First of all a A-function can never take on the value 0. Moreover, if ' C K C L the A-function
on P,(K/F) is just the restriction to P, (K/F') of the A-function on P,(L/F). Thus A\(E/F, ¢r) is
defined independently of K. Finally if E C E' C E”

)\(_E’//E'7 q/)E) — )\(EH/E/, Q/JE’/E)A(E//E, ¢E)[E”:El]~

We also have to use a form of Brauer’s theorem [4]. If GG is a finite group there are nilpotent
subgroups MNVy, ..., N,,, one-dimensional representations xi, ..., x.» of Ny,..., N, respectively, and
integers n1, ..., n,, such that the trivial representation of Gz is equivalent to

@;11 nilnd(G7 Ni7 Xl)
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The meaning of this when some of the n; are negative is clear
Lemma 2.2

Suppose F' is a global or local field and p is a representation of Wy ,r. There are intermediate
fields E, . .., E,, such that &(K/E;) is nilpotent for 1 < i < m, one-dimensional representations xg,
of Wk g,, and integers ny, ... ,n,,, such that p is equivalent to

®i2y nInd(Wx p, Wi /g, XE:)-

Theorem 2.1 and Lemma 2.2 together imply the uniqueness of Theorem A. Before proving the
lemma we must establish a simple and well-known fact.

Lemma 2.3
Suppose H is a subgroup of finite index in the group G. Suppose T is a representation of G, o a
representation of H, and p the restriction of T to H. Then

7® Ind(G,H,0) ~Ind(G,H, p ® o).

Let 7 acton V and o on W. Then Ind(G, H, o) acts on X, the space of all functions f on G with
values in W satisfying

f(hg) = a(h) f(9)
while Ind(G, H, p ® o) acts on Y, the space of all functions f on G with values in V' ® W satisfying

f(hg) = (p(h) @ a(h)) f(g).

Clearly, V ® X and Y have the same dimension. The map of V' ® X to Y which sends v ® f to the
function

f'(g) =7(g)ve flg)

is G-invariant. If it were not an isomorphism there would be a basis vy, ...,v, of V and functions
f1, ..., fn which are not all zero such that

X, m(9)v @ fi(g) =0.

This is clearly impossible.

To prove Lemma 2.2 we take the group G of Brauer’s theorem to be & (K /F). Let F; be the fixed
field of N; and let p; be the tensor product of y;, which we may regard as a representation of Wi /r,
and the restriction of p to Wx,r,. Then

p~p®@1~& nInd(Wk/p,, i)

This together with the transitivity of the induction process shows that in proving the lemma we may
suppose that &(K/F) is nilpotent.

We prove the lemma, with this extra condition, by induction on [K : F|. We use the symbol w to
denote an orbit in the set of quasi-characters of Cx under the action of & (K /F'). The restriction of p
to Ck is the direct sum of one-dimensional representations. If p acts on V' let V, be the space spanned
by the vectors transforming under C'x according to a quasi-character in w. V' is the direct sum of the
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spaces V., which are each invariant under Wy, . For our purposes we may suppose that V' =V, for
some w. Choose x x in this w and let V;, be the space of vectors transforming under C according to
Xk - Let E be the fixed field of the isotrophy group of xx. Vp is invariant under Wy . Let o be the
representation of Wy, in V4. Itis well-known that

p =~ Ind(Wk,r, Wk/E,0)-

To see this one has only to verify that the space X on which the representation on the right acts and V'
have the same dimension and that the map

F=2 e w79 I9)

of X into V which is clearly Wy, p-invariant has no kernel. It is easy enough to do this.

If £ = F the assertion of the lemma follows by induction. If E = F choose L containing F' so
that i/ L is cyclic of prime degree and L/ F' is Galois. Then p(W/,) is an abelian group and Wi is
contained in the kernel of p. Thus p may be regarded as a representation of Wy, ;. The assertion now
follows from the induction assumption and the concluding remarks of the previous paragraph.

Now take a local field £/ and a representation p of Wi, . Choose intermediate fields
Ey, ..., En, one-dimensional representations x g, of Wi g,, and integers ny, . .., ny, so that

p =~ @2 n; Ind(Wk /g, Wk/E,, XE:)-

If w is the class of p set

5(w,¢E) = Hm

i=

AAKXES Ve, p)ME/E, VE)}"™.

Theorem 2.1 shows that the right side is independent of the way in which p is written as a sum of
induced representations. The first and second conditions of Theorem A are clearly satisfied. If p is the
representation above and o the representation

Ind(Wkr, Wk/E, p)
then
o~ @y n;Ind(Wgr, Wk /g, XE; )-

Thus if ' is the class of o

e(@,vr) = [ {AKE, Ve ) ME/F,fr) 1™

while N
e(w,¥E/F) = Hi:l {Axe, Ve, F) ME/EYp/p) ™.

The third property follows from the relations

dimw =%", n;[E;: F]

)

and
MNE;/Fobp) = NEi/E, Yg/p) NE/F, ) B E)
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Chapter Three.

The Lemmas of Induction
In this paragraph we prove two simple but very useful lemmas.
Lemma 3.1

Suppose K is a Galois extension of the local field F'. Suppose the subset 2 of P(K/F') has the
following four properties.

(i) Forall E,withF C EC K, E/E € .
(iiy IfE"/E" and E'/ E belong to 2 so does E"' / E.
(iii) If L/E belongs to P(K/F) and L/ E is cyclic of prime degree then L/ E belongs to 2.

(iv) Supposethat L/E inP(K/F) is a Galois extension. LetG = &(L/E). Suppose G = H - C where
H # {1}, HNC = {1}, and C is a non-trivial abelian normal subgroup of G which is contained in
every non-trivial normal subgroup of G. If E' is the fixed field of H and if every E" /E in P,(L/E)
for which [E" : E] < [E' : E'] isin2 sois E'/E. Then2 is all of P(K/F).

It is convenient to prove another lemma first.
Lemma 3.2
Suppose K is a Galois extension of the local field F' and F’ % E C K. Suppose that the only normal

subfield of K containing E is K itself and that there are no fields between F' and E. LetG = &(K/F)
and let E be the fixed field of H. Let C be a minimal non-trivial abelian normal subgroup of G. Then
G = HC, HNC = {1} and C is contained in every non-trivial normal subgroup of G. In particular
if H = {1}, G = C is abelian of prime order.

H is contained in no subgroup besides itself and G contains no normal subgroup but {1}. Thus
if H is normal it is {1} and G has no proper subgroups and is consequently cyclic of prime order.
Suppose H is not normal. Since G is solvable it does contain a minimal non-trivial abelian normal
subgroup C' Since C'is not contained in H, H % HCand G = HC' Since H N C'is a normal subgroup

of Gitis {1}. If D is a non-trivial normal subgroup of G which does not contain C then DN C = {1}
and D is contained in the centralizer Z of C. Then DC' is also and Z must meet H non-trivially. But
Z N H is a normal subgroup of G. This is a contradiction and the lemma is proved.

The first lemma is certainly true if [K : F] = 1. Suppose [K : F] > 1 and the lemma is valid
for all pairs [K’ : F'] with [K’ : F'| < [K : F]. If the Galois extension L/E belongs to P(K/F') then
2ANP(L/F) satisfies the condition of the lemma with K replaced by L and F' by E. Thus, by induction,
if [L:E]<[K:F], P(L/E)C2 Inparticular if E//E is not in & then E = F and the only normal
subfield of K containing E’ is K itself. If 2 is not P(K/F') then amongst all extensions which are not
in & choose one E/F for which [E : F] is minimal. Because of (ii) there are no fields between F and
E. Lemma 3.2, together with (iii) and (iv), show that £/ F is in 2. This is a contradiction.

There is a variant of Lemma 3.1 which we shall have occasion to use.
Lemma 3.3

Suppose K is a Galois extension of the local field F'. Suppose the subset 2 of P,(K/F’) has the
following properties.
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(i) F/F €.
(if) If L/F is normal and L % K thenP,(L/F) C 2.

(iliy IfF C E C E' C K and E/F belong to & then E’/ F belong to 2.

(iv) IfL/F in Po(K/F) is cyclic of prime degree then L/ F € 2.

(v) Suppose that L/F in P,(K/F) is Galois and G = &(L/F). Suppose G = HC where H #
{1}, HN C = {1}, and C is a non-trivial abelian normal subgroup of G which is contained in every

non-trivial normal subgroup. If E is the fixed field of H and if every E'/F in P,(L/F') for which
[E':F|<|E:FlisinAsoisE/F.

Then A is P (K/F).

Again if 2 is not P,(K/F) there is an E/F not in 2 for which [E : F] is minimal. Certainly
[E : F] > 1. By (ii) and (iii), E is contained in no proper normal subfield of K and there are no fields
between E and F. Lemma 3.2 together with (iv) and (v) lead to the contradiction that £/ F is in 2.
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Chapter Four.

The Lemma of Uniqueness

Suppose K/F is a finite Galois extension of the local field F' and v{r is a non-trivial additive
character of F. A function E/F — X(E/F, 1) on P, (K /F') will be called a weak A-function if the
following two conditions are satisfied.

() A(F/F, Up) = 1.

(iiy IfFEy, ..., E., Ef, ..., E.arefields lying between F and K, if u;, 1 < i < r,is a one-dimensional
representation of &(K/E;), if v;, 1 < j < s, is a one-dimensional representation of &(K/LE%),
and if .

@i:1 Ind(&(K/F), 8(K/E;), pi)

is equivalent to

D, WdGK/F), 6(K/E), 1)

then .
Hi:l A(xe,, Ve, F)ME/F, ¥r)
is equal to
Hj.:l A(xe; YEF)ME]/F, ¥p)
if xg, is the character of Cg, corresponding to y; and XE! is the character of CEJ/_ corresponding
to v;.

Supposing that a weak A-function is given on P, (K /F'), we shall establish some of its properties.
Lemma 4.1

(i) If L/F inP,(K/F) is normal the restriction of \(-,v¥r) to P,(L/F) is a weak \-function.
(i) If E/F belongstoP,(K/F)and A\(E/F, ) # 0 the function on P, (K/E) defined by

ME'/E, g/r) = AE'/F, ) NE/F, )~ LEE]

is a weak \-function.

Any one-dimensional representation  of &(L/E) may be inflated to a one-dimensional
representation, again called y, of &(K/FE) and

Ind(&(K/F), 6(K/E), p)

is just the inflation to & (K /F") of
Ind(6 (L/F), &(L/E), p).

The first part of the lemma follows immediately from this observation.

As for the second part, the relation
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isclear. Iffields E;, 1 < <, E;, 1 < j < s, lying between E and K and representations y; and v;
are given as prescribed and if

P, md(S(K/E), 6(K/B), ) = p

is equivalent to

D, Wd(OK/E), SK/E), 1) =0
then

@::1 Ind(&(K/F), 8(K/E;, 1)

&)

J=

is equivalent to
| Ind(&(K/F), 8(K/E}), v;)

so that i,
1_[7;:1 A(XE: YE,/F) AMEL/F, YF) (A)

is equal to

H;Zl A(xg, Yer/r) ME/F, YF). (B)

Since p and ¢ have the same dimension

Yo [Ei Bl =% [E; : E]

so that . 5 /
II, aE/F )PP =TT NE/F, )P

j=1

Dividing (A) by the left side of this equation and (B) by the right and observing that the results are
equal we obtain the relation needed to prove the lemma.

If K/F is abelian S(K/F) will be the set of characters of Cr which are 1 on Nk, pCr.
Lemma 4.2

If K/F is abelian

MK/F, V) = H A(pr, Yr).

nr€S(K/F)

pr determines a one-dimensional representation of &(K/F') which we also denote by up. The
lemma is an immediate consequence of the equivalence of

Ind(6(K/F), 8(K/K), 1)

and
@up €S(K/F) Ind(&(K/F), 6(K/F), ur).

Lemma 4.3

Suppose K/ F' is normal and G = &(K/F). Suppose G = HC where HNC = {1} and C is a
non-trivial abelian normal subgroup. Let E be the fixed field of H and L that of C'. LetT' be a set of
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representatives of the orbits of S(K /L) under the action of G. If ;. € T let B, be the isotropy group of
pandletB, = &(K/L,). Then[L, : F] < [E : F] and

NE/F, gp) =] . AW v, /r) MLu/F, ¥r).

peT

Here (K/L,) = &(K/L) - (6(K/L,) N &(K/E)) and 1’ is the character of C,,, associated to the
character of 8(K/L,) : g — p(g1) if

9=9192, 91 € G(K/L), gs€ G(K/L,)NG(K/E),

We may as well denote the given character of &(K/L,,) by ;i also. To prove the lemma we show
that
Ind(6(K/F),8(K/E), 1) =0¢

is equivalent to
!
D, ., md(G(K/F), 6(K/Ly), ).
Since T has at least two elements it will follow that

[E : F] = dim Ind(6(K/F), 8(K/E), 1)

is greater than
(L, : F] =dimInd(6(K/F),&(K/L,), u').

The representation o acts on the space of functions on H\G. If v € S(K /L), that is, is a character
of C, lety, (he) = v(c)ifh € H, c¢e€ C. Theset

v [ v e S(E/L)}
is a basis for the functions on H\G. If x € T' let S, be its orbit; then
Vp = ZVGSV,C/I/]V

is invariant and irreducible under G. Moreover, if g belongs to &(K/L,,)

U(g)¢;L = M/(g)¢u-

Since
dim V,, = [6(K/F),8(K/L,)]

the Frobenius reciprocity theorem implies that the restriction of o to V,, is equivalent to
Ind(® (K/F), &(K/L,), 1).

Lemma 4.2 is of course a special case of Lemma 4.3.
Lemma 4.4

M E/F, ¥ ) is different from 0 for all E/F in P, (K/F).
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The lemmais clear if [K : F'] = 1. We prove it by induction on [K : F]. Let & be the set of E/F'
in P, (K/F) for which A(E/F, ¢¥r) # 0. We may apply Lemma 3.3. The first condition of that lemma
is clearly satisfied. The second follows from the induction assumption and the first part of Lemma 4.1;
the third from the induction assumption and the second part of Lemma 4.1. The fourth and fifth follow
from Lemmas 4.2 and 4.3 respectively. We of course use the fact that A(x g, ¥ ), which is basically a
Gaussian sum when E is non-archimedean, is never zero.

For every E'/E in P(K/F) we can define A\(E’'/E, vy, r) to be

)‘(E//Fv ¢F) )‘(E/Fv ¢F)_[E,:E]'

Lemma 4.5

IfE"/E" and E'/ E belong to P(K/F) then
)\(E,//E’ ¢E/F) — )\(E/,/E/,QbE//F))\(E,/E’ ¢E/F)E,,:E/].

Indeed ”
NE"|E,ppr) = ME" | Fy,pp) NE/F,¢p) E"E]

which equals

(NE" [F,pp) NE' [ F,pp) B E N INE JF, ) B F) N(E/F,ypp)~E P}
and this in turn equals
NE"|E g p) NE'E g p)FE
Lemma 4.6

If A\ (-, ) and A2(-, ¥ ) are two weak \-functions on P, (K /F’) then

M(E'/E,Yp ) = X(E'/E, g/r)

forall E'/E in P(K/F).

We apply Lemma 3.1 to the collection & of all pairs E'/E in P(K/F) for which the equality is
valid. The first condition of that lemma is clearly satisfied. The second is a consequence of the previous
lemma. The third and fourth are consequences of Lemmas 4.2 and 4.3 respectively.

Since a A-function is also a weak A-function the uniqueness of Theorem 2.1 is now proved.
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Chapter Five.

A Property of A-Functions
It follows immediately from the definition that if ¢/, (z) = ¥ g(Bx) then

A(xe,Vg) = xe(B)A(XE VE)-

Associated to any equivalence class w of representations of the Weil group of the field F' is a one-
dimensional representation or, what is the same, a quasi-character of Cr. It is denoted detw and is
obtained by taking the determinant of any representation in w. Suppose p is in the class w and p is a
representation of Wy, . To find the value of the quasi-character detw at 3 choose w in Wy, so that
T /pw = (3. Then calculate det(p(w)) which equals detw(3).

If ' C E C K the map 7 = 7, can be effected in two stages. We first transfer WK/F/WIC(/F
into WK/E/Wf(/E; then we transfer WK/E/Wf(/E into Ck. If Wi g is the disjoint union

,
LJi:1 Wk pwi
and if w;w = u;(w)w; () then the transfer of w in WK/E/WIC(/E is the coset to which v’ = []\_; u;(w)
belongs.
Suppose o is a representation of Wy, and
p=Ind(Wk,r, Wk/g,0)-
p acts on a certain space V' of functions on Wy, and if V; is the collection of functions in VV which
vanish outside of W, pw; then
v=@B .

=1
We decompose the matrix of p(w) into corresponding blocks p;;(w). p;;(w) is 0 unless j = j(i) when
pji(w) = o(ug, (w)). This makes it clear that if ., is the representation of Wi, induced from the
trivial representation of Wx /g

det(p(w)) = det(LE/F(w))dim"det(a(w/))
or, if 8 is the class of o, .

detw(3) = {det 15/ (8)} ™ {det 6(8)}.
Lemma 5.1

Suppose F is a local field and E/F' — \(E/F,+r) and w — €(w, g,/ r) satisfy the conditions
of Theorem A for the character p. Let . (z) = ¢p(Bz) with 3 in Cp. IfFE/F — A(E/F, ) and
w — (w, Y / ) satisfy the conditions of Theorem A for i, then

and
5(w7¢,E/F) = detw(ﬂ) E(wﬂ/}E/F)'

Because of the uniqueness all one has to do is verify that the expressions on the right satisfy the
conditions of the theorem for the character .. This can now be done immediately.
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Chapter Six.

A Filtration of the Weil Group

In this paragraph | want to reformulate various facts found in Serre’s book [12] as assertions about
a filtration of the Weil group. Although some of the lemmas to follow will be used to prove the four
main lemmas, the introduction of the filtration itself is not really necessary. It serves merely to unite in
a form which is easily remembered the separate lemmas of which we will actually be in need.

Let K be a finite Galois extension of the non-archimedean local field ' and let G = &(K/F'). Let
Or be the ring of integers in F' and let pr be the maximal ideal of Op. If i > —1 is an integer let G;
be the subgroup of G consisting of those elements which act trivially on Op/p}“. Ifu> —1isareal
number and ¢ is the smallest integer greater than or equal to u set G, = G;. Finally if u > —1 set

r/r(u) :/0 [Goilz(;t]dt-

The integrand is not defined at -1 but that is of no consequence. g/, is clearly a piecewise linear,
continuous, and increasing map of [—1, co) onto itself. The inverse function* Y/ r Will have the same
properties.

We take from Serre’s book the following lemma.
Lemma 6.1
IfF C L C KandL/F isnormal then o /p = ¢r/r © 9x/r and Vi = Y/, 0 YL/ p.

The circle denotes composition not multiplication. This lemma allows us to define v/ r and Y/ ¢
for any finite separable extension E/F' by choosing a Galois extension L of F' which contains £ and
setting

YE/F = PL/FoYVL/E
YE/F =9L/EOYL/F

because if L’ is another such extension we can choose a Galois extension K containing both L and I/
and

YL/F© ¢L/E =YL/FC¥PK/L° ¢K/L o ¢L/E = ¥YK/F° ¢K/E =YL /F° ¢L//E
YL/E° ¢L/F =YL/E°¥PK/L° ¢K/L o ¢L/F = YK/E © 1/)K/F =YL /E©° ¢L//F-
Of course Y, r is the inverse of v /.
Lemma 6.2

If E C E' C E"” and E"/E is finite and separable, v/ /p = 0p//p o ¢pr /g and Ypr g =
¢E~/Ef o ¢E//E-

* In this chapter v, does not appear as an additive character. Nonetheless, there is a regrettable
conflict of notation.
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Each of these relations can be obtained from the other by taking inverses; we verify the second
¢E~/Ef o 1/)E'/E = YL/E"© ¢L/E* CYL/E© ?/)L/E = YL/E"© ¢L/E = ¢E~/E~

It will be necessary for us to know the values of these functions in a few special cases.
Lemma 6.3

(i) If K/F is Galois and unramified x| (u) = u.
(i) If K/F is cyclic of prime degree ¢ and if G = G while Gy, = {1} where t is a non-negative
integer then

Vi/r(u) =u u<t
—t+lu—1t) u>t

These assertions follow immediately from the definitions.
Lemma 6.4

Suppose K/ F is Galois and G = & (K /F) isa product HC where H # {1}, HNC = {1},and C
is a non-trivial abelian normal subgroup of G which is contained in every non-trivial normal subgroup.

(i) If K/F is tamely ramified so that G; = {1} then Gy, = C'is a cyclic group of prime order ¢
and [G : Go] = [H : 1] divides ¢ — 1. If E is the fixed field of H, v p/r(u) = u foru < 0 and
VYp/p(uw) = fuforu > 0.

(i) If K/F iswildly ramified there isan integert > 1suchthatC = Gy = ... = Gy whileG1; = {1}.
[Go : G4] divides [G; : 1] — 1 and every element of C' has order p or 1. If E is the fixed field of H
and L that of C

Y p(uw) =u u <0
:[GoZGl]u u>0

while

t
VYe/p(u) =u u < 7[(;0 il

t t t
= Goay TG <“_ [GO:G1]> EETEYen

We observed in the third paragraph that C' must be its own centralizer. Gy cannot be {1}. Thus
C C Gy. Incase (i) Gy is abelian and thus Gg = C. In both cases if £ is a prime dividing the order
of C' the set of elements in C of order £ or 1 is a non-trivial normal subgroup of G and thus C itself.
In case (i) C'is cyclic and thus of prime order ¢. Moreover, H which is isomorphic to G/G is abelian
and, if h € H, {c € Clhc = ch} is a normal subgroup of G and hence {1} or C. If h # 1 it must be 1.
Consequently each orbit of H in C'— {1} has [H : 1] elements and [H : 1] divides ¢ — 1.

In case (ii) G1 is a non-trivial normal subgroup and hence contains C. GG; and C are both p-groups.
The centralizer of (G1 in C'is not trivial. As a normal subgroup of GG it contains C. Therefore itis C and
(1 is contained in C' which is its own centralizer. Since each G, ¢ > 1, is a normal subgroup of G, it is
either C or {1}. Thus there is an integer ¢ > 1 such that G; = G; = C while Gy = {1}. Ifi > O isan
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integer let U’ be the group of units of O which are congruent to 1 modulo pittlet Uf((_l) = Ck,and
if U > —1 is any real number let ¢ be the smallest integer greater than or equal to u and set U} = U}<.
If 6, is the map of G;/G4; into p%/pﬁjl and 6, the map of Go/G; into UY /U introduced in Serre
then, for g in Gy and h in C,

0:(ghg™") = o(9)' O (h).

If h # 1, ghg~! = hifand only if 6y(g)! = 1 and then g belongs to the centralizer of C, that is to Gj.
Again C' — {1} is broken up into orbits, each with [Gj, : G1] elements and [G( : G1] divides [G; : 1] — 1.
Observe that ¢ must be prime to [Gj : G1].

It follows immediately from the definitions that H, = H N G,. In case (i) Hy will be {1} and
i /p(u) will be identically u. Thus ¥g/r = ¥k /p and, from the definition, Y /p(u) = vifu <0
while ¢ g /p(u) = [Go : 1u ifu > 0. In case (i), o x/p(u) = vifu < 0and

u u

Yr/e(u) = [Ho : 1] - [Go : G1]

if u > 0 while Y p(u) =uifu < 0and

Vi r(u) = [Go : Gilu 0<u<

The lemma follows.
Lemma 6.5

For every separable extension E'/E the function g /g Is convex, and if u is an integer so is

All we have to do is prove that the assertion is true for all E'/E in P(K/F) if F is an arbitrary
non-archimedean local field and K an arbitrary Galois extension of it. To do this we just combine the
previous three lemmas with Lemma 3.1. We are going to use the same method to prove the following
lemma.

Lemma 6.6

For every separable extension E’ /| E and any u > —1

Vg

e(u u
Ngiyp (Ug’’ )) CUg.

We have to verify that the set ® of all E'/E in P(K/F') for which the assertion is true satisfies the
conditions of Lemma 3.1. There is no problem with the first two.
Lemma 6.7

E'/E belongs to & if and only if for every integern > —1

wE’En) n
NE’/E (UE’ / ( >gUE
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and “ ()41

If £’/ E belongs to & choose ¢ > 0 so that g/ /g(n + ) = g g(n) + 1. The smallest integer
greater than or equal ton + e is at least n + 1 so

No /s <U1E/)F//E(n)+1> c Ug+5 C Ug-ﬁ-l.

Conversely suppose the conditions of the lemma are satisfied and n < u < n + 1. Since Y/ /g(n) is
an integer the smallest integer greater than or equal to ¢z ) (u) is at least ¢/ (n) + 1. Thus

Np/p (Ug/E//E(U)) C Np o (UEF//E(TLH-I) C Ug—l—l = UL
Lemma 6.8

If L/ E is Galois then, for every integern > —1,

and o m(m)4L
Ni/p (ULL/E ) cuntt,

The assertion is clear if n = —1. A proof for the case n > 0 and L/ E totally ramified is given in Serre’s
book. Since that proof works equally well for all L/ E we take the lemma as proved.
Lemma 6.9

Suppose K/ F'is Galois and G = &(K/F'). Suppose G = HC where H # {1}, H N C = {1},
and C' is a non-trivial abelian normal subgroup of GG which is contained in every non-trivial normal
subgroup of G. If E is the fixed field of H

for all v > —1.

Let L be the fixed field of C. If K/F is tamely ramified K/E and L/F' are unramified so that
YE/p =Yg and Up = Cp NUE, Up = Crp N U7 for every v > —1. If a belongs to C'g, then delete
Nk /o = Ng/pa. Since K/ L is Galois

Npsr (Up27") € Cr 0 Ny (U7 ™) € CpnUE = U

If K/ F is not tamely ramified
[Go:G1]ln—m

p% :Eﬂpk
ifn>1and0 < m < [Gy : G1]. Thus
Uy =GpnUY
if -1 <v<0and
Uy = CpnUCocly
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if v > 0 or, more briefly,
Uy = CpnUL/»

forall v > —1. In the same way we find

UL =Cpnuytr®

forall v > —1. Since K/L is normal
Ng/r (UEE/F(u)> C CrN Nk (UI%K/F(U)) CCrnUyt™ — U,

Lemma 6.6 now follows immediately.
Lemma 6.10

(@) Suppose K/F isGaloisandG = &(K/F). Supposet > —1 isaninteger suchthatG = G; # Gyy1.
Then g /p(u) = u foru < t. Moreover Ny, defines an isomorphism of C /U}. with Cr/U}
and if —1 < u < t the inverse image of U /U% is Ui /U%.. However the map of C /UL into
Cr /UL defined by the norm is not surjective.

(b) Suppose K/F' is Galois and G = &(K/F). Suppose s > —1 is an integer and G = G,. If
FCFECK, ¢Yg/p(u) =uforu < sand Ng,r defines an isomorphism of Cg /U, and Cr /U..
If =1 < wu < s the inverse image of U} /U3 isUL /U3
If t = —1 the assertions of part (a) are clear. If ¢ > 0, K/F is totally ramified. The relation

Y /r(u) = ufor u < tis an immediate consequence of the definition. Since the extension is totally
ramified Ny, defines an isomorphism of Ugl/UIO{ and Ugl/UIEl. It follows from Proposition V.9 of
Serre’s book that if 0 < n < t the associated map U /U™ — UR /Ut is an isomorphism but

that the map UL /UL — UL /UL has a non-trivial cokernel. The first part of the lemma is an
immediate consequence of these facts.

To prove part (b) we first observe that there is at > s such that G = G; # G¢y1. It then
follows from part (a) that the map Nx,r determines an isomorphism of Ck U} and Cp /U3 under
which Uj /Uj. and U} /Uy correspond if —1 < u < s. Let E be the fixed field of H. We have
Hs = HNGs = H, so that Nk, determines on isomorphism of Ck U} and Cg/U} under which
Uk /U and Ug /U3, correspond if —1 < u < s. Moreover if u < s, ¢ p(u) = Yg/p(u) = u so that
Yg,r(u) = u. Part (b) follows from these observations and the relation Nx/r = Ng/p Nk /.

If E is any non-archimedean local field and v > —1
U = Ny<uUp.

If a belongs to C'g; set
vgp(a) = sup{u|a € Ug}.
Then vg (1) = oo, but vg(a) is finite if o # 1 and o belongs to U5,

If ' C L C K, 7x/p,/r Will be any of the maps Wy ,r — Wy, associated to the imbedding
L/F — K/F. We abbreviate 7x /p p/p 10 Ti/p. If w belongs to Wi, p, o(w) is the image of w in
&(K/F),and E is the fixed field of o(w), we set

v r(w) = op/r(VE(Tk/E(W)).
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Note that we regard Wy, g as a subgroup of Wy p. If v > —1 let

v

kp ={w|vi/r(w) = v}

We shall show that W}’(/F is a normal subgroup of Wi, . These groups provide a filtration of the Weil
group, some of whose properties are established in the following lemmas.

Lemma 6.11

Ifo € (K/F)andt =sup{u|o € G}, setvg p(0) = @i /p(t). Then
v r(0) = max{vg,p(w) |o(w) = o}.

If o = 1 both sides are infinite and the assertion is clear. If o # 1 let E be the fixed field of o. If

O'(’w) =0, w belongs to WK/E and UK/F(U)) = QOE/F(’UK/E(U))) Also UK/F(O') = QOE/F(UK/E(U))
Consequently it is sufficient to prove the lemma when F' = E. The set

S ={rg/r(w)|o(w) =0}

is a coset of Ng/r(Ck) in Cr and Cr is generated by Ng,r(Ck) together with any element of
S. Moreover s = max{vp(3)|B € S} is the largest integer such that S N U} is not empty. Since
G = Gy # G4 the preceding lemma shows that s =t = @i/ p(t).

Lemma 6.12
(a) For all w and wy in WK/Fu/UK/F(w) = ’UK/F(U)_I) ande/F(wlwwl_l) = ’UK/F(U))
(b) IfFF C F C K and w belong to W, then

vg/r(w) = pr/r(vr/E(W)).

(C) For all w in WK/Fa TK/F(w) C U;K/F(W).
The first two assertions follow immediately from the definitions and the basic properties of the
Weil group. | prove only the third. Let me first observe thatif /' C £ C K and w C Wk, then
TK/F(w) = NE/F(TK/E(w))'

To see this, choose a set of representatives wy, . .., w, for the cosets of Cx in Wy, and then a set of
representatives vi, ..., v, for the cosets of Wy g in Wi, p. Let wyw = a;wj;) With a; in Cg; then

r

K E(W) = H‘:1 a;.

)

However v;w;w = vja;v; 'vjw;(; so that
s T -1 s —1
TK/F(’U)) = Hj:l Hi:l ’Ujaﬂ}j = Hj:l UjTK/E(’U))Uj = NE/F(TK/E(w))

In particular, if E is the fixed field of o(w), 7x/p(w) is contained UgE/F(UK/F(w)) and 7/ p(w) is
contained in
NE/F (UgE/F('UK/F(w))) C U;‘K/F(w)'
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Lemma 6.13

Ifu and v belong to Wi then

v/ (uw) > min{vg )/ p(u), vig/rp(v)}-

Let o = o(u) and let 7 = o(v). Because of the second assertion of the previous lemma we may
assume that o and 7 generate & (K /F'). Let E be the fixed field of o7. If

t = {min (Vg /r(vi/r(0)), Vr/F (VK P(T))}

and G = 6(K/F) then G = G; # G4+1. According to Lemma 6.11, if

§= min{vK/F(u)v UK/F(U)}a
then ¢ > ¥/ (s) which, by Lemma 6.10, is therefore equal to s. Since 7x/p(uv) =
Tk /F (W) TR F(V), Ti/F(uv) lies in Ug. On the other hand

i/ F(w) = Ng,p(Tr/p(uv))

so that, by Lemma 6.10 again, 7x, 5 (uv) belongs to U, and
vg/r(uv) > op/r(s) = s.

Thus the sets WI"Q/F, x > —1, give a filtration of Wy, by a collection of normal subgroups. The

next sequence of lemmas show that the filtration is quite analogous to the upper filtration of the Galois
groups.
Lemma 6.14

Foreachx > —1 the map 7,1/ r takes G}Q/F into Gf/F.

If w belongs to Wy, p letw = 7k 1/ p(w). We must show that
v p(0) 2 vgyp(w).
Leto = o(w) and let & = o(w). If E is the fixed field of o then E = E N L is the fixed field of . Since

UL/F(w) = @E/F(UL/E(QD))
and
UK/F(w) = SOE/F(UK/E(U)))
we may suppose E = F. Since 7/ p(w) = 71,/p (@), Lemma6.12 implies that 7,/ (w) liesin U;K/F(w).
Thus
v p (W) = vp(T/p(W)) > v/ r(W).

Of course Wg,p is Cr and, ifv > —1, Wg/F = Up.

Lemma 6.15
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Foreachv > —1, 7x/r maps Wy, onto Ug..

Since v1 < vy implies W}’{?/F - W}Q/F it is enough to prove the lemma when v = n is an integer.
The lemma is clear if [K : F] = 1; so we proceed by induction on [K : F]. If [K : F] > 1, choose an
intermediate normal extension L so that [L : F'] = fisaprime. Let G = &(L/F). Lemma 6.12 implies
that o)
v )
Wit = Wiy N Wi .

There is an integer ¢ > —1 such that G = G; and G ;1 = {1}. Itis shown in Chapter V of Serre’s book
thatifn >t
Nyse (UL) = U

By induction

iy (Wi ™) = v,

Since TK/F(w) = NL/F(TK/L(w)) ifwisin WK/L:
Tx/F(Wip) = Ur

if n > t. Suppose & generates G. Then Vi r(@) = t. By Herbrand’s theorem there isa o in &(K/F)
with v/ p (o) = t whose restriction to L is 7. By Lemma 6.11 there is a w in Wy, such that o = o(w)
and v/ p(w) = t. Then 7/ p(w) lies in U}, but not in Ny ,»(C1). From Serre’s book again

|:U1€-v : NL/F U;‘}L/F(t):| =/

so that U}, is generated by 75/ (w) and NL/F(U#/F(”) and hence is contained in the image of W7 ..
To complete the proof of the lemma we have only to observe that Lemma 6.10 implies that

Up = Uk Neye (U77)

ifn <t
Lemma 6.16

Suppose FF C L C K and L/F and K/F' are Galois. Then, for eachv > —1, T p /p Maps
WIU{/F onto WE/F.

If [L : F] = 1 this is just the previous lemma so we proceed by induction on [L : F]. We
have to show that if w belongs to Wy, there is a w in Wy ,r such that w = TK/RL/F(’U)) and
vi/p(w) > v p(W). LetT = o(w) and let E be the fixed field of 7. If E' # F then, by the induction
assumption, there is a w in Wk p such that 7, 7 ; &(w) = w and vy 5 (w) = vy 7(W). By Lemma
6.12, vg/p(w) = vr/p(W). Moreover, we may assume that 7, 7 ; 7 is the restriction to Wy, 7 of
TK/F,L/F-

Suppose E = F. Then vy,r(W) = vp(r,p(W)). Choose wy in Wy, so that 7/ (wy) =
TL/F(E) and ’UK/F(’wl) > ’UF(TL/F(E)). Let w, = TK/F,L/F(wl) and set © = Eflw. Certainly
v (W) > vy p(w). Moreover, 7 /p(u) = 1. Let ¥ C Ly C L where L;/F is cyclic of prime
order. If u does not belong to W/, the group Cr is generated by Ny, ,r(Cr,) and 1, (), which is
impossible since TL/F(ﬂ) = 1. Thus u belongs to Wz, and, as observed, there is a v in Wy, such
that TK/F,L/F(U) = TK/Ll,L/Ll (u) = . Then TK/F7L/F(’LL’LU1) = .
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Chapter Seven.

Consequences of Stickelberger's Result

Davenport and Hasse [5] have shown that Stickelberger’s arithmetic characterization of Gaussian
sums over afinite field can be used to establish identities between these Gaussian sums. After reviewing
Stickelberger’s result we shall prove the identities of Davenport and Hasse together with some more
complicated identities. However for the proof of Stickelberger’s result itself, | refer to Davenport and
Hasse.

273

If Z =e™» and a belongs to GF'(p) the meaning of Z% is clear. If « is any finite field and S is the
absolute trace of « let ¥ be the character of x defined by ¢° (o) = Z5(@) |f y,. is any character of k*
and 1, is any non-trivial additive character of x we will take the Gaussian sum 7(,, ¥ ) to be

-3 xS @)l

We abbreviate 7 (., ¥?) to 7(xx).

Let £, be the field obtained by adjoining the n'" roots of unity to the rational numbers. If o = Z —1
then in €, the ideal (p) equals (ww?~1). If ¢ = p/ and « has q elements then in &,_; the ideal (p) is a
product pp’. .. where the residue fields of pp’, . .. are isomorphic to . In £,,_1)

(p) = (pp’.. )77

with B = (p,w), P’ = (p/,w), and so on. The residue fields of B, ', ... are also isomorphic to k.
Choose one of these prime ideals, say 3. Once an isomorphism of the residue field with & is chosen
the map of the (¢ — 1)* roots of unity to the residue field defines an isomorphism of x* and the
group of (¢ — 1)*® roots of unity. Then x, can be regarded as a character of the latter group. Choose
a = a(x., PB) with 0 < a < ¢ — 1 so that . (¢) = ¢ for all (¢ — 1)*" roots of unity. Write

a:a0+a1p+...+af_1pf_1 0< a; <p.
Not all of the o; can be equal to p — 1. Set

O'(Oé =aptar+...+ar 1

Y(a=aplog!. . ap_q!

The following lemma is Stickelberger’s arithmetical characterization of 7( ;).
Lemma 7.1

(@) 7(x«) lies int,,_1y and is an algebraic integer.

(b) Ifx. = 1thenT(x,.) = 1butifx, # 1 the absolute value of 7(x,) and all its conjugates is ,/q.

(c) Every prime divisor of 7(x.) in¥,,_1) is a divisor of p.

(d) If 3 is a non-zero element of the prime field then the automorphism Z — Z° of g1y overt, 1
sends 7(xx) 10 X (3) T(Xx)-
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(e) IfB is a prime divisor of p in €,,_1) and o = a(xx,p) the multiplicative congruence

T(Xk) = (mod" )

is valid.

(f) Suppose ¢ is a prime dividing ¢ — 1 and x.. = x/.x\ where the order of x/, is a power of { and
that of X'/ is prime to ¢. If {* is the exact power of ¢ dividing ¢ — 1 and \ = (o — 1 where (, is a
primitive ¢“-th root of unity then

T(Xx) = 7(x)) (modA).

Before stating the identities for Gaussian sums which are implied by this lemma, | shall prove a
few elementary lemmas.

Lemma 7.2
Suppose0 < a < pf — 1 and

a:ao+a1p+...—i—af_1pf_1 0< a; <p.

Suppose also that 0 < jop < j1 < ... < j, = f and set

— . . . Js+1—Js—1
55—0535+0535+1p+---+0635+171p + X

Ifo=5""}B.andy =[] B.! then

First of all, I remark once and for all thatif n > 1,0 < u < p" — 1, and v = u(modp™) then
v = u(mod*p). Thusif 0 <u <p®—1landv >0

(u~+ vp™)! = (vp™)! szl (w+vp") = ul(vp™)! (mod*p).

Alsoifv >0

przl(’up” +w)=(v+1)p"! (mod*p)
and, by induction,
(vp™) =o!(p™)Y  (mod*p).
In particular p(* V! = p!(p™)? = (—p) (p™!)?. Apply induction to obtain

p"—1

p"!'=(-p)» T (mod'p).

From the relations

R & (s iy _ (. ap—1 p—1 7t — 1
p=IIa-2)= (= [ T
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and )
7' —1
Z -1

=1+Z+...+2Z" =i (mod*p).
We conclude that

p=@p-D(-=w)P = - ! (modp).

The lemma itself is clear if » = f so we proceed by induction downward from f. Suppose
r < f, js+2 — js = t > 1, and the lemma is valid for the sequence jo, j1,-.-,Js+1 — 1, js+1,--- Jr- TO
prove it for the given sequence we have only to show that if

— t—2
T = ajs + ajs‘i‘l p + tt + aj5+1—2 p

andy = ;.. , 1 then

vty w:v-&-ypt*l
= od*p).
zly! — (x+ypt=t)! (mod’p)
But t—1
_ p’T T —1
oY T =) = (—p)Y 7T (mod*p)
and -1
(z+ t—l)lz ll(t—ll)y: Iyl (—p) T d)*
x+yp ) =zaxWyl(p )Y = 2lyl(—p) (mod)"p).
Lemma 7.3

Suppose By, . . ., Br—1 and~y, . . . ,v-—1 are non-negative integers all of which are less than or equal
to g — 1. Suppose that ¢ = p’ is a prime power and

r—1

>, Bty <2¢" -1

Suppose also that §;,0 < i <r — 1, are given such that0 < §; < g — 1,

r—1 .
> bt <q -1
=0

and

r—1 r—1

. Bt =) dig' (modg —1).

(@) leZ";S (Bi +7i)q" < q"~! and if v is the number of k, 1 < k < r, for which
Siso (Bi +7i) > q" then 1
r—
Zi:o (Bi +7vi —0i) =v(g—1).
(b) 'fZZ";S (Bi +7i)¢" > q" — 1 and if v is the number of k, 1 < k < r, for which
1# Zf:_ol (Bi +v:)d" > ¢ then

Z::_;(ﬁz +7 — ;) =v(g—1).
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Observe immediately that if 1 < k <r,then 0 < 81 + vx—1 <2(¢—1)and

k—1 k—1

Yo Bitd <200-1) Y di=2d"-1).

If r = 1then Gy + v = dp + €(q — 1) with e equal to 0 or 1. If ¢ = 0 we are in case (a) and v = 0 while
Bo+ 7 — 6 = 0. If e =1 we are in case (b); here v = 1 and By + 70 — dp = g — 1. Suppose then
that r > 2and thatif 5),...,0._1,%,---s7-—a, 04,--.,0._o,and v/ are given as in the lemma (with r
replaced by r — 1) then

S B A =g - 1),

We establish part (a) first. In this case

Z:; (Bi +7i)¢" = Z::_Ol 8iq’

and
2

r—2 . r— .
. ot — ) r—1
> Bird =) g +eq

0
withe = §,_1 — 8,1 — v-_1. If £ were negative the left side of the equation would be negative; if ¢

were greater than 1 the left side would be greater than 2(¢"~! — 1). Since neither of these possibilities
occureisOor 1.

Suppose first that ¢ = 0. If Y7_2 8i¢" < ¢"~' — 1 choose 3, = Bi, 7 = v, 0 < i < r —2.
Then ¢ = 9;, 0 < i < r —2,and v/ = v. The assertion of the lemma follows in this case. If
I;géiqi =q¢ ! —1thend; = q—1,0<i <r—2 Then By + v = ¢— 1(modq) and, as a
consequence, By + 79 = ¢ — 1. We show by inductionthat 3; + v, = ¢—1, 0 < ¢ < r — 2. If thisis so

for ¢ < j then
r—2 r—2

Do, Bitad =" (a—1)d"
Hence 3; + v; = ¢ — 1(modg) and 3; + v; = ¢ — 1. It follows immediately that » = 0 and
S o (Bi+ v — 8;) = 0.
Now suppose that e = 1. If

r—2

Do Bitad =2 1)

theng, =v,=q¢q—1, 0<i<r—2 dg=q—2,andj; =¢—1, 1 <i<r—2 Thusv=r —1and

S (Bt ) =14 (=1 (a1~ 1=(~1)(g1),

Suppose then that
r—2 .
Do Bitad <2d 1),

From the relation
r—2 2

‘ N LN r—1
Do Bitd =) S+ 1+ 1)
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We conclude that Z:;g 8;¢* < ¢"~' — 1. Then for some m, with0 < m <r—2, 6,, < ¢ —1. We
choose the minimal value for m.

=2 5 NP m r=2 i r—1 _
Do Bt g = Em+ D™+ g+ (¢ 1),

Thusif g, = G;, 7. =i, 0<i<r—2,thend, =0, i <m, 9], =0, +1,andd, =0;, m <i <r—2.
Arguing by congruences as before we see that §; + v, = ¢ — 1 for ¢ < m. Thus

k—1

> Bt =d"~1

for k < m. However 3,, + v, # q — 1 and thus 3, +,, + 1 is prime to g. Moreover ifr —1 > k > m

1+ Z (B +7)6 = (B + m +1)g™ (mod g™ *1).

Thus it is greater than or equal to ¢* if and only if it is greater than or equal to ¢* + 1. It follows that
v = v + m and that

S it 00 = —mla =)+ Y (B -8 =vlg— 1)+ 1.

Since B,_1 + vr—1 — 0,1 = —1 the assertion of the lemma follows.
Now let us treat part (b). In this case

1

Z:Ol(ﬂz +7i)q' = Z::_O 8iq" + (¢" — 1)

and -
1+ “(Bi+)g = = 0 +ed !

withe =6,_1 — 08,1 — V-1 +¢q AgaineisOorl. If 3=y, =q—1for0 <i<r—2thene =1
andd;, =q—1for0<i<r—2. Alsov =rand

S B =00 = (r = 1) (g = 1)+ Bt + s — Frmr = (g~ ).

Having taken care of this case, we suppose that

Z::_j(ﬂi +79)¢ < 2(¢" = 1).

Firsttakee = 0. If 6o = 0then 1 + Gy + 0 = 0 (mod q) and [y + v = g — 1. Thus one of them is
less than ¢ — 1. By symmetry we may suppose itis 5. Let 8, = Bo+ 1, 5, = 3;, 1 <i <r —2,and
Yi=", 0<i<r—2 Sincedy =0

r—2 i r—1 r—1
Yo i <q T —a<g T -1

and d! =6;, 0<i¢<r—1.Alsov = v/ + 1 so that
3

r— r—2
Zi:;(ﬂri‘%—&)Zzizo(ﬂg-i-'yg—é;)—1+q=u(q—1)
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asrequired. If 5o > Otake 3, = f;and | =;, 0 <i <r—2.Thend =dp—1, §, =0;, 1 <i<r—2.

Alsoifk <r—1
k—1

Z (Bi +7:)q" = 6o — 1 # —1(mod q)

and the left-hand side is greater than or equal to ¢* if and only if it is greater than or equal to ¢* — 1. It
follows that v = / + 1. Consequently

r—1

Zi:o

Ife=1takey, =~ and 3. =f3;, 0<i<r—2. Thend, =4d;, 0<i<r—2andv =r"+ 1so that

(ﬂi‘i"}/i_éi):Z::_j(ﬁz{—i_’}/z{_éz{)_1+q:l/(q_1)'

ZI;;(ﬂz + v — 51) = y’(q - 1) + (ﬂ’r—l + Yr—1 — 57._1) = y(q — 1)

Lemma 7.4

Suppose 3; and ~; are two periodic sequences of integers with period r. That is (; 1, = (3; and
Yitr = v; forall i inZ. Suppose 0 < 3; < q—1, 0 <~,; < q— 1 foralli and that none of the numbers

r—1 .
€k = Zizo (Bitk + Yitr)q'

is divisible by ¢" — 1. Let
r—1 i 7‘—16 i da" 1
Zizo(ﬁri-%)q :Zi:[) iq" (modg" —1)

with0 < §; < ¢g—1and Z;;()l 8;q" < q" — 1. If u is the number of ¢, 1 < k < r, which are greater
than or equal to " — 1 then

Z: (Bi +7vi = 0;) = plg — 1).

Since 9 < 2(¢" — 1) and is not divisible by ¢" — 1 it is less than 2(¢" — 1). Thus all we need do
is show that the p of this lemma is equal to the v of the preceding lemma. Observe first of all that
e;>q" —1lifandonlyife; > ¢".

Supposecy < ¢". If1 <k <r

ZT l(ﬂﬂr%)q <q"

so that
r—1 —k _ r—k
E _ Bt vi)g < q k.

Thus, if x> ¢,

r—k—1

q" < Z 5z+k +%irk) 4"+ Z (Bisre + i)’

7" ’“Z B+ vi)g +a "
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and
k—1

> Bt = 4"
Conversely if1 < k < rand

Zk l(ﬂﬂr%)q > q",
then

r—1

2 ico

(Bik +Yirr)d' > Z ﬂz+k + Yirr)q'
=q" ’“Z B+ i)d > d"

Thus . = v in this case.

Now supposeeg > q¢". If 1 < k <r

k—1

ZT 1(5z+%)q >q" —Z (Bi +7:)d" > q" —2(¢" — 1).

k—1

> Bt =d" 1
then

r—1 r—k—1

o Bitk +Yitr) ¢ > Z Bk + Yitk) g+ Z (Bisr + i)’

=q " Zizo (Bi +7i)a" +aq " Zi:k (Bi +)d’
>q M =) +q 7 —2+2¢7"

i

Thus e > ¢" — 1 and hence ¢, > ¢". Conversely ife, > ¢",

q " Z 51 +7i)q = Z::_k(ﬂwrk +Yirk)q'

r—k—1

> T _ A . )
>q Zi:o (Bitr + vitr)a
>q —2(¢"F - 1)

— qr _ 2qr—k +9.

Thus

and again u = v.
Lemma 7.5
Suppose q = p’ is a prime power, ¢ is a positive integer, and (¢,q) = 1. Let fm = 1 (mod ¢) and

if x is any integer let o(x), with 0 < p(z) < g, be the remainder of x upon division by q. If0 < 3 < ¢
and if(x) = p(x)!

Hk . ﬂikiz)) = 1(mod"p).



Chapter 7 37

If ¢ = (1 + ug with ¢, > 0and u > 0 then /% = Ef(mod*p). Moreover
=1 P((B—k)m) _ fyra-t (B - k)m) =1 P((B—k)m)
Hk:o Y(—km) {Hk:o PY(—km) } {Hk=é1 (—km) }

and
/—1 /—1

[T, wt-km =11, " =TI, w(3-®m).

Thus it is enough to prove the lemma with ¢ replaced by ¢;. In other words we may suppose that
0 < ¢ < q. The case £ = 1 is trivial and we exclude it from the following discussion. Finally we
suppose that 0 < m < gq.

Letq—1 =rl+swith0 < rand 0 < s < £. Arrange the integers from 0 to ¢ — 1 into the following
array.

0 1 2 . . . . . . R |
l [+1 [+2 . . . . . . C20—-1
B—1+1
B
r—1)1 (r—1DIl+1 -0 . rl-1
( U ) q
rl rl+1 . . . . .rl+s

Since £ does not divide ¢, ¢ + s = ¢ — 1 does not lie in the last column. Also ¢ — £ lies in the column
following that in which r¢ + s lies.

We replace each number j in the above array by ¢(jm). The resulting array, which is written
out below, has some special features which must be explained. The first column is explained by the
observation z¢m = x(modq). The other entries, apart from those at the foot of each column, are
explained by the observation that, when 1 < j and z¢ + j lies in the first array, o(z + mj) > r while
0 < ¢(myj) +x < q+ rsothat p(x + mj) = ¢(mj) + z. The position of ¢ — 1 is explained by the
relation m(q — ¢) = —m{ = ¢ — 1(mod q). The other entries at the feet of the columns are explained by
the observation that if 1 < j < ¢ — 1then p(jm) > r > 1whilem(q — k) =m(qg—¥¢)+m{l — k) =
o((—k)m)—1(modgq) ifl <k </{—1.

0 m . . . . . . . o((l—1)m)
l m+1 . . . . . . el =1)ym)+1
e((B—1+1)m)
p(Bm)
r;l m—l—:/”—l g—1 . (p((l—2—'s)m)—1

r m+r . . . . e(l—=1)m) -1



Chapter 7 38

Suppose first of all that 5 < ¢ — 1. Then the numbers ¢((3 — k)m), 0 < k < ¢ — 1 constitute
the first 3 + 1 together with the last £ — § — 1 numbers in the array. (The order of the numbers in the
array is the order in which they appear when the array is read as though it were a printed page.) The
numbers p(—km), 1 < k < £ — 1, are the last £ — 1 numbers of the array, that is, the numbers after
q — 1. Cancelling in the product of the lemma the terms in numerator and denominator corresponding
to the last £ — 3 — 1 terms of the array, we obtain

[T S0 T ot s

as required.

Now take 5 > ¢ — 1. Then the numbers 3,3 — 1,...,3 — (¢ — 1) occur as indicated in the first
array. In particular there is exactly one in each column. The numerator in the product of the lemma
is the product of the factorials of the corresponding elements of the second array. The denominator is
the product of the factorials of the elements appearing after ¢ — 1. As indicated ¢ is the element lying
above ¢ — 1. Thus t is larger than any element appearing in a column other than that of £. The product
of the lemma is ¢! times the product of the factorials of the other elements on the broken line divided
by the factorials of the elements at the foot of the column in which they lie. Thus it equals ¢! divided
by the product of all the elements below the broken line except those which lie directly below ¢. But ¢!
is the product of all numbers in the second array except those which lie below ¢t. Thus the quotient is
the product of all numbers which lie above or on the broken line, that is,

s B
] = o — B Al *
szl p(jm) = szl Jjm =m" B! (mod"p)
as required.

Lemma 7.6

Suppose that ¢ = p’ isa prime power, that ¢ is a positive integer dividing ¢ —1, that0 < oy < q—1,
that (¢, 1) = 1, and that
st qE -1
g — 7 q— 1 .

Then oy is an integer and 0 < oy < q¢ — 1. Moreover if

= +71q+ . +y_1¢!

with0 <, <qg—1for0<i</{—1then
/-1 -1 . q—l
Zj:o 7= o + Ej:l J- ¢

and
-1

aq =1 jq_ll *
14 Hj:o vl =oq! szl ( 7 > (mod™p).

Certainly 0 < as < ¢° — 1; moreover

1
o =14+q+...+¢" =0 (mods)
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so that ap isaninteger. Letay = ml + kwithm > 0and 0 < k < fandfor0 < j </ let
(L—=1—=5)k=1i;+6;¢

withd; > 0and 0 <i; < . Clearlyi;—; = 0,—1 = 0. Also ({ — 1)k ={¢—k+{(k—1)sothatiy = {—k

and §p = k — 1. If j > 1then (5]'—1 — (5])6 =k+ (2] — ij—l)- Since —/¢ < ij — ij—l <fand 0 < k< ¥

the right-hand side is greater than —¢ and less than 2¢ so that 9;_; —d; isOor 1. Ifitis1thenk+7; > ¢

andi; > £ — k. IfitisOtheni; =i; 1 —k </ — k. Recalling that iy = ¢ — k we see that

S:{jHS]Sg—l and 5j—1_5j:1}:{j’0§j<€ and ij>€—k}}.

We shall prove that

’yo:m-i-’io +k‘—(50

(¢—1)
¢

and
(¢—1)
!/

Since (k,¢) = 1 the numbers i; are distinct and it will follow immediately that

v; =m+ 1, +5j—1_5j 1<5 <4

{—1 =1 qg—1 =1 qg-—1
ijofyj = (m€+k)+zjzoj = +Zj:1 i
Moreover we will have

0—1

L O I A (|

Recall that k£ — 69 = 1. Dividing the first term by

. ()

oI, (i)

The product of the last two terms is

we obtain

-1

szg_k <m+1+j(q;1)>’

If1<n<mand0<j</¢—1thennl—j < a; < ¢so that the product of /™ and the first of these
two expressions is multiplicatively congruent to

H:) Hrzl (nt — j) = (ml)!
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Moreover, if ¢ —k < j</{—1,then0< (m+1){—j < (m+1){— (¢{ —k) = a1 < qand the second
of these expressions upon multiplication by /* becomes multiplicatively congruent to

-1

[T, (=i =TI _, tne+j).

The relations together imply the second identity of the lemma.

To verify that the v;, 0 < j < £, have the form asserted, we start with the relation

, _
¢ =1 ml4+k -1 ¢gik
T ¢ _Z]_:quJij:O v

The second term is equal to

£-1 =1\ g¢—1 B -2 N
ijo{<zizoq> — k}+k_k+zj:0(£—1—j)q A=k,
Thus

1

ap = <m+(€—1)k-q%£1+k>+2j;l (m—l—(ﬁ—l—j)k-%) ¢
= (m—i—i(y%—i—k—éo) +ij <m+z‘j-q;€1+6j_1—5j>.
Moreover m < 2% so that
0§m+i0'%+k‘—50<5‘%+1:q

and ) )
Ogm—l—ij-qT—i—&j_l—&j<€-q7+1:q.

The required relations follow immediately.

Now we can state and prove the promised identities for Gaussian sums. Each of these will amount
to an assertion that a certain number in €,,_1) is 1. To prove this we will show first that the number is
invariant under all automorphisms of £,,_) over £,_1) and thus lies in £,_;. The only prime ideals
occurring in the factorization of the number, which is not a priorian algebraic integer, into prime ideals
will be divisors of p. We show that every conjugate of the number has absolute value 1 and that it is
multiplicatively congruent to 1 modulo every divisor of p. It will follow that it is a root of unity in €_;
and hence a (¢ — 1)th root of unity if ¢ is odd and a 2(¢ — 1)th root of unity if ¢ is even. If ¢ is odd the
multiplicative congruences imply that the number is 1. If ¢ is even they imply that the number is +1.
To show that it is actually 1 some supplementary discussion will be necessary.

Stickelberger’s result is directly applicable only to the normalized Gaussian sum 7(x,). We shall
have to use the obvious relation 7(x., V.) = X« (8)7(xx) if ¥ () = ¥ (Ba). If k is an extension of
and v, is given, we set

Y/a(@) = Ya(Sk/a(a))
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for avin k. If X is given x,,, is the character defined by
X2 (@) = XA (Nig/a ().

Lemma 7.7

If k is a finite extension of the finite field and x, and v, are given then
T(Xee /2 U yn) = 4700, n) J .
since x,./x(3) = xx(8)!"* it will be enough to show that

T(xuyn) = {7000 .

Set
_ {r0a)ye
T(XE/A) .

Let A have ¢ = p’ elements and let x have p* = ¢/. It follows immediately from Lemma 7.1 that
the absolute value of 1 and all its conjugates is 1, that it lies in £,,s_,), that it is invariant under all

automorphisms of ¢,,s_1) over £,;_;, and that its only prime factors are divisors of p. The mapping

af—1

B — N,/ B sends fto 37a—T . Thusif a = a(xx,p) and P divides p

f—1
q
a(Xk/ap) = 1 a=a+ag+...+oq

f—1

Applying Lemmas 7.1 and 7.2, we see that

[e%

() = —p (mod'P)

and
wla

T(Xk/a) = ) (mod™P).

Consequently

p=1 (mod™P).
Thus = 1ifgisodd and = +1if g iseven. If x, = 1 then x,,, = 1 and, from part (b) of Lemma
7.1, wis 1. If ¢ = 2 then x, = 1. Suppose then q is even and greater than 2. If y, is not identically 1
choose a prime r dividing the order of x. Set x» = x)xA where the order of x/, is a power of r and
the order of x/y is prime to . The analogous decomposition of ., is X;/)\X/r:/)\' Of course x, and
X«/x have the same order. Define 1/ and " in the obvious way. According to part (f) of Lemma 7.1

pw=p" (modr).

Since r does not divide 2 this implies that . = x””. Thus one can show by induction on the number of
primes dividing the order of y, that ;. = 1.

Lemma 7.8
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Suppose X is a finite field with q elements, « is a finite extension of \, and [k : \| = f. Suppose
¢ is a prime and the order of ¢ modulo ¢ is f. LetT be a set of representatives for the orbits of the
non-trivial characters of x* of order ¢ under the action of &(x/)\) and let x be a character of \*. If i,
is any non-trivial character of A

@) ]

T T(,U/mq/]/-c/)\) = T(X)\ﬂ/])\) Hl (Xm//\ M, ¢m//\)'

.
M € 1 €T

Since the isotropy group of each point in 7' is trivial

SCN | T OESNON | RSN CIAE)

and we may content ourselves with showing that

700 T L. 7)) =700) ]

T T(Xﬁ/z\ HH)'

M €T js

Of course (%) is the value of  at the element of the prime field corresponding to ¢‘. Let u be the
quotient of the right side by the left. The characters of x* of order / are the characters p*, 0 < k < /,
defined by
F-1
q

Since the order of ¢ modulo Zis f, if T = {uk|k € A} every non-trivial character of order ¢ is
representable as 411" with 0 < i < fand k € A. n(q'k) is the remainder of ¢k upon division by
¢. Thus as we already saw, T" has £ elements. Lemma 7.1 again shows that x and all its conjugates

have absolute value 1 and that 4 is invariant under all automorphisms of &,,s _1) over £,;_;.

Let o = a(xx,p) and let B = a(x4,p). Then la= B+ v(qg— 1) withv > 0. If0 < k < £ let

f—1 f—1 .
q
alp, ) =k- === %

with 0 < 4% < ¢ — 1. In particular, 1§ is the residue of & - % modulo ¢. Moreover if k; = ¢’k
(modulo ¢) then

F-1 .
(i, B) =3 Wi o

It is understood that if j + ¢ > £ then fyﬁ{i = yfii_g. Thus if ¢(x) is the remainder of = upon division
by ¢,

F-1
{7} ke A, 0§j<f}={<p<k-q 7 >10<k<€}.

Certainly

F—1
q
a(Xuyr b P) = T otk (mod (¢f — 1)).

Let0 < k' < fandletv + k =k’ (mod¥). Since, by definition, o = 5 4+ v(q — 1)

F -1 -1 -1 F -1
q otk _q P

g1 ] ¢ g1 7 (mod(g’ —1)).
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Since 0 < 3 < ¢ — 1 the right side is non-negative and at most ¢ — 2. Thusiit is a(Xn/a uk B, Let
L =3 o
a(Xr/x the, B) = o 014
with 0 < 6;? < ¢ — 1. Thus &% is the residue of

-1 F -1
q P4

14 q—1 14

modulo g. Since x,, is invariant under automorphisms of /A
k _ f=1 5’f1 J
a(X/-c/)\ :U’/-wm) - ijo i+i 4

if k1 = ¢*k (mod ¢). Since the residue of q Lo modulo g is o,

f_ f_
{ayu{stlo<j<ts, keA}:{go<q ; 1-qfl+kq ; 1) \O§k<€}.

Since x (£°) = £%* (mod*P) the number 1 is multiplicatively congruent modulo B to the quotient

of o -
ww
T DD DA
ol Tlrea ITj=o 0! hea =0
by
e D S
. 7"
B! erA H] O»yfl keA j—0
Since o1 o1
- kY 0 — k g
Z]_O (a—i_’y]) g = =0 (5] a,

q—
Since ; ;
¢ -1 0 g’ -1
q_l Oé"‘Oé(l,LR,(B) q_l )
the number



Chapter 7 44

is (¢ — 1) times the number of k£, 0 < k < ¢, such that

F -1 F—-1 ¢ —-12p8
q q q

+k- = —+(k+
q—la 14 q—1 ¢ ( V)

The number of such & is v because v < ¢ and

F -1 -1
q B q f f
=+ (- —>1 —1=
01 €+( v+v) ;7 =1+a q
while ; ; ; ;
¢ -1p ¢ -1 ¢ -1 ¢ -1
-+ -1 {—1 =q’ -1
1 U= = <+ (1) — q
Thus

If f/m =1 (mod q)

and

It follows immediately from Lemma 7.5 that

f—1 f-1
¢ o erA Hj:O 5;?! =p erA Hj:O ﬁ!

Thus = 1ifgisodd and u = £1if g is even. If x, = 1 the number p is clearly 1. This time too,
one can apply part (f) of Lemma 7.1 and induction on the number of primes dividing the order of x,
to show that u = 1 if g is even.

Lemma 7.9

Let X be a finite field with q elements and let x be a finite extension of A\ with [k : \] = ¢ where ¢
is a prime dividing ¢ — 1. Suppose x is a character of \* whose restriction to the ¢th roots of unity is
not trivial and x,, is a character of x* such that x*. = x,. /- IFT is the set of non-trivial characters of \*

of order ¢
x0T ) ] (x, ¥a) = T(Xws /)

-
HAET

If o € &(k/\) define x7 by x%(a) = X,i(of’il). Since X7\ = Xw/xs X2t = xuynand X tisa
character of order /. If y2~! = 1 for some o # 1 then itis 1 for all o and y,(a) = lifaisa (¢ — 1)th

K

power, that is, if N,/ () = 1. Consequently there is a character v of \* such that x,. = v,,5. Then
uﬁ =y and x, is trivial on the /th roots of unity, contrary to assumption. Thus

X7 o # 1} = {peyn | ur € T
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If 3 € \*and 3 = N, /»(v) then

xe(B) =[] %" =206 I, X0 0 =28 T, m (),

o#l

because 1) (3) = /2 (7), and it will be enough to show that

a0 00) T i) = m(x0)-

HXET

Let o be the quotient of the left side by the right. Thus x is a number in £,,_1) and the only
primes appearing in the factorization of . are divisors of p. Since x,,» is not identically 1 neither is x;.
Thus the absolute value of i and all its conjugates is 1. Let « = a(xx,p) and let 8 = a(xx,P) where
P divides p. Then

¢
-1
08 = al (mod(q* — 1)).
Since ¢ divides % we can write
¢ ¢
¢ -1 a . ¢-1
8= 2. ,
q—1 ¢ 14

Since the restriction of y to the /th roots of unity is not trivial, « - ‘%1 # 0 (mod (¢ — 1)). Thus ¢ does
not divide c. Forall 7 > 0

T@f)ZTWQ-

Moreover
i at -1 « at —1 - ¢ -1 o , ¢ —1
p = | t—1 — —j¢" -1
a(m,%> 17 7 + (g )q T o7 =)
-1 -1 -1
_ 4 a, [q il
q—1 /¢ q—1 l

o(xl ) = 7 (mod(g —1)).

Both sides of this congruence are non-negative and less than ¢ — 1. Thus it is an equality and we can

£_ . i . .
assume that § = quf - 7+ The set T consists of the characters pwh, 1< j <£—1,defined by

o, B) =7 (4 1)

Under the automorphism z — 2™ of k,(,c_1) over k,._; the number 4 is multiplied by
X=1(m) xa(m) [1,.,er #a(m) which is 1 because m belongs to A. Let

ﬂz%—i—%q#—...—i—w_lqe_l
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with0 <~; <g—1. Then

e . 1
7(Xk) = 7—1 (mod™P), e= Z 0 Vis
H]:O J I
and
-1 , 0o =1 g—1
7\ — * [ L=
@m0 [ 76) = AT G0, (mod"), &' =a+d i

Lemma 7.6 implies immediately that © = 1 (mod™B). Thus u = 1if ¢ is odd and . = +1 if ¢ is even.
If ¢ is a prime divisor of ¢ — 1 different from ¢, we write x as x xs where the order of x/ is a power
of ¢/ and the order of x¥ is prime to ¢. In a similar fashion we write x,. as x/.x/.. The pair x4 and x/.
also satisfy the conditions of the lemma. The final assertion of Lemma 7.1 shows that, if ;/’ is defined
in the same way as i, 1 = /. Arguing by induction we see that it is enough to verify that ;» = 1 when
the order of x, is a power of £. Applying the last part of Lemma 7.1, again we see that there is a prime
q dividing £ such that

T(xa) =7(xs) =7(1y) =1 (modq).

Since x(¢) is an ¢“th root of unity for some w,
xA(¢) =1 (modq).

Thus i =1 (mod¢) and p = 1.
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Chapter Eight.

A Lemma of Lamprecht

Let F' be a non-archimedean local field and let ¢ be a non-trivial character of F'. n = n(yp) is
the largest integer such that v is trivial on P.". If x r is a quasi-character of Cr, m = m(xr) is the
smallest non-negative integer such that x is trivial on Uz'. If v in CF is such that yOp = }?Jr” set

N fUF Vr <%> X;ﬂl(a)da
Ay(xF,YF;Y) = UUF U <%> X;ﬂl(a)da"

Then
A(xr,vr) = xr(7)A1(XF, YF, 7).

As suggested by Hasse [8], we shall, in the proofs, of the main lemmas, make extensive use of the
following lemma which is central to the paper [10] of Lamprecht.

Lemma 8.1

(@) Ifm =m(xr) = 2d with d integral and positive there is a unit 3 in O such that

Oz

(e <7> =xr(l+x)
for all z in L. For any such j3
) — By -1
A1(xF,¥F;Y) = YF 5 ) Xr (B).

(b) Ifm =m(xr) = 2d + 1 with d integral and positive there is a unit 3 in O such that, for all z in
d+1
F 1l

YF (%) = xr(1+x).

For any such 3, Ai(xr,¥r;7) is equal to

B\ 4 foF/pF YF (‘WT:C) X' (14 0z)dz
Yr <_> Xr (B) . ——
7 UOF/PF YF <T> XF (l-l-(;x)dx‘
if50p = P

Let m = 2d + € with e = 0 in case (a) and € = 1 in case (b). The function ¥ <%> , x€0F, y€

<€ can be regarded as a function on

Or /PE x PE/BH.
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For fixed x it is a character of PL /P which is trivial if and only if x € ¢ and for fixed y it is a

character of O /P% which is trivial if and only if y € P2, Thus it defines a duality of Or /3% and
PLE /P, The existence of a 3 such that

yr(1+2) = ¥r (%)

for 2 in L follows immediately from the relation
xr(l+z)xr(14+y)=xr(l+z+y)

which is valid for 2 in LS. The number 3 must be a unit because y (1 + z) is different from 1 for
some z in PP

In case (a)

is equal to

/ st (%) () { /qB e (@) dx}da.

The main integral is 1 or 0 according as o — 3 does or does not lie in §p%. Thus this expression is equal

to
Yr <§> Xz (B8) [Ur : UL

The first part of the lemma follows.

d
F

In case (b)

is equal to

/UF/U;“ Yr <%> Xr'(a) {[3?1 YF <@> dx}da.

The inner integral is 0 unless a — G lies in Plii when it is 1. Thus this expression is equal to

1)
Yr (g) Xp (B) [Up : UE™! /OF/‘BF Yr (%) Xp' (14 dz)dz.

The second part of the lemma follows.

The number 3 is only determined modulo $3%.. When applying the lemma we shall, after choosing
0, set

B -
Ao(XF,YF;y) = YF <; XFl(ﬁ)
and then define As(x#, ¥ r;7y), which will be 1 when m is even, by the equation,

Ai(xr,¥r;y) = Ao(XF, YY) As(XF, YF; ).
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When we need to make the relation between /5 and  explicit we write 5 as 3(xr). To be of any use
to us this lemma must be supplemented by some other observations.

If K is a finite Galois extension of F’ any quasi-character xr of Cr determines a one-dimensional
representation of Wy, whose restriction to C'x is a quasi-character x i, 0f Cx. The character xx/p
may be defined directly by

Xi/r(a) = Xr(Ng/ra).

More generally, if £ is any finite separable extension of F' we define xg,r by

Xe/r(@) = Xr(Ng/pa).
To apply the lemma of Lamprecht we shall need to know, in some special cases, the relation between
B(xr)and B(xg/r).

Suppose m is a positive integer and m = 2d + € where ¢ is 0 or 1 and d is a positive integer. Let
m/ = Yg/p(m—1)+1and letm’ = 2d’ + <" where ¢’ is 0 or 1 and d’ is a positive integer.* Since v, p
is convex
m—1

1 1 1
YE/F <T> < svYg/rp(m—1)+ 5 VYe/r(0) = 3 (m'—1)<d +¢

and
d +e =vg/p(u)

with u > mT‘l Since the least integer greater than T”T‘l isd + ¢, Lemma 6.6 implies that
Ng,p (Ug’+€’) < UE < Udte,
In other words, if € L <" then

Np/p(1+z)— 1€ Pete.

Lemma 6.6 also implies that

ifz € P2 Ifz e PLH and y € P’ then

Ngyp(l+2z+y)—1=Ng/p(l1+2)Ng/F <1 + 7 > -1

is congruent to

modulo P7. Thus if z € L and y € PLT" so that zy € P2’ then
Ng/r(l+x+y)—1=Ng/p(l+z+y+ay) —1 (modPg).

The right side is
Ng/p(1+2)Ng/p(14+y) — 1,

* We are here dealing not with an additive character, but with the function of Chapter 6!
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which equals

{Ngr(1+2) =1} +{Ng/pr(1 +y) = 1} + {{(Ng/r(1 +2) — 1) (Ng/r(1+y) — 1)}

and this is congruent to
{Ng/p(1+2) =1} + {Ng/p(1 +y) — 1}
modulo ‘B’%. Thus the map

is a homomorphism from ‘,B‘,ZE/JFE//‘B@/ to BLTe /P, If E C E' we canreplace F by E, E by E', m by
m/, and m’ by g /p(m’ — 1) + 1, and define P/ g. Since Y/ /p =Yg /g 0 g r and

the relation
Pgp = Pg/roPr/p
is valid.
Ifn = n(yp) and n’ = n(yg,r), choose v in Cr so that ypOp = PET" and v in Cg so that
veOr = By +7° | apologize again for the unfortunate conflict of notation. Y/ is on the one hand

a function on {u € R|u > —1} and on the other a character of E. However, warned one again, the
reader should not be too inconvenienced by the conflict. Define

Pj g Op/B% — Op/%Y

x P, P ()
¢F< ]i//FF(y)> :¢E/F< E/F ?/)

YE

by the relation

It will often be necessary to keep in mind the dependence of PE/F on vr and vg. Then we shall write

PE/F(QC) = PE/F(ﬂf;’YE,VF).
It is clear that

Pgp(@;vevr) = Pgryp(Pg p(T76,7F)i Y, VE)-

Lemma 8.2

Let K/ F be abelian and let G = & (K /F'). Suppose there is an integer t such that G = G; while
Giy1 = {1}. Supposem >t + 1 and m > 1 and ~r is chosen. If ur belongs to S(K/F), the set of
characters of Cr /Nk rCk, then m > m(ur) so that for some o(ur) in Or

pr(l+2) =9Yp <M>

YF

for all x in ‘13353“5. The element v may be taken equal to vr and ifPI*(/F(ﬂ) = PI*(/F(ﬂ; Yr,YF) then

Niyr(Pieyp(8) =[] (B+ a(ur)) (mod i)

HF
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forall 3in Op.

Ift = —1then n(yr) = n(¢k,r) and m’ = m so that yx may be taken equal to yx. If t > 0 the
extension is ramified. Let ‘Bif/F be the different of K/ F. Then

n(Yr/r) = [K : FIn(Yr) + 6k /p-

By definition
Yp(m—1)=t4+[K: F](m —t—1).

By Proposition 4 of paragraph 1V.2 of Serre’s book dx/p = ([K : F] — 1)(t +1). Thus
m* +n(Yr/p) = [K: F](m+n(yp))

and we can again take vx = vyp.

Since m(pp) =t + 1 we have m > m(up) and

pr(l+z+y)=pr(l+x)pr(l+y)

for x and y in ‘,B?,“. Thus the existence of a(ur) is assured. The last assertion of the lemma will be
proved by induction. We will need to know that if 2 = y(mod B ) then

Nk px = Nig/py(mod Pg).

When proving this we may suppose that Ox = B’ with r < d" and that £ belongs to Og. Then

— X

If » > d there is nothing to prove. Suppose r < d. If ' —r = 9 k/r(u) and s is the smallest integer
greater than or equal to u the right side belongs to &]3‘}”. Since the derivative of ¢, r is at least one
everywhere ¢i /p(u + 1) > d'. But

m' —1

d >
D)

1 1 -1
=3 VYi/p(m—1) + B VYi/r(0) > Y/r <mT> .

Thus uw +r > mT‘landerrzd.

Suppose FF C L C K and L/F is cyclic of prime order. Let H = &(K /L) and let G = &(L/F).
Certainly H = H, while H;, = {1}. Since ¢ ,p(t) = ¥/ (t) = t, we have ¥, ,p(t) = t and, by
Herbrand’s theorem,

G,=G =HG'/H =G/H =G.

Moreover t + 1 = v/ p(t + &) with § > 0 so that
G =G =HG™W/H = H/H = {1}.

Finally, ¢r,/p(m —1) +1 >t + 1 so that L/ F and K /L, with m replaced by v,/ (m — 1) + 1, satisfy
the conditions of the lemma. S(L/F) is a subgroup of S(K/F). If ur and vg belong to S(K/F) then
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pr/r = vp,p if and only if ur and v belong to the same coset of S(L/F). Take S to be a set of
representatives for these cosets; then

S(K/L) =A{pr/r |nr | pr € S}

We take a(puprvr) = a(pr) + a(vr) if pp belongs to S and vg belongs to S(L/F). If ur belongs to S
we take a(ur,,r) to be PL*/F(O‘(NF))- If the lemmais valid for K /L and L/F then

NK/F(PI*(/F(ﬁ)) = NL/F(NK/L(PI*(/L( z/F(ﬁ)))

which is congruent modulo P to

Neye (T1, _o(Pise(8)+ Piye(alur)))

or
[, o tNu/w(PLyp(8+ alur)}.

This is congruent modulo P¢ to

HuFES Hypes(L/p){ﬂ +a(pr) +a(vr)}

which equals

HuFGS(K/F){ﬁ + a(pr)}-

Thus it is enough to prove the lemma when K/ F'is cyclic of prime order. In this case more precise
information is needed and the assertion of the lemma will follow immediately from it.

Lemma 8.3
If K/ F is unramified and m > 1 we may take PI*(/F(ﬂ) =f.
According to paragraph V.2 of Serre’s book

Ngyr(1+y) — 1= Sk/r(y) (mod Pg)

ify € PL+' Thus Py r(y) = Sk, r(y) and
T Py /ry T
vr (—K/F ) — Yp (—y) |
YF YF

Suppose K/ F is abelian, totally ramified, and [K : F] = /¢ is an odd prime. If d > t + 1 we may
take Py, (8) = f.
The relation

Lemma 8.4

m =t+14+lm—-1—t)=lm—(t+1)(¢—1)
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implies that m’ = m (mod 2), ¢’ = ¢, and

— l—1
d =1td+ (e—t—l):d—i—T(m—t—l).
Since
-1
T(m—t—l)Zm—t—lZd—i—s
we have
d'+¢ >2(d+¢e)>m.
Moreover

Q(d/+5,)+5K/F > m'+5K/F
l - l
so that by Lemma 5 of paragraph V.3 of Serre’s book

Ng/p(1+x) — 1= Sk p(r) (modPx')

if 2 € PL . The lemma follows.
Let p be the characteristic of O /B .
Lemma 8.5

Suppose K/ F' is abelian, totally ramified, and [K : F'| = ¢ is an odd prime. Supposet+1 < m <
2t + 1. Choose a non-trivial character ;1 in S(K/F'). We may choose o = o) so that aOp = By,
ifm=1t+1+wv,sothata = Ni,rpay for some a;y in Ok, and so that

axr
ur(1-+2) = v (22
F
for x in‘B%.. Here s is the least integer greater than or equal to % If ( is a (p — 1)th root of unity in F
there is a unique integer j with 1 < 5 < p — 1 such that { — j lies in 3. Set H% = ufp. We may take
a(u%) to be Ca. If 3 belongs to O we can find a 3, in Ok such that 8 = Ng 31 (mod BL). Then

e/ p(0) = 5= By - (mod B).

purp(l4+z) =Yg <%>

for z in ‘B3, then, necessarily, «Or = P7. Choose §; in Ok suchthat 6,0k = P andsetd = N o1,
Set o = wd where w is yet to be chosen. We must have

pr(l+z) =9Yr <w—5x>
YF

if z € P%. This equation determines the unit w modulo P% if » = ¢t — s. Since any unit is a norm
modulo 3. we may suppose w = Ng pwi. Take aq = wedy. (1 exists for a similar reason.
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The number ¢ — j must lie in pOp. But K/F is wildly ramified, because 2t +1 >m > 1, { =p
and p = Sk /(1) so that, by paragraph V.3 of Serre’s book, p belongs to B} if u is the greatest integer
in

t+1
5

However d + ¢ > ssothatd + ¢ +u >t + 1 and, if = belongs to PE=, (¢ — j) lies in P&, Thus

Ur <M> =pr(1+((—jz) =1

YF

; (t+1) >

and .
pp(L+a) = pp(l+a) = ¢r <ﬂ> = p <<O‘—x>
TF TF

Since
23+5K/F S t+1+(5K/F

l - L
The lemmas of paragraph V.3 of Serre’s book imply that

=t4+1.

Ni/p(1+3) =14 Sg/p(2) + Ngyp(z) (mod PE)
if z belongs to ‘B3, and then
1= pr(Ng/p(1+2)) = pr(l + Sk/p(x) + Ng/p()).
As we observed d + ¢ > s. Moreover d + ¢ < t + 1 so that

d 0
CHEFTORIF S g e

and Sy, r(z) and Nk, p(z) belong to PE if 2 belongs to P& . Thus, for such z,

op <QNI;;F(95)> — yp <_O‘SK/F(J3)>.

YF

Again
2 d, ! 1)
(d'+¢€") +0k/F S

so that
Ng/p(1+x) — 1= Sk p(v) + Ng/p(z) (mod PBE)

if 2 € P Moreover
l—1
d’—i—s’zd—i—s—i—T(m—t—l)Zd—i—s

so that Nk, (z) and hence Sk () belong to ‘Bifra. Thus
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But $,z/a belongs to L+~ and

d+e —v=d+e+ v—v>d+e

so that

(o (%) — ¥r <ﬂSK/F(I)r;/BNK/F(x)>

which equals
Biz

BSk/rp(x) —aS o a -
or K/F K/F( ) — Yr/r ((5_ﬂ> _)

TF (€51 TF

as required.
Lemma 8.6

Suppose K/ F is a wildly ramified quadratic extension,m >t +1,and m =t + 1 + v. Let ur be
the non-trivial character in S(K/F'). If 3 belongs to O there is a 3, in Ok and a é in U} such that
B = 6Ny 1 (mod PE). We can choose a = a(pur) so that

pp(1 4 2) = ¥p (O‘i“”)
YF

if x is in ‘B3 and so that o = N /PO for some o in Ok . Here s has the same meaning as before.
Thus, if r is the integral part of %, t 4+ 1 = r + s. With these choices

prad

aq

v (8) =8 — (modpg’) .

If 3 = 0 the existence of § and f3 is clear. Otherwise we can find a 3; such that Ng,r31/8 is in
UL.. We choose § accordingly. If m = ¢+ 1+ v and

adx

pr(1+ ) = ¥ (—)

YF

for z in P% then Opa = PL.. Choose 7y in Ok so that O = P and setn = Ny pnr. Seta = wn
where w is yet to be chosen. We must have

pr(l+2) = U (“’”‘”")
YF

if z € P%.. This equation determines the unit w modulo 7. Since any unit is a norm modulo % we
may suppose w = Ng pwi. Take a; = w1,

Since the extension is quadratic

Ng/p(14+2) =14 Sk p(x) + Ng/r(2x).
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Since

3+5K/F _ S+t+1 > g
2 2 -

both Sk, r(x) and Nk /p(x) are in B3 if 2 belongs to P and

. <a5N;<;F(x)> — ¥ <—a55K/F(x)>.

VF

We have m’ =2m — (t+1)and d' =m —s,sothatd + ¢’ =m —randd + ¢ —v =s. Thusifx

belongs to PL+’

BNk r(z) = adNg/p <%1x> (mod PE)

and (1x/aq lies in P5.. Consequently

P
v (—ﬁ K”“”) — Yxr <<ﬁ—mo‘—5> i)
YF a1 ) VF

as required.
Lemma 8.7

If K/ F is a tamely ramified quadratic extension and m > 2 we may take P;; / #(B) = 8.

Noticethatt +1 =1sothatm >t + 1. Inthiscasem’ =2m -1, d =m—1,and d’ +¢< = m.
If 2z € pdte
Ng/p(1+x) =1+ Sk p(v) + Ng/p(x)
is congruent to
modulo ‘B’%%. The lemma follows.

To complete the proof of Lemma 8.2 we have to show that if K/ F is cyclic of prime order

Ni/e(Prp(8) =] (8 +a(ur)) (mod Pf).

pr€S(K/F)

We consider the cases discussed in the previous lemmas one by one. If the extension is unramified we
may take all the numbers «(ux) to be 0. The congruences then reduce to the identity 5" = ". The
same is true if K/ F is cyclic of odd order and d > t + 1 or K/ F'is quadratic and ¢t = 0. If K/F'is cyclic
ofodd order fand t + 1 < m < 2t + 1 the right side becomes

/Bﬁ . 50/—1.
If 5= 0(mod ‘,B%) both sides are congruent to 0 modulo S]ijﬁ. Suppose 3 does not belong to ‘B‘;@ and
ﬂOF = ‘,]31}? Then ﬁlOK = gﬁp?{ and
(6%
NK/F (ﬁ - b —>
Qg
is congruent to

{— . .
ﬂ@ _ﬂaé—l _’_Zi:i(_l)zﬂﬁEz <%>
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modulo ‘13‘;2. If z € K then E(z) is the ith elementary symmetric function of = and its conjugates.
Moreover 3;a/(a; belongs to ‘,13%_1) =) fp_1>i>1

=1 (v—u)+(—-1)(t+1) - (—1)(v+t+1)

7 7 — fu.

The right side is

Lgl)m—puZd—ﬁu.

The argument of paragraph V.3 of Serre’s book shows that
(% _
Ng/r <5 - b a_1> =B — Ba’"! (mod Pir).

For a wildly ramified quadratic extension we use the notation of Lemma 8.6. The right side of the
congruence may be taken to be 32 + Bad. The identity is again non-trivial only if 30r = % with
u < d. Then the left side may be taken to be

8% = 365k F (%) + 6%aNk rb

which is congruent to

B2+ aBs — 8258k, p <%>

modulo P¢. Since
v—u+t+1 _m
2 2

we have

B82Sy p <%> =0 (mod P).

Suppose x r is a quasi-character of Cr, m = m(xr), and 8 = B(xr). If, as sometimes happens,
m' = m(XK/F) we can take 5(XK/F) = P[*(/F(ﬁ)'

Lemma 8.8

Suppose K/F' is Galois and G = &(K/F). Suppose s > 0 is an integer and G° = {1}. If
m = m(xr)andm > s then

m' =g p(m—1)+1=m(Yg/r).
It follows from paragraph V.6 of Serre’s book that
P v v
NK/F(UKK/F( =up

if v > 5. Thus x/p is trivial on Uy if u > g /p(m — 1) but is not trivial on Ul ifu= Y /p(m—1).
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We can now collect together, with one or two additional comments, the previous results in a form
which will be useful in the proof of the first main lemma. We use the same notation.

Lemma 8.9
Suppose K/ F is a cyclic extension of prime order ¢, xr is a quasi-character of Cr, m(xr) >
t+1, m(xr) > 1, and m(xx/r) — 1 = Yr/r(m(xr) — 1).

(@) If K/F is unramified we may take 3(xx,r) = B(xr) and B(urxr) = B(xr) for all ur in
S(K/F).

(b) If¢is odd and d > t + 1 we may take 3(xx/r) = B(xr) and B(prxr) = B(xr) for all prp in
S(K/F).

(c) Iftisoddandt+ 1 < m < 2t + 1 and ur is a given non-trivial character in S(K/F) we may
choose o = a(ur) = Nk pay asin Lemma 8.5 and 3 = 3(xr) = Ng/pf1 for some 3y in Uk.

Then we may choose
(6%
B(xr/r) =B — B o

(07

and
5(#%)@) = Ng/r(B1 + Caa).

(d) If ¢ is 2 and K/F is wildly ramified we choose & = «a(ur) as in Lemma 8.6. We may choose
B = B(xr) in the form 6 Ny 31 with § in U},. Then we may choose

ad
B(xx/r)=08— 581 —
aq
and
B(urxr) = B+ ad.
(e) If¢is2and K/F is tamely ramified we may take 3(xx/r) = B(prxr) = B(xr).
Only part (c) requires any further verification. It must be shown that
Ni/p(B1+ Car) = B+ Ca (mod Bih).

The left side is congruent to

¢
ﬂNK/F <1-|— 3 )

All we need do is show that

Nk/F <1 + %) =1+ % (mod PL).

The right side is

According to paragraph V.3 of Serre’s book the congruence will be satisfied if

v (-1 (E+D)
; > d.
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Butt+1=d+4+xwithz >0sothatd+xz+v=2d+ecandv=d+¢ — z. Thus

v+ (l—-1)(t+1) dte—ax+{—-1)(d+x) e+l —-2)x
7 = 7 —d—FﬁZd.

The preceding discussion has now to be repeated with different hypotheses and different, but
similar, conclusions.

Lemma 8.10
Suppose K/F is abelian and G = & (K /F'). Suppose there isat > 0 such that G = G, while
G ={1}. If2<m <t+1thenm = ¢K/F(m — 1)+ lisjustm. Lett +1 =m + v, leté be such

that 60f = ‘B?FH"(W), letey in Ok be such that e;Ox = P, and lete = Ny pei. We may choose
vr = 6/e andyx = &/e1. Letr be the greatest integer in ‘11 and let s = t + 1 —r. If up is a non-trivial
character in S(K/F) thenm(ur) =t + 1. Let

(14 2) = p (5(/@)95)

4]

for z in*P3. Then

g Hu#l(ﬂe +B(kr)) = Ni/r(P/p(B))  (mod B).

The relation m’ = i /p(m — 1) + 1 = m is an immediate consequence of the definitions. Since the
extension is totally ramified

n(gp) =K : Fln+ ([K: F]=1)(t+1)

if n =n(¢r). Thus
m+n=(t+1+n)—v

and
m' +n(xp)=[K:Flt+1+n)+(m—t—1)=[K:F](t+1+4n)—w.

Consequently v and g can be chosen as asserted. The results of chapter V of Serre’s book imply that
m(up) =t + 1if up is not trivial.

We saw when proving Lemma 8.2 that if z = y(mod P& ) then Nk rz = N, py(mod Pi) and
that if ¥ C L C K both L/F and K /L satisfy the conditions of the lemma. For L/F, & is replaced
by Ng,re1 and, for K/L, ¢ is replaced by Ngre1. Take Q*L/F to be PE/F in the special case that
m=t+ lande; = 1. Then

N x P} x
bor < K/L(51)5 L/p(ﬂ)) . <5PL/§( )ﬂ)

by definition. The right side is equal to

Yr/F <7x Q*L/;(Eﬁ)> }
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Thus
Q*L/F (eB) = NK/L(EI)PE/F(ﬁ) (mod Py,).

If 1 belongs to S(K/F) butnotto S(L/F) then m(ur,r) = m(ur) and B(ur,r) may be taken to be
Q7/r(B(pr)). Let S’ be a set of representatives for the cosets of S(L/F) in S(K/F) — S(L/F) and
suppose the lemma is true for K/L and L/F. Then

Ni/r(Prp(B)) = Nojr(Niyo (P (P r(8))))

is congruent to

Noye(Pre(B) T {Nk/r(e1)Prr(B) + QL r(B(1r))})

pnr €S’

modulo B<. This in turn is congruent to

NL/F(PE/F(ﬁ))H NL/F(Q*L/F(ffﬁ‘f‘ﬁ(MF)))-

ur€eS’

Applying the induction hypothesis to the first part and Lemma 8.2 to the second, we see that the whole
expression is congruent to

ﬁ{HuFES(il/F)(gﬁ"i‘ﬁ(VF))} {H pres’ (55+ﬁ(uF)+5(VF))}

vpE€S(L/F)

modulo PB4 as required.
Once again we devote a lemma to cyclic extensions of prime order.
Lemma 8.11

Suppose K/ F is cyclic of prime order ¢ and 2 < m < t + 1. Choose a non-trivial character pp in
S(K/F). Thereisan o in Ug such that if « = Ni/pon

pr(l+z) =9Yr (%)

for z in P}. If 3 belongs to O there is a 31 in Og such that 3 = Nk ,p (1) (mod B). Then

P/ p(8) =08 — ~ 6 ai (mod PBE).

Since () is determined only modulo B3 and s < ¢ we can take 3(uur) = N/ paq for some a;
in Uk . The existence of (3; also follows as before. Sincet +1 > m

2(d' +€)+ (£ -1)(t+1) o m+(—1)(t+1) -
¢ - 4 -

and
Ng/r(14+2) =1+ Sk r(2) + Ng/r(z) (mod Pr')
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if  belongs to P <", Thus

o () o () o (22)

Butd +¢&' +t>t+1sothat

€16

aq

Ng/r(e12)B = aNg/p < x) (mod PLH)

Sincet+1=m+uv, d+¢e +v>sandify = 29 . 2 then y which lies in L+ also lies in s,

But o
2+ (t+ 1)(£ — 1)

14

>t+1

so that
Ngp(l4+y) =1+ Sk/p(y) + Ni/r(y) (mod Pit).

op <_QNI§/F(ZU)> — up <04SK(/SF(?/)> '

P p
(3 <%> =YK/F (%1 (é’ﬂ—o%'&)ﬂf)

To complete the proof of Lemma 8.10 we have to show that when K/ F is cyclic of prime order, ¢

Consequently

In conclusion

as required.

BIL, B+ Blur)) = Niyp(Picsp(8)) - (mod )

Since 2 < m <t + 1 the extension is wildly ramified, ¢ = p, and once the character ur is chosen as in
the previous lemma we can define ,u% as in Lemma 8.5. The left side is congruent to

ﬁ (/68—158—1 + (_1)80/—1) )

If 3 € PB4 this is congruent to 0 and so is the right side. Suppose 30r = P% with u < d. The right
side is congruent to

Ng/r <5i - b i) = Ba’ 'Ny/p <ﬁ SR 1) .

a1

Since
(E—l)(u—kv)—k(ﬁ—l)(t—i—l)>£—1' t+1

this is congruent to
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Since
BNk (B7') =1 (modPu ™).
We see that
BN/ B = B (mod Piy)

and that the expression (8.1) is congruent to
5555—1 + (_1)650/—1

modulo B4..

Lemma 8.12

Suppose K/ F is abelian and G = & (K /F'). Suppose there is an integer t such that G = G, while
Gi41 = {1}. Let xr be a quasi-character of Cr and suppose 2 < m(xr) < t+ 1. If m(xr) < t+1
thenm(xx/r) = m(xr). Ifm(xr) =t+1thenm(urxr) < t+ 1 forsome ur in S(K/F) if and only
ifm(xx/r) <m(xr).

It follows immediately from Lemma 6.7 that if xr is any quasi-character of C'r and F any finite
separable extension of F' then

m(xe/r) —1 < Ye/p(m(xr) —1).
In the particular case under consideration Lemma 6.10 shows that if m = m(xr) < t then
Ngp : UR~ UL — UR~1 UL

is an isomorphism. Thus x k() will be different from 1 for some « in Ut and m(xx,/r) Will be
atleast m. If m(xr) =t + 1 then m(upxr) is less than ¢t 4 1 for some pp in S(K/F) if and only if xz
is trivial on the image of UL /Ut " in UL /UL This is so if and only if m(xx,r) < t.

We shall need the following lemma in the proof of the first main lemma.
Lemma 8.13

Suppose K/ F is cyclic of prime order, x i is a quasi-character of Cr with m(xr) <t + 1, and
m(xk/r) = m(xr). Choose o, ay,¢e,e1 in Lemma 8.11. We may choose 3 = B3(xr) = Nk /1 with
061 in Uk and we may choose

g (6%
B(xx/r) =B o B1 —

aq

Moreover m(u%x r) =t+ 1 and we may take
Blusxr) = Ni/p(Car +e11).

Since 3(x r) is determined only modulo B34 and d < ¢ the existence of 3; is clear. It is also clear

that m(,u%XF) =t + 1. The elements 3(xr), B(xx/r), and 5(#%)(1«“) are to satisfy the following
conditions:

(i) If z is in P

xr(1+ ) = ¥p <M> |
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(ii) If 2 is in P&
Xi/r(L+2) = Yip <M>
(iii) If 2 is in P35,
¢
(L4 2)xr(l+2) = ¥p <M> '

We have already shown that 3(xx,r) may be taken to be

ﬂ(ufpxp) must be congruent to (o + €5 modulo B

Ng/p(Cor +e161) = CalNgy/p <1 + 51ﬂ1> .

Co
Since
v+ (0 —1)(t+1) S -1
4 -/

Ca{l + Nk /p (21511)} =(a+ep

(t+1)>r.

The right side is congruent to

modulo ‘B’ *

x(1998) The manuscript of Chapter 8 ends here.
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Chapter Nine.

A Lemma of Hasse

Let A C & be two finite fields and let G = &(k/\). If € k set

wﬁ/)\(a:) _ Z$a1x02
where the sum is taken over all unordered pairs of distinct elements of G. It is clear that

w,ﬂ//\(az + y) = w,_i//\(x) + u),{/)\(y) + Sm//\(x)sm//\(y) - Sm//\(xy)

One readily verifies also that if A < 7 < k then
wm/z\(x) = WU/A(Sn/n(x)) + Sn//\ (wn/n(x))'

Suppose ¥, is a non-trivial character of A and ¢, is a nowhere vanishing function on X satisfying
the identity

ex(z+y) = oa(@)or(y) Yalzy).

Define ¢,/ on x by
A (@) = OA(Si/a () YUa(—wi r ().

Then ¢,/ (z + y) is equal to

OA(Sk/a (@ + 1)) Yx (—wiya(2) = weyr (YY) — Sk/a(®) S/ (y) + Skya(xy))

which is
/A (T) A (V) Vi 2 (TY).

If the fields have odd characteristic the following lemma is, basically, a special case of Lemma 7.7.
That lemma has been proven in a simple and direct manner by Weil [14]. We shall use his method
to prove the following lemma which in characteristic two, when it cannot be reduced to the previous
lemma, is due to Hasse [8].

Lemma 9.1

Let

o(p) ==Y e@)
and let
o(eun) == ul@).
Then
o(pryn) = ()l
If
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is any monic polynomial with coefficients in A set m(P) = m and
Xa(P) = @a(a) ¥a(=b).
If the degree of the polynomial is 1, b is taken to be 0; if the degree is 0 both a and b are taken to be 0. If
P(X)=X" —a X" 14y X™ 24

then
PP'(X) = X" _(a4a) X" 4 (b4 4 ad) X2 4
and
XA(PP") = px(a+a)hy(=b—b —aad") = xa(P)xr(P).
If t is an indeterminate we introduce the formal series

Ex(t) = xa(Pm?) = T](1 = xa(P)t™ )~

The sum is overall monic polynomials with coefficients in A and the product is overall irreducible
polynomials of positive degree with coefficients in A. If r > 2

P)=0
Zm(P):T XA (P)

so that
F)\(t) =1- O'((p)\)t.

If we replace A by x, o by ¢, /x, and ¥y by v,,/x, we can define F;/5(t) in a similar way. If
k = [k : A] and T'is the set of kth roots of unity the problem is to show that

I1,., B¢t = Fon(th).

Suppose P is an irreducible monic polynomial with coefficients in X\ and P’ is one of its monic
irreducible factors over . Let m = m(P) and let r be the greatest common divisor of m and k. The
field obtained by adjoining the roots of P to s has degree mT’“ over A and is the same as the field obtained
by adjoining the roots of P’ to k. Thus m(P’) = ™ and P splits into r irreducible factors over x. We
shall show that

k
r

Xe/A(P') = {xa(P)} .
Thusif P{, ..., P! are the factors of P and ¢ = £
H::l{l — XA (PP} = (1 — o\ (P)tm)"

which equals
HceT {1 —xa(P)¢mt™

The necessary identity follows.



Chapter 9 66

Let v be the field obtained by adjoining a root x of P’ to x and let u be the field obtained by
adjoining x to A. If
P(X)=X"—aX™ ' 4bX™2 .

then

a=S,x(x)
and

b=w, ().
Thus

XA(P) = @x(Sua (@) Ya(—wu/a () = @u/a(z).

Since ¢, /() is equal to

PA(Si/a (S0 /s (@))) YA(—wi /2 (Su k(@) + Sya(wyyn(@)))
which in turn equals
/2 (S0 /(%)) Y ya (—wo /().
We conclude that
XA (P') = @y ().
Replacing ~ by 1 we see that ¢,/ (z) equals

(Pu//\(Su/u(*x)) Qz]u//\(_wu/u(*x)) = (pu//\(f.f) ¢u/k <_£ (E - 1) I2> .

One easily shows by induction that for every integer /¢

(o (@)} = g (l2) T, (—e (-1 x) . (9.1)

The relation
Xe/a(P") = {xa(P)}*
follows.

Taking ¢ = A in the identity (9.1) we see that

{oa@)} = pa(lr) s (—e ¢y x)

for every integer £. Moreover {©(0)}? = ,(0) so that ¢, (0) = 1. If the characteristic p of \ is odd
take ¢ = p to see that {y,(x)}? = 1. If the characteristic is 2, take ¢ = 4 to see that {p,(z)}* = 1.
Suppose ¢, is another function on A which vanishes nowhere and satisfies

PA( +y) = P\ (@) ox(y) Yaley).
Then ¢ ¢; ' is a character and for some v in A

P (@) = oalz) ¥a(ox).
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Of course
ex(@)a(az) = pa(z + a)p; (@)
Thus
a(p}) = @y (@) a(pr)-
If a and b are two non-zero complex numbers and m is a positive integer we write a ~,, b if, for some
integer r > 0, (%)mr = 1.
Lemma 9.2

If « € \*, the multiplicative group of A\, let v(«) be 1 or -1 according as « is or is not a square in
A. Suppose ¥\ (x) = Ya(ax), px and ¢\ are nowhere vanishing, and

ox(z +y) = oa(@)ex(y)Ya(zy)

while
Ph (@ +y) = @A (@) A () YA (2y).-
Then
o(@)) ~p v(@)a(pr).
Moreover

a(pr) ~2p lo(ea)l.

Suppose first that p is odd. By the remarks preceding the statement of the lemma it is enough to
prove the assertions for one choice of ), and ¢',. For example we could take @) (z) = ¥ <(‘”—22)) and

if & = 32 we could take ¢ (z) = 1, <@) In this case it is clear that o(¢y) = o(¢). However if

« is not a square, we take ¢\ (z) = 1 (O‘T”Q> Then

olen) toe) =23 (5)=0

A= (-5

so that o(py) = v(—1) o(¢x). Moreover it is well known and easily verified that o(y,) # 0. Since

{o(@} = {v(=1)} lo(ea)l* = lo(ea)[*

With this choice of ¢,

we have
a(@r) ~ap |o(ea)l.
The absolute value on the right is of course the ordinary absolute value.
Suppose p is 2. Again any choice of ¢, and ¢, will do. In this case « is necessarily a square.
Let o = 2. We can take ¢ () = ¢a(Bx). Then o(p)) = o(p,). Itis enough to prove the second

assertion for any ¢, and any ¢,. Let ¢ be the prime field and let ¢, be the unique non-trivial additive
character of ¢. Take 1\ = 1 /4. Let 0(0) =1, pg4(1) = i. One verifies by inspection that

(T +y) = pp(2)0p(Y) e (zy).
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Take px = ¥y/4- Since
a(ease) = {o(pe) 3,
it is enough to verify that
o(pg) ~2 lo(eg)l.

Since o(¢4) = —1 + 1, this is no problem.

If a is a non-zero complex number set

The following lemma explains our interest in the numbers o (¢, ).
Lemma 9.3

Suppose L is a non-archimedean local field and x, is a quasi-character of C, withm = m(x) =
2d + 1, where d is a positive integer. Let);, be a non-trivial additive character of L and let n = n(vy,).
Let~ be such that yOp, = PF*" and let 3 be a unit such that

xo(l+z) =19 <%>

forzx in ‘B%“. Choose 6 so that 6O, = ‘B% and let 1y be the character of A = Oy, /B, defined by

() = v (ﬂf"’:).

If o, is defined by
or(&) = Y1 (—) V2L (1 + 62)
then
ox(z +y) = oa(@)or(y)Ya(zy)
and

As(xr, ¥r, 7) = A[=0(pa)].

In the statement of this lemma we have not distinguished, in the notation, between an element
of Oy, and its image in A. This is convenient and not too ambiguous. It will be done again. The only
guestionable part of the lemma is the relation

ox(z +y) = oa(@)er(y)Ya(zy).

Since
(1+6x) (14 dy) = (1 + 0z + dy) (1 +6%xy) (mod PT)

we have

2
Xz (L4 62) xg ' (1+0y) = xz ' (1 + 62 + 8y) vr <_55 xy) .

The required relation follows immediately.
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There are a few remarks which we shall need later. It is convenient to formulate them explicitly
now. We retain the notation of the previous lemma.

Lemma 9.4
Ifm(pr) < m(xr) then
As(prxz, Yr;v) ~p Az (xz,¥Yr;7)

and ifm(puy) < d we may take B(prxr) = B(xr) and then

As(prxr,vr;y) = As(xe.¥r:v)-

In both cases m(urxz) = m(xz). Moreover if x € 324

o <5(MLXL)$

) () xo(l 4 2) = o (14 2)
Y

which in turn equals

L (M> .

v
Thus
Blurxe) = B(xr) (modPr)
and if ,
inte) = (P
while )
hlo) = vy, (U

then ¢, = . The first assertion of the lemma now follows from the previous two lemmas. It is clear
that we can take B(urxr) = B(xz) if m(ur) < d. Let the common value of the two numbers be §.

Then 5
Y (%) ppt(L+6z)x 7' (1 + 6z)

is equal to

" (%‘“f) i1+ 62).

We see now that the second assertion is completely trivial.
There is a corollary of this lemma which it is convenient to observe.
Lemma 9.5

Suppose m(x ) = 2d + € where d is a positive integer and € is 0 or 1. If m(uz) < d and puy, is of
order r then

A(prxr,¥r) ~r A(XL,¥L).
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Choose ~y in the usual way so that

A(xr,vr) = xo(v) A1(xr,¥r;7)
and
A(prxr,¥r) = xo (Vo (y) Ai(prxe, ¥r;v).

It is clear that
pr(y) ~r 1.

If we take

Blurxr) = B(xr)

then, clearly,
Ao(prXr,vr;y) ~r Aa(XL,%r,7)-

To complete the proof of Lemma 9.5 we have only to appeal to Lemma 9.4.
Lemma 9.6

Suppose K is an unramified extension of L and xy, is a quasi-character of C'y, with
m=m(xp) =2d+1

where d is a positive integer. Let1);, be a non-trivial additive character of F' and letn = n(v,). Suppose
x
xr(l+2z) =19 (%)
wrL

for z in P4T. Take

B(xr) = B(xx/L) = B.

If
Bwlx _
pr(z) =11 <TL+n xp'(1+@ix)
wr,
and if

Bwlzx _
Pr(r) = Yr/L <wTi” Xryo(1+wie)
L

forzinrk = O0x /Px then o, = ¢, . Moreover if [K : L] = { then
As(xk/L, Yy, @) = (1) As(xp, v, @)}

Once we prove that o, = ¢,/ this lemma will follow from Lemmas 9.1 and 9.3. If  belongs to
K let E?(x) be the second elementary symmetric function of x and its conjugates over L. If x belongs
to Ok
Ngp(l+@iz) = (14 @i Sk/rz) (1+ @i E*(z) (mod PP).

Since
E*(2) = weya(z)  (mod Pr)
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we have
r(T) = OA(SK/LT)YA(—wi A () = @r/a(T).

Now suppose K is a ramified abelian extension of L and [K : L] = ¢ is an odd prime. Let
G = &(K/L) and suppose G = G while G;1 = {1}. Suppose

m=m(xp) =2d+1

is greater than or equal to ¢ + 1 and

xL(1+z) =1 <%>
w

L

for z in P{H. Let

l—1
d=0d—|——|t
and if x belongs to O set
/ _ ﬁw%l‘ -1 d’ 2/ _d
() =YKL | XL (1+ Sk/p(wke) + E*(wk)).
L

Suppose also that
wr = NK/LWK'

The assumptions listed, we may now state the next lemma.

/

o

€= Sk/L 2d
wr,

then ¢ is a unit. Moreover ¢, is a function on A = O, /Py, + O / Pk which satisfies

Lemma 9.7

If

P\ (@ +y) = P\ (@) P\ (Y)Pa(ery)

if
5
Ya(u) = vy (#)
If
ea(z) =vr <%> Xp (1 +wiz)
wr,
then

Alo(px)]" = Alo(@))].

Since 7 '
+( —61)(t+1) > d
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the number /

- - / - . ! .
lies in B4 . Moreover E?(w®-x) is a sum of traces of elements in B2, Since

2d' + (L —1) (t+1) (-1
l I

it lies in P24, If z lies in P it lies in P77 and
d/
Sk/r(wk)

lies in 9+ because

, —_— —_—
d +1+(€€ D (t+1) :d+1+t(€ 1) S d4l.
Thus if x belongs to Pg
@) =i (S Sin (o) ) 3 (14 S (o) = 1
L
Since )
B (wi(z +y))
is equal to

EX(wz) + B (why) + Sk (wke) Sk (wky) — Sk yn(@id xy),

the expression
1+ Sg/(wic(z +y) + E*(wic(z + )

is congruent modulo ‘B7" to the product of

1+ SK/L(w}léx) + B (wa)

and
1+ Sk/n(why) + B (wiy)
and
1— SK/L(W?/W)-
Thus
Ph( +y) = P\ (@) (Y)Ya(ezy).
Since

2d'+ (L —1)(t+1)
l
the number ¢ is in Or. We conclude in particular that if y belongs to Pk then

> 2d

O\ (@ +y) = P\ ().
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If t = 0 let o be a generator of G and let . 7 = v. In this case 2d’ = 2d/ and

2d’

2d
w _ _ _
I%d = {HTeG @i } = v (mod Py

and
e = =D (modP)

isaunit. Ift >0

/
w3 = ¥l (mod P

so that .

e =Sk <%> (mod B r).

L

It is shown in paragraph V.3 of Serre’s book that the right side of this congruence is a unit.

First take p odd and let

() = Pa < 2+aas>=% (@) a <_TO[2>

Then

a(px) = =1 <—> Z (N <M> = —y <—Ta?> Z P <%2>

Making use of the calculations in the proof of Lemma 9.2 we see that

=) A= (3)

Alo(on)]f = va(=1)F 9y (

of v, is the non-trivial quadratic character of \*.
Since / ,
is congruent to
{1+ Sk/(wha)} {1 + E*(wia)}

modulo P7* the value of ¢, (x) is

s <(SK/Ly)2 +2a Sk Ly — 2E2(ZJ)>

2
if
d/
Wk
=—==z
Y w%
Thus
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Replacing = by

and summing we find that

a(9}) = ¥ <_£2a2> {—me (?)}

Collecting this information together we see that to prove the lemmawhen the residual characteristic
p is odd we must show that

£—1

V)\(—l)T = V)\(E).
Since v#(¢=1) js certainly a square we have to show that

£—1

va(=1)7 =y ()

when t = 0. If the field X is of even degree over the prime field both sides are 1. If not, an odd power
of p is congruent to 1 modulo ¢ and the relation follows from the law of quadratic reciprocity. If ¢ > 0

then

wt

EESK/L <—{5> (mod‘BL)
w
L
and we can appeal to paragraph V.3 for a proof that
e+uP =0
has a solution in . Thus vy () = vx(—1) and we have to show that

I/)\(—l)T =1.

If p=1 (mod4) then vy(—1) = 1 and if p = 3 (mod 4) the exponent is even.

Before considering the case p = 2, we remark a simple consequence of the preceding discussion.
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Lemma 9.8

Ifp is odd let

72
ox(x) = Py (7 + ozx) .
Ift =0 and

o

o (Gw)
2

A =un ().

then

4()-

and ift > 0

In both cases

S 2) — fa?
N
with )

If t = 0then y = px. Thus if z belongs to Or, as we may assume,

(2)-o () (5o

2
Ift > 0then ¢ = pisoddand

dtd+ (¢ —-1)(t+1) 1

- :E{(z-1)(t—1)—@t}:%{(e-1)+(€;1)t}>1
so that, if x € Op,
SK/L(y+a)2E€:E2 (mod Pr,).

Now take p = 2 so that ¢ is necessarily 0 and again let

(e—1)
M pr l/df%
so that p
w
—£ =4 (modPk)
wr,

IfxisinOp andy = % then

, <x>
P Py
is equal to

lx -1 d l—=1) 94 5
¢L (W) X, <1+£le’+ 9 wr, T .
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Since

(-1 -1
1+ ool + ( ) )w%dxz = (1 +/(wiz) <1+ ( 5 )W%dx2>

A (2) - (2520

{ea2)}".

modulo ‘BT we have

which equals

Moreover
{oa(@)}? = a(22) Ya(—2%) = Pa(—a?).

Since the characteristic is 2 there is an « # 0 such that

Pa(2?) = Pa(ax).
Then the complex conjugate of ¢, (x) is
ex(z)a(az)

and

o(pr) =— Zw ea(z + a)
which equals

“sz‘PA@ﬂwx@wdu(ax)

is equal to

Consequently

Since

we have

if ¢ =1 (mod4) and

if £ =3 (mod4).
We have to show that -
80)\(04)7 — 1
if =1 (mod4) and that
41
pa(a) T =1

if ¢ = 3 (mod4). These relations are clear if £ iscongruent to 1 or 7 modulo 8. Ingeneral if ¢ = 1 (mod 4)

o) T =y <— (G ) 1)8(6 — 3)042>
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and if £ = 3 (mod4)

N O ]

Let ¢ be the prime field and let +), be its non-trivial additive character. Choose «; such that

Vase(z) =¥y (afz).

Then
VA(z®) = Uy <x—z> = Vx/p <£> =y ()
af a
and o = a. Thus
a(a®) = ase(l).

The right side is +1 or -1 according as f = [\ : ¢] is even or odd. But ¢ divides 2/ — 1 so that, by the
second supplement to the law of quadratic reciprocity, f is even if £ is congruent to 3 or 5 modulo 8.

There is a complement to Lemma 9.7.
Lemma 9.9

Ifm(xr) > 2(t + 1) choose B(xk/r) = B(xz) = Bin Op. Ift +1 < m(xr) < 2(t + 1) choose
B(xr) = B and
B(XK/L) =B — B —

«
aq

as in Lemma8.9. Thenm(xg,r) = 2d’ + 1 and

Blxx)whz) '
Q/JK/L <% XKI/L (1+w;l(x)
L

is equal to

ﬂwd/x _ / /
Yr/L <wT§” xo (1+ Sk/L (wha) + B*(whx)).
L

From Lemma 8.8 we have

m(XK/L):1+t+€(m—1—t):2<€d—(g_l)t>+1

as required. Ifd > t + 1 then

((+1) . ((-1)
2 d+ 2

d > (d—t)>m

because 7 is odd. Moreover,

3d/ + (L=1)(t+1) _ m/+(L=1)(t+1)
] = ]

= m.
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Consequently
NK/L(l + w}@x) =1+ SK/L(W?(JU) + E2(w}l<x) (mod PBT)

and the lemma is valid if m > 2(¢ + 1).
Ift+1 <m <2(t+ 1) westill have

3d'+ (0 —1)(t+1)
7 >

m

so that ,

is congruent to
1+ Sk, (@whe) + B> (@) + Ni/o(wk)

modulo ‘B7". Since d’ > d + 1 this is congruent to
{1+ Sk/r(@wk) + E* (@)} {1+ Ny (wier)}

modulo ‘B7*. Certainly

: Nie/1 (@
Xr(1+ Ni/p(wi)) = ¢, <51;/7€1—(JZKI)> :
L

Moreover,ifm=t+1+wv

d—v=d+

v>d>s

if s is the least integer greater than or equal to % Thus, just as in the proof of Lemma 8.5,

B Ny (wha) @ N1 (‘% w%x)
Y | —Sm— | =YL

m+n m+n
L L
is equal to
d/
o (2 =)
L m+n
wy,

Multiplying the inverse of this with

& i
o ((5-22) 2E2)

we obtain

The lemma follows.



Chapter 9 79

If m =t + 1 we may still choose
o
B(XK/L) =B — B —
aq
as in Lemma 8.9. However the relation between ¢, (x) and

Bxr/n) @ke) /
pr(z) =YKL (% XK;L (1+ wix)

L

will be more complicated. Here x = Ok /P is the same field as A = O, /B. We introduce it only
for notational purposes.

Because m = t + 1 the number ¢ is at least 2 and

t

d:d’:a.
Since
3d+(p—1)(t+1) Sl
p
and
d+(p—1)(t+1) S dt1

p

the expression

is congruent to
{1+ Sk/r(wie) + B*(wia)} {1+ wf Ng/ra}

modulo B7* and
xo(1+ Sk (@wka) + E*(whx))

is equal to

m-—+n
wE

v (ﬂSK/L(w}l{x) +5E2(w§l<x)>
L )

According to Newton’s formulae
Skyp(@ia?) — Sk (wha)® + 2E*(wia) = 0.

Thus 1
F*(wlz) = — 5 SK/L(w%d@g) (mod P[").

Observe that p is equal to £ and therefore, in the present circumstances, odd.

Let 41z, be a character in S(K/L) as in Lemma 8.9(c) and let

2
aT 1 d.\ x
(473 <W> pr (1+wiz) =y <p?+7x>
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with
(6%
p=—7-
B

Certainly

if x belongs to Ok . Replacing x by % x we see that

¢L # OéSKL &wdaz - gSKL ﬂ—leQd.%Q +NKL(ﬂ1wd$)
ot / a; K 9 / Oé% K / K

L
2
(U3 <,0%+Tz>

1 P _a 1 Bt o o Pr _a
z = F {SK/L <a—1 wKx> —5 SK/L <?WK$ +NK/L a—lex

L 1

is equal to

which is congruent to

— NK/LxE él‘p
«Q «Q

modulo By
Let
_ px —1 d
ox(x) =Y | =g | X0 U+ @i)
wr
equal

(1N (%2+Ux>.

— ZEQp _ﬂNK LT
et o (200 o (22057).

If x belongs to Ok

We now put these facts together to find a suitable expression for ¢, (z). We may as well take x in

Or. Then ¢, (z) is the product of
I} wﬁl(’x
¢K/L <wm+n

L
and J
pra wix -1 d
YL <— o — Xr (1+@f Ng/rx)
and

Y, (— % {SK/L(W?{x) —% SK/L(W%EZ)}> :

L
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The second of these three expressions is equal to the product of

2P 1 2P 1
¥ <7 +03€p> U <—ﬂ_ - P Tﬂﬁp)

a52w2da§2 c ﬂ2
v (- ) = (- Pk
ag

2
201 w;

wo2d
= (Zh).

The product of the first and third is equal to

l‘2
“ ()

As proven in paragraph V.3 of Serre’s book the elements of U, congruent to

and

1+ (ex +2P) wh,
modulo B are all norms, so that

Ya(paP) = Pa(—pex).

ﬁ2 a 2p y
¥ (— Z’ag x2> = Yy (p 1%)

In particular

*(1998) The manuscript of Chapter 9 ends with this formula.
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Chapter Eleven.

Artin—Schreier Equations

The theory of Artin-Schreier equations is central to Dwork’s proof of the second main lemma.
We first review the basic theory, which we take from Mackenzie and Whaples [11], and then review
Dwork’s rather amazing calculations. These we take from Lakkis [9].

We start with an exercise from Serre’s book [12]. Suppose F' is a non-archimedean local field and
K/F is Galois. Let p be the residual characteristic. With the convention (0) = B we let

pOr =Pp.
Suppose G = (K /F)and o € G; withi > 1. Let
wi = wk(l+a)

with a in B%.. Let
o(x) =27 — .

@ is an F-linear operator on K. If z = aw), belongs to 3’ then

o o

)=z —z = (« —a)w%’—i—a(w%g—w;()

is congruent to
awh (wiV 1) = aw {(1 +a) -1}

modulo P47+, This in turn is congruent to
(awy) (ja) = jax
+j+1
modulo P57,

If*

then, as an operator,

If 2 belongs to /. then
(@) = j(G+i)...(j+ (k—Di)a*z  (mod PiFFH)

and v (z) is congruent to
pjax+j(Gj+i)...(5+ (p—1)i)alx

* We seem to be dealing with yet another use of the symbol !
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or to
pjaz + j(jP 7 — i alx
modulo P+ if p Oy = P
We deduce the following congruences:
(i) If (p —1)i > €’ then
(@) =pjax (mod PiH7 ).

(i) If (p — 1)i = € then
Y(z) = pjaz + j(1 — NPz (mod P T,

(iii) If (p — 1)i < ¢’ then o
Y(x) = j(1—# NaPzr  (mod PR

Observe that if (j,p) = 1 and o belongs to G;, with i > 1, then
p(z) =0 (mod Py*)

for all z in ‘m{ if and only if o belongs to G;;. It follows immediately that if o belongs to GG; and
3 > 1then

p(z) =0 (modP3)
for all z in % only if o belongs to G;.

If o is replaced by o P then ¢ is replaced by . If & > pe_ll and Gy # {1} then, for some
i>k, G;#{1}and G,11 = {1}. Taking (j,p) = 1 we infer from (i) that if o belongs to G; but
not to G, then o? is in G; 1. but not in G; . 1. This is impossible. Thus G, = {1} if k > pe_/l. If
G1 # {1} then p divides ¢’ so that if (p — 1)i = ¢’ the number i is also divisible by p. The congruence
(ii) reduces to

W(x) = j(pa+a?) (mod i+ +1),

Thus if o belongs to G; its pth power ¢ lies in G, and is therefore 1. Consequently
pa+aP =0 (modPrth).
Letting a = aw’ and p = Bw$ we find that
a? +fa=0 (modPx).

Since this congruence has only p roots the image of ©; lies in a subset of U}'(/U};rl with p elements and
G, is either {1} or cyclic of order p.

If (p — 1) < €’ and (i,p) = 1 the congruence (iii) implies that ¢” belongs to G, if o belongs
to G;. However if (p — 1)i < €’ and p divides i it shows that o” belongs to G),; but not to G, if
o belongs to G; but not to G;41. Thus ¢ — o? defines an injection of G;/G,11 into Gp; /Gpit1. If
G;/Gi41 is not trivial neither is G,;/G,i+1 and (p — 1)pi < €’. If (p — 1)pi < ¢’ we can repeat the
process. Thus, for some positive integer h, (p — 1)p”i = ¢’ and G is not trivial. It is then cyclic of
order p. According to Proposition 1V.10 of Serre’s book those k£ > 1 for which Gj,/G4+1 # {1} are all
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congruent modulo p. In particular if Gy, /G is not trivial for some k& > 1 divisible by p itis not trivial
only when £k is divisible by p. The preceding discussion shows that if i is the smallest value of k£ > 1
for which G, /Gj.41 is non-trivial then any o in G; but not in G, generates G; = G1. In other words:

Lemma 11.1

If G4 is not cyclic then (i,p) = 1 ifi > 1 and G;/Gi+1 # {1}.
Lemma 11.2

Suppose K/ L is cyclic of prime degree and G = &(K /L) is equal to G, witht > 1 and (t,p) = 1.
Then there isa A in K and an a in L such that aOr, = 3" and

AP — A =a.

We observe first of all that [K : L] must be p and that if pOx = P% then (p— 1)t < ¢’. If z belongs
to K the symbol O(x) will stand for an element in O and the symbol o(z) will stand for an element
in 2P r. If

with a; in F then

2 = max ol [l
Moreover if o is a generator of G
-1 o
27 —1= Zf_ a; Wy (w;go D_ 1)
and if @ ! = (1 + awl;)
[k’ =1 =1+ awlo)’ - 1] = ]
for1 < ¢ < p. Thus
o7 — ol = fel{ s Jodl i } < el Jal.

There is equality if ag = 0. In particular if

then
27 —1=y" -1
and
ly” — 2| = |wi| lyl-
If x belongs to K let
p(x) =af —x.
Then )
p= p i, p—i
pa+y)—p@) —pw) =Y. (V) (11.1)

=1 2
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Since ¢/ — (p — 1)t > 0 the right side is o(y) if

vg(x) > —t
and
vk (y) > —t
We define vk () by the equation
o] =l <.

To prove the lemma we construct a sequence Ay, Ay, As, ... and a sequence O, O, ... with the
following properties:

(i) vk (A,) = —tforalln > 0.
(ii) If o isagiven generator of G and ( is a given (p — 1)th root of unity

A% — A, = C+o(1).

(iii)
p(A7) —p(An) = OF — O,
and
07, — O] = |wik]| O]
(iv)
A1 =A,L+ 0O,
(V)

P(AZ 1) = p(Any1) = o(p(AT) = p(An)).

It will follow from (iii) and (v) that {©,,} is converging to 0. Then (iv) implies that {A,,} has a
limit A. (i) implies that vi (A) = —t and (v) implies that A? — A = a belongs to F'. From (ii)

A7 —A=(+o(1).

To construct A let « belong to U}, and consider

o o

« « o —« o _
—o't — —t f— 70_15 —t (w%l 0—) — 1) == _taa + 0(1)
Wk Wk Wk Wk

% = wr (1 + awk).

We can choose « so that

—taa = (+o(1).
Then we set a
AO == —t
Wk

We observe in passing that conditions (i) and (ii) determine A,, modulo &B;}“.
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Suppose Ag, ..., A, have been defined. Then

p(A7) = p(An) +p(C+0(1)) + o(1)
which equals
p(An) +p(C) +0(1) = p(An) +o(1).

Choose 0,, so that
©7 — O, =p(A7) — p(An)

n

and
165, — O] = |wk| [Onl.

Then vk (©,) > —tand if
An+1 = An + @n

vi (Apy1) = —t. Moreover
ATy = Ayt = A = Ay +0(1) = ¢+ o(L).

and
p(An—H) = p(An) + p(@n) +x
with z = 0(©,,). Then

Also
p(GZ) - p(®n) = p(@fl - @n) + 0(62 - @n)

Since vk (©7 — ©,,) is positive the right side is
_(9;’1 - en) + 0(92 - en)

Thus
p(AT 1) — p(Anya)

which equals

Lemma 11.3

Supposer Ay belongs to K, a belongs to L, vy (a) = —t and
A=Ay =a+ O(wk)

withr > 1. Define A,, inductively by
An+1 = A}:L — a.

Then
An—l—l - An = O(An - An—l)
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ifn>2andifr > (¢ — (p—1)t)
Apy1 — A, = O(wit " (¢'~=1t)y

Moreover
lim A, =A
n—oo

exists and AP — A = a.

The last assertion is a consequence of the first. It is clear that
Ay — Ay =O0(wk).

Suppose n > 2, and
A, —Ap_1 =x=0(1).

Then
An—‘,—l - An = Aﬁ - Aﬁ_l = (An—l + l,)p - An—l

is equal to
-1
{Zzzl (Z) Afb_l xp—k} +a*
which is o(z) because ¢’ — (p — 1)t > 0. If

= O(w?(”‘” (e’—(p—l)t))

andr >¢e' — (p—1)titis
O(w;;r(n—l) (e’—(p—l)t)).
The lemma has a couple of corollaries which should be remarked.
Lemma 11.4

IfaisinL, vp(a) = —t, AP — A =a,and isa (p — 1)th root of unity there is a number A¢ such

that
Ae = A+E+0(wf P70
and
Azg —A¢ =a.
Relation (11.1) shows that A+¢ satisfies the conditions of the previous lemmawithr = ¢ — (p—1)t.
Lemma 11.5

Suppose A belongs to K, b belongs to L, vy, (b) = —t and

Then for any u in Ut the equation

has a solution in K.
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Take, in Lemma 11.3, ¢ = bu and A; = A. Lemma 11.5 shows that if S is the set of all in L with

vy (a) = —t for which the equation A
“A=ua

has a solution in K then S = SU; ™.
Lemma 11.6

If¢ is the integral part of £ the number of cosets of Uitlin S is

-1
p—p (O« P

Fix a generator o of G = &(K/L). If abelongsto S, AP — A = a,and ¢ isa (p — 1)th root of unity
(€AY — €A =¢a.
By Lemma 11.4 there is a (p — 1)th root of unity ¢ such that
A7 = A+ (+o(1).

Then
(EA)7 = A+ EC+o(1).

Thus if S” is the set of a in L with vy, (a) = —t for which
a=AP— A

with
A7 =A+1+0(1)

the number of cosets if U} ™" in S is p — 1 times the number of cosets of U/ " in S

Choose Ay, with vg (Ag) = —t, for which Af — Ag = qg isin F and
AT = Ao+ 1+0(1).
Ifvg(A) =—t, AP —Alisin F,and
A =A+140(1)

then, according to an earlier remark,
A=Ay+Q
with Qg = o(Ay).
Choose any Qp = o(Ap) and set Ay = Ag + . According to the relation (A)

p(Ao) = p(Ao) + p(Qo) + o(0)-

Since
Qg - QO == O(’W%Qo) == 0(1)
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we have L
o p— —i /0o i o
QP —ap =Y (?) QP Q8 — Qo) = 0(QF — Q).

=1 I3
Thus
p(Ao)” — p(Ao) = QF — Qo + o(@x Qo)

and p(Ap) isin L only if
QF — Qo = o(wwh o),

that is, only if Qp = o + 0(Q2o) with ag in L. On the other hand if
Qg — QO = O(W%Qo)
and we construct the sequence Ag, A1, Ao, ... as before and let

A= lim A,

n—o0

then
A= AO + O(Qo).

We conclude that the number of cosets in ‘B%/‘B?l, s > —t, containing an )y such that
(Ag + Q0)P — (Ao + Qo)

isin L is 1if p does not divide s and is [Oy, : B ] if it does.

Choose A so that
AP —A=aq

isin S’ If Q belongs to B3, s > —t, but not to P53 and
(A+QP —A-Q=b

is also in S’ then a and b belong to the same coset of U} if and only if

b=a+o(l).
Ifs>0
pP(A+Q)=p(A)+o0(1)
butifs <0
P(A+Q)=p(A)+ QP —Q+0(Q)
and

QP —Q+0(02) =0(1)

if and only if s = 0 and
Q=¢+0(1)

where ¢ is some (p — 1)th root of unity. The lemma follows.
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If z = {x1,...,7,} let E*(z) be the ith elementary symmetric function of z1, ..., z, and let

Si(x) = ZZ:1 Tt

If Z is an indeterminate and

then ~ ‘ ‘
ST Sz

is clearly —Z times the logarithmic derivative of Q(Z). Thus

(Zzl Si(x) Zi) <Zj:0(—1)iEi(x)Zi) ==Y (-7,

This identity which we refer to as Newton’s identity is equivalent to the formulae of Newton. Itimplies

in particular that
i—1

> (N ST @) Bl (2) = (-1)THiE (x) (11.2)

if 1 < i < n. We may divide Newton’s identity by Q(Z) and then expand the right-hand side to
obtain expressions for the S*(x) as polynominals in E'(z), ..., E"(x). The coefficients are necessarily
integers. To calculate them we suppose that x4, ..., x, lie in a field of characteristic zero. Let

Q(Z) =1+ P(2).

Then "
oz Q(2)= -3 L (-

The coefficient of Z*~! in the derivative of the right side is

e D B e i) | N

a1+2az+...+na, =1

This expression is therefore equal to —S(x).

Suppose K/L is a ramified cyclic extension of degree p and G = &(K/L). Let G = G, and
G¢41 = {1}. Suppose u < t, Aisin K, and

AOk = PL".
We take {z1,...,x,} to be A and its conjugates under G. In this case we write
E'(z) = B/ (A)

and 4 4
S*(x) = Sk (A).
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If 1 < < p—1and~; isany integer less than or equal to

—tu+(p—1)(t+1)

p
we have 4
B (A) =0 (mod Pr’).
We may take
' — 1)t
Vi = L (p=1) .
p p

If 7u + t is not divisible by p this inequality may be supposed strict.

Suppose a7, . .., a, are non-negative integers,

and »
Z_ iy =0

1=1
If

p—1

Y= {Zi:l ’}/ZO(Z'}—’U/Oép.
Then » 4
[I (B @3 =0 (k). (11.3)

We have

tu (p-1),, (-1

vz -——+ apt.
p p p
The inequality is strict if «; is non-zero for some ¢ such that 7w + ¢ is not divisible by p.

We record now some inequalities that ~ satisfies in various special cases. They will be needed
later. We observe first of all that, if 1 < ¢ < p, ~; is hon-negative and is positive unless p divides iu + .

(i) If ¢ =pand k = 2 then
1+u+vy>1+t.

In this case oy, = 0 and the left side is at least

2(p—1)
p

1+ t>1+t.

If p is odd the inequality is strict.
(i) If £ =pand k = 2 then
v = 0.
Moreover the inequality is strict if p is odd. This statement is of course weaker than that of (i).
(iii) If ¢ =p, k > 3,and pis odd, then
YyZu+ ——
p
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oy, is again 0. The left side is at least

—u—i—%tzu—i—%—i—% {Bp—4)t — (2p — 1)u}.

The final term is non-negative. The inequality is strict if w # t. If u = ¢t and p does not divide
u it is again strict for then o; # 0 for some ¢ < p — 1 and for such an i the number iu + ¢ is not
divisible by p.

(iv) If £ < pthen

t—u
(p—l)u—i—WZu—i-T

except when oy, = k or o, = p — 1. We have to show that

—t
(p—2)u+’y+u7 > 0.

¢ 1 p—1< p—1> 1}
—2——4+-ru+ — o; | —— pt.
el (Ehe)

If a, # k the coefficient of ¢ is positive and we need only show that it is at least as great as the
negative of the coefficient of u or in other words that

(p—1) (Z:l ai> +(p—2)p> L.

This follows from the assumption that oy, < p — 2.
(v) Ifk <p-—2anda, = k then

The left side is at least

p—Nu+vy>u.
In this case
v > —ku.

There are circumstances in which the estimates for +; and therefore those for -y can be substantially
improved. We will discuss them shortly.

Suppose now that K/F is a totally ramified Galois extension and G = &(K/F) is the direct
product of two cyclic groups of order p. By Lemma 11.1 the sequence of ramification groups is of the
form

G:G_lzGO:Gl:...:Gu#Gu+1:...:Gt§éGt+1:{1}

with (u,p) = 1 and u = ¢ (mod p) or of the form
G:G_lzGOZGl:...:Gt#Gt_‘_l:{l}

with (t,p) = 1. In the second case we take u = ¢. In the first case let L, be the fixed field of G; and in
the second let L, be any subfield of K of degree p over F'. Let L, be any subfield of K different from
L which is also of degree p over F. Let G* = &(K/L;) and let
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Then s; = t and s, = u. According to Proposition V.4 of Serre’s book

Sxp=P —p)(u+1)+(p—1)(t+1)

and
O/, = (-1 (t+1)
and
Or/L, = (p—1) (u+1).
Thus )
Or,)F = » (Ox/r —0x/r,) = (@—1)(u+1)
and
Op,/F = % (Ox/r —0K/L,) = (p; D (p—1)(u+1)+t+1).

IfG = &(L;/F) and -
G =T #Ci = (1)
then t; = v and

t—u
t2=’LL+ .
p

Lemma 11.7
Suppose A belongs to K, vk (A) = —u, and
AP —A=aq
belongs to L. IfY belongs to L, then
vr, (Sk/r, (YAY)) = (p— 1)ta — ity + v, (V)

and
v, (B, (YA)) = (p— Dtg +i(vr, (Y) — 1)
forl1 <:<p-—1.
We show first that if 6 belongs to L; and

0=, A

with Y; in L, then
VL, (Y;) 2 itl + VL, (09)

for0 <:<p-—1.Sincet; = uand

v () = min {vx(¥) — i}

the inequality is clear for ¢ = 0. To prove it in general, we use induction one i. Suppose 0 < 7 <p—1

and the inequality is valid for ¢ < j.



Chapter 11

94

Let
pOr = PE.

Applying the exercise at the beginning of the paragraph to the extension L,/ F' we see that

pe>(p—ts=(p—1) <u+ t%)

If £ isany (p — 1)th root of unity then, by Lemmas 11.3 and 11.4, thereisa o in?;'2 such that
A7 = A+ &4 O(wh e~ 7D,

We may write

as a linear combination

with coefficients from L. Since
VL, (090 - 09) 2 (% (9) + tl

we may apply the induction assumption to see that
v, (Xj—1) 2 (7 — 1)t + v, (07 — 0) = jta 4 vr, (6).

On the other hand ' 4 ‘ ' , ’
AT A — (A + f)Z — Al 4+ O(wzlo(e—(p—l)u—(z—l)u)

so that 69 — 6 is equal to
N R k ik
SRS () At

with )
n= O(Qw%e_(p_z)u).

0=YL, Z

Thus if

with the Z; in L, we have
vk (Zj-1) = (j — Du+vk(0) +p’e — (p — 2)u.

But
pe—p—2u+(G—Du>plp—Du—(p—2)u+(j—1u
which equals
((p—1)*+j)u > pju.

Xj_l = (Zf:_jl Y; (;) fi—j> —I-Zj_l

Since
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we have
p—1 17 .
}/i ) =] > ju + L 0
(0 () ) 2o
for all £&. We obtain the required estimate for vz, (Y;) by summing over &.

We now show that
v, (Sryr, (YA)) = (p— Dt — ity + v, (V)

forYin Lyand 1 <i < p — 1. All we need do is show that for any 6 in the inverse different of L, / F

SLl/F(ewglez(Y)+it1_(p—1)t2 SK/LI (YAZ)) c OF
or thatiffisin L; and
v, (0) 2 =(p—1) (t1 +1) +it1 — (p— 1)t2 — v, (V)
then _ 4
St r(0 Sk, (YA")) = Sk L (0YA") (11.4)
isin Op.

Let

with Y; in Ly for0 < j < p — 1. Then

4 —1—i o —1 "
QYAZ:Z?_O YA 4 (a+A) Y Yy artir,

J= J=p—1
Since
AP —A=aq

we have 4

Ey/p,(A) =0
forl <¢<p-—1and

—1

E%/LQ(A) = (—1)*.

The relations (11.2) imply that ‘

Sk/p,(A") =0
for1 <7 < p—1and that

SK/LQ(AP—l) =p— 1.
Thus (11.4) is equal to
(p—1) 8L, p(YYp-1-) + S,/ r(paY Y, —;)

if - < p — 1 and to the sum of this and

Spo/p(YYpo1)

ifi=p—1.



Chapter 11 96

We know that
vr, (Y)) > jt1 +vr, (0)

for each j. Thus
v, (YY,o1-) > (p—1—9)t1 —(p—1)(t1 + 1)+ ity — (p— D)to
which is at least —(p — 1) (t2 + 1). So is
VL, (paYYp 1) 2 (p— Dtz —t1 — (p— 1) (L + 1) + ity + (p — i)ts — (p — Dta.

Ifi=p—1
vE,(YYp 1) 2 (p—Dti—(p—1) (1 +1) + (p— Dt1 — (p— Dtz

is also at least —(p — 1) (t2 + 1). All we need do now is observe that

SLQ/F(mZQ(p_l) (t2+1)) C Op.

To complete the proof of the lemma we have to show that
vr, (B, (YA)) > (p = Dtg +i(vr, (V) — 1)

for 1 < i < p— 1. This has been done for ¢ = 1; so we proceed by induction. Applying the relations
(11.2) we see that

. . i—1 S s .
(—1)" By, (YA) = ijo(—w S/, YA) Ef (YA

According to the induction assumption and the first part of the lemma, with Y replaced by Y*~7, a
typical term in the sum on the right is O(w} ) with

v=(p— 1Dtz = (i —J)t1 + (@ = Jvr,(Y) + (p = Dz + j(vr, (V) — t1)
if 5 > 0and
v=(p— 1)ty —ity +ivg,(Y)
if 7 = 0. The lemma follows.

We apply the second estimate with Y = 1 toimprove, when A = A, L = L4, and certain auxiliary
conditions are satisfied, our estimates on the number ~ appearing in (11.3).

(vi) Suppose p is odd and
l={p-1v+j+1.

Ifk>v+2and o, < k—2then
Jt1 + v = pta.

Ifk>v+2and o, < k—1then

jt1+’}/2(p—1)t2+t1
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andifk>v+1landa, <k—1
jtl +’72 (p—l)tz—tl.

In the present circumstances
vi > (p— 1)ty —ity

forl1 <:<p-—1. Thus
. , p—1 ,
Jhh+v =gt + Zi:l ai((p — 1)t2 —it1) — apty

which equals
gt + (p — l)k‘tQ — 0t — (p — l)Oép(tQ — tl)

or
(p—1Dkta — (p— Dty —t1 — (p — Day(ta — t1).

If o, < Kk — 2, this is at least
2p—Dta+(p—1)(k=2—-v)t1 -ty
which inturnisatleast pty ifp > 3and k > v 4+ 2. If o, <k -1
yZ(—Diz+(p—-1)(k-1-v)ty —t.

The required inequalities follow.
We shall use all these estimates for ~ in the next sequence of lemmas.
Lemma 11.8

If A isasin Lemma 11.7 and p is odd then
Sp. PNk, A=S1,/FNK/L, A (mod P1"2).
The assertion of the lemma may be reformulated as
Sk/LsNi/o, A =Sk, Nkjp,A  (mod ‘B}jptz)'

Notice that
plo =1+ (p— 1)u
Earlier we applied Newton’s identity to express S%/LI(A) in terms of the elementary symmetric
functions of A and its conjugates. Since
pe > (p— 1)tz

we can apply the estimates (iii) for v to see that

SZU

K/L; (A)
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is congruent to

PN/ A+ 8 ST Bl (8) B () + (i, (M) (11.5)
Since
AP —A=aqa
we have
Sk, (A) = Sf(/Ll(A) — Sr,/r(a).
According to Lemma 11.7 the left side belongs to ‘B(Lpl_l)tz_tl. In particular it belongs to P, . We need

to know that it belongs to B2, Thisis clearif p > 3 or to > t1. To prove it in general we first observe
g L1 p p

that all terms but the last in (11.5) are congruent to 0 modulo mﬁt? The middle terms are taken care
of by the estimates (ii) for . To take care of the first we have to show that

pe—u > 1+ ts.
We know that pe > (p — 1)t and that if ¢ = u the inequality is strict. We need only show that
(p—Dta—u>ty
with a strict inequality if t ## w. This is clear since t; > w and to > w if t # u. Thus
Sk/p A= (Sky, AP — Sp,yr(a)  (mod Pr™).

We now need only show that
Sr,/r(a) =0 (mod ‘L‘}jh).

The left side belongs to ‘Bﬁbl if b is any integer less than or equal to

—u+(p—1)(t2+1)
’ .

We may take
—Uu + (p - 1)t2
p

which is greater than or equal to % except when p = 3 and ¢t = u. In this case, which is the one to
worry about, to = wu is prime to p and

b>

—u+(p—1)(ta+1) _u+2
P 3

has integral part at least “T“

We apply (11.5) again to see that
Sk/pNk/r,A = Sk r,a = Si/Ll(A) — Sk/1, (D)

is congruent to
P p—2 ) .
—SK/L1A+pNK/L1A+§ 2322 E;{/Ll(A)Ei/le(A)
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We have still to consider

There are some general remarks to be made first. Suppose A belongs to K and

’UK(A) = —u.
If x and z also belong to K and '
N € Ok
and )
s m?wr(p —u
then

Nir, (2(A+2)7T) = Ny, (@A) (mod Py 772).
It is enough to show that

i1
NK/LI (1 + %)] =1 (mod‘BlL'*l't‘*‘Pu).

This follows from Lemma V.5 of Serre’s book and the relations
l+t+p*u>1+t+pu
and

L+t+p2u+(p—1)(t+1)
p

=14+1t+ pu.

According to Lemmas 11.3 and 11.4 there is for each o # 1in G2 a (p — 1)th root of unity ¢ = £(o)
such that )
A7 = (A+E)P —a+ O (wp? c~ @)y,

We have
ple—p—Nu>(p-1{p-Du+t}—(p—1u

which equals

(p—Dt+(@-2)(p—Du>t+pp-2)u.
If t = wu the first of these inequalities is strict and if t > u the last is. Thus

pPe—(p—LDu>1+t+p(p—2)u
and
2(p?e — (p—Du) > {1+t + (p* — Duy + {1+t + ((p—1)* — 2p)u}.

The second term is positive unless p = 3.

The expression
(A+€)7 —a

is equal to

A+E+ Z:l (ZZ) EIAPI
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But

<p>:p(p—1)---(p—’i+1) (1 2 (mod p?)

i! N

and
2p%e — (p— Vu > 2(p°e — (p — 1)u)

which is, as we have just seen, at least 1 + ¢ + (p? — 1)u. Thusifp > 3

AT= (A1 Z(8) (mod BT
_ AT
20 = {7 X

é. A
N
Expanding the denominator we obtain

_ o0 e\’
§) =pa? 1 Zi:l i <Z> '

fi>p—1
. p—1 1
;= (—1)" - = d
o= (-1)" 37| <=0 (modp)
Clearly
2(€) = O(pA”™?) = O(wp ™)
Ifp=3

3(pPe — (p— Du) > {14+t + (p* — Du} 4+ {2(1 +t) + (2p* — 6p + 1)u}.

The second term is at least 3u and in particular, is positive. Lemmas 11.3 and 11.4 show that

A% =((A+6°-a)’ —a (modPj "W).

The right side equals
(A + €4 36A% + 362A)% — a.

Expanding the cube and ignoring all terms in ‘Bl+t+(p D \we obtain
A+ €+ 3A3 5 & +9A%E
A A2

which we write as

(A+&)(1—Z(5)
with

2(§) =387 " <§> o > <_K£>
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Since
2(p%e — (p— 2)u) > 2(p’e — (p— Du) +2u > 1+t + p*u

and
Ple—(p—2u>1+t+(p—1)>u>1+t+pu

for all odd p, lemma V.5 of Serre’s book shows that
Nigo, (@(A+ 6711 = Z(€)) ) = {Nieyr, (x(A + €)1~ Sk, 2(6) P

modulo B} TPV if xAJ lies in Ox.

The expression (11.6) is equal to

]\[K/LlA + ZUEGQ NK/LlAG'
o#1l

The preceding remarks show that, if p > 3, this is congruent to
Ngjn, A+ Zg Ny, (A+§ {1 = Sk, Z(§)}
modulo B}~ since

2p%e+u+ (p— 1)t
p

t—
>2(p—1) <u+Tu>tu>t+pu

we have o
Nicso, (A +€) Sk, (aip AP € JiPee

if i > p and we may replace Sk 1, Z(&) by

p—1 . .
>, PE Sk, (@ AP

if p > 3. Of course
p —i i
Nij (A +6) =Y 0 B,y (A).

Putting these observations together we see that, if p > 3, (11.6) is congruent modulo ‘431;1““2 to the
sum of

Ngjp, A+ (p— 1) {Sk/p,A+ Nk, A}

and
p—1 1 i
_p(p — 1) Zi:l a; SK/L1 (Ap 1 )E}(—;Ll (A)
and
—p(p — 1) {pay—1 Sk L, (A) + ap—2 Sk/r, (A)}.
Since

pSk/r, (D) € PP
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the last expression may be ignored as may the term in the second corresponding to ¢ = p — 2. Since

p—1 1
ap_1 = Zj:1 ; =0 (modp)

and
Sk, (A%) =p

and
3pe —ty > 1+ pty

the sum in the second expression need only be taken from 1 to p — 3. The relation (11.2) implies that
S, (B) Bl (A) = (=1)'p(p — 1 — i) Ef 1 () Bl (D)
modulo ‘131;:”“. To complete the proof of Lemma 11.8, for p > 3, we need only show that
ia;_1+ (p—1i)a,_i—1 = (—1)" (modp)

forp — 2 > p —14 >4 > 2. This amounts to showing that

il 1 . i
22221 } + (p—1) Zj:i

We may replace the p — ¢ in front of the second sum by —i. Making the obvious cancellations we obtain

_221;_1 ]1 =_1— ZZj: 1

If % occurs in the sum on the right so does p%j.

1
; =—-1 (modp).

The proof for p = 3 can proceed in exactly the same way provided we show that

9> {Ni/p, (A+ 9} {Skyz, (€A} (11.7)

lies in B} 3" for i > 1. Since
1 2 > 2(p— 1)t > 3t
2p"e —u > 2(p— 1)to —u > 3ta

and one of the inequalities is strict
ONG/L, (A +€) € P,

The expression ' '
§" Sk/r, (A*)

is clearly integral for ¢ > 4. By, for example, Lemma 11.7 it is also integral if 7 is2 or 3. Thus¢ = 1 is
the only case to cause a problem. If = 1 we sum over £ to see that (11.7) equals

18{Efc/p, (A) Sk, (A%) + Sy, (A%}

The terms appearing in the expression in brackets have been shown to lie in Oz, .
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There is one more lemma to be proved before we come to the basic fact of this paragraph. If x is
in K we set

9(x) =S, )r(Nk/1, ASk/, (%)) = Spy/r(Ni /0, A Sk, (7))

and
h(z) = Sp,/r(Ng/p, (xA)) = Sp,/r(Ni/, (2A)).

In the following lemma p is supposed odd.
Lemma 11.9
(@) Supposex isin Ly, 0<j <p—1,andzA7 liesinPy">"" If j # p — 2 then
g(zAT) =0 (mod ‘}3};”52)
butifj =p — 2, there is anw in Lo such that
—1 1
wr=—xEY - (A) (mod P 7*2)

K/L,

and
g(xA) = —{Sp,/rr — Sp,/r(2w)}  (mod PL").

(b) Supposexisin Ly, 0 < j<p—1,and zA7 liesinPy. If j #p — 2

h(zAT)=0  (mod Py ")

butifj =p—2 4
h(@A?) = (p—1) (1 - {E}, (A)})Ng ),
modulo B 7"

The congruences modulo ‘43}“2 are of course equivalent to congruences modulo 2131;:“2. We start
with part (a). If = belongs to Or, then

9(96‘) = SK/Ll(xSK/LQ(NK/LlA) - an)-
Because of the previous lemma this is congruent to
SK/Ll (Z‘SLQ/FCL — pxa) = SLQ/F JJSLQ/FCL —pSLQ/F(JJCL)

modulo P12, We saw before that

1+t
SLQ/FCL € mL—f .

The same argument shows that
Spayr(wa) € Prit.

p belongs to &]3(5’1_1”2. Since the integral part of

(p=1) (2 +1)
p
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is at least
(p— Dtz
p )
so does Sy, ,pz. This takes care of the case j = 0.

If 1 <j=p—1then g(zA’) is equal to
SpayF @Sk L, (A Niyp, A)) — (p—1)6 Sp,/r(xa)
whered =0ifj #p—1landéd =1ifj = p — 1. Consider
Zj = xSk 1, (N Niyp, A).
It liesin Ly, and is equal to

IAj NK/LlA + Zoer Q?AUjNK/LlAU.
o#1l

We observe first of all that if A is in K, v (A) = —u, xisin Ly, xA7 liesin P 27", and » lies
in m%_l) (pt2—t1) then

x(A+Z)jNK/L1(A+Z)ExA]NK/LlA (mOdm};—th)

provided p is greater than 3. To establish this congruence we show that

(1 + %)j N1, (1 + %) =1 (mod® Dty

To show this, one has only to observe that £ and all its conjugates lie in ‘B%_l)m_(p_m“ and that
(p—Dpta—(p—2)t1 > (p— D2+ ((p— 1) = (p—2))ta

which equals
(p—Dta+((p—1D(p-2)+t1 = (p—Dt2+ (p+ 1

if p > 3.

Suppose for now that p > 3. Since

pPe—(p—1)u> (p—1) (pt2 — t1).

Lemma 11.4 implies that Z; is congruent to

modulo ;7"

Ni/p, (A+§) = 5{1 + % Ng/o, A+ Zj:ll f_iEfK/LI(A)}'
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According to Lemma 11.7 this is congruent to
§+ Ngyo, A+ §EK/L1 (A)
modulo P22, Thus if #A7 belongs to P12~
Zj =z Nijp, A+ Z (A+8&) (€+ Niyr, A+ EEY L (D))
modulo P72, We expand (A + ¢)7 and sum over ¢ to obtain
pr A’ N/, A
ifj <p—2. Ifj =p—2weobtain
prAI Ny, A+ (p— 1z (14 EY 7 (A))

and if j = p — 1 we obtain

prAI Ny, A+ (p— Dz {Nkj, A+ (p— DA+ (p - DA EL,; (A)}.

The expression (11.8) lies in

1+pe—pty
K

provided A’ lies in Pg-.
p’e —pt1 > p(p — 1)ta — pty > pta.

Since
Lyn ;}3}(-"—17152 gpl+t2
and
Star(BLI?) C B,
we have

g(zA) =0 (modP}?)
if 1 <j<p—2and2AJ liesin P2 —",

Since
1
Ef(/Ll(A)
liesin Oy,
Zj=(w-1)z
with
wr=2Z;+x= fo(/i (A)  (modPj""?)

if 7 = p— 2. We may take w in Ly and then

g(xA) = —{Sp,/rr — Sp,/r(aw)}  (modPr""2).

(11.8)
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If j =p— 1then .
9(xA) = Sp,/r (Z; — (p— 1)za)
and
Zj —(p—1)za

is congruent to
(p— 1)z {Nk/, A +pA+ (p— DAER; (A) — AP}

modulo P72, The product
{(p— Dz} {pA}
lies in P 7** and
(p—1) i, (A) = —Ef5; (A) (mod BF™).
It is easily seen that
AP+ AER ) (A) = Niyr, A
is equal to

p=2 i AD—i i
S AP B, (),

Recalling that zAP~! is supposed to lie in B x we appeal to Lemma 11.7 to see that the product of this

expression with z lies in ‘B?”tz. Thus
g(zAT) =0 (modPp"").
Ifp=3and ¢ = £(o) then

A% = A4 £+ 3EA% + 362N + 2

with )
H = O(w%p e—(p—l)u))'
If
A, = A+ € 4 3EA?
then

A% = A, + 382A + z.
If we can show that
3E2A + 2 = O(w~ V1)
it will follow that ’ .
IAGJNK/LIAU = IAnyK/LIAU (mod‘ﬁ}jm)
if 2A7 lies in 2"
3E2A = O(ch ™)
and
ple—t1 > p(p— 1)ty —t1 > (p— D)tz + pty

(11.9)
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because (p — 1)2 > p. Moreover
2(p*e — (p— Du) 2 2(p(p — V)t — (p — Dt1)

which is at least
(p—Dt2+(2p-1)(p—1)—2(p— 1)k
and
2p-1)(p-1)-2p-1)=2p—=3)(p—1) = p.
We want to replace Ng 1, A, by
N, (A +€)
in the right side of (11.9). To do this we have to show that

AU - 2 1
Ni/i, <A—+§> — 1 (mod PPVt
Since A
o -1 er—tl
and

p’e—t1 > p(p = 1)ts — ty,
we have only to verify that
plplp—Dte —t1} > (p— D2+ (p+ Dta (11.10)

and that the integral part of
pp—Dta—ti+(p—1) (t+1)
p

(11.11)

is at least
(p—Dta+(p+ 1)ty

p
The inequality (11.10) is clear. Since ¢t > t; the integral part of (11.11) is at least

pp =Dtz +(p—=2)tr _ (p—1t2+ ((p - 124+ (p—2))t
p - p

and
(p-12+(@-2)>p+1.

Just as when p > 3 we may replace N/, (A + &) in (11.9) by
E+ Ny, A+ EEY L (A).
Thus Z; is congruent to

BAIN L A+ Y (A + €4+ 3EA) (€4 Nigjp, A+ E B, (D))
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modulo B3 P*? if p = 3, jis1or 2, and zA7 belongs to PLT2~ 1. If j = 1 this expression is equal to
prA Nicjp, A+ 2x(1+ 3A%) (14 Ex /1, (A)) (11.12)
and if j = 2 itis equal to

prA) Nicyp, A+ 22{2(1 4+ 3A%)A(1+ E% /1 (A)) + (1+3A%)2 N/, A}. (11.13)

The term '
pQTA] NK/L1 A

can be ignored as before because it lies in 372, Also

3z AT = O(w}<+p2€+t2_2t1)
because xA lies in P12~ and

pie+ty —2t; > p(p — D)ty — t1 > pto.
We may also replace the factor 2 in (11.12) by 1. Thus (11.12) is congruent to
—x(1+ Efyp, (D))

modulo ‘B}jm. At this point we may argue as we did for p > 3. To simplify (11.13), we observe that

9A* Ny, A = O(=2 e ™)

and that
2p2€ — 7t1 Z 12t2 — 7t1 Z 3t2.

Moreover )
3rA2 NK/LlA _ O(w}(-i-p e_3t1)

if zA? belongs to P and
p2€ - 3t1 Z 6t2 — 3t1 Z 3t2.

Thus (11.13) is congruent to
20{2A(1 4 E/p, (A)) + Nkyp, A}

modulo P} "2, We may again argue as we did for p > 3.

We turn to the second part of the lemma. We observe first that if x belongs to Lo, y belongs to K,

and
ry € Pr
then
h(zy) = h(y) Nk/r, (z) (modPp ).
The left side is

St/ F(NkyL, xNg L, yA) — Sp,/p(2” Nijp,yA).
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Since Nk /r,x = Np,,px liesin F'this equals

{Ni/p,w}h(y) + Sr,/p{Nk /1, (YD) (N, rz — 2P)}.

The second term is the trace from Lo to F' of

{Nie/L,(2yA)} {w}

NK/LQJ;

if, as we may as well assume, = # 0. All we need do is show that this expression lies in ipfgt? for then
its trace will lie in 93", The first factor lies in 93 *. The second factor is equal to

Since p > 3 it will be sufficient to show that the image of the homomorphism
— o—1

of Cr, into Uy, is contained in Ué’;_l)h. Let p be a generator of G and let P(X) be the polynomial

p=1 B p—1 __, B
Zi:l (X' -1) = i=0 Xi-p
then
p(x) = 2",
Let

Q(X) = (X —1)r .
If 1 < i < p— 1the ith coefficient of Q(X) is

p—1—i (p—1)...(p—1)
7!

(=1

=1 (modp).
Since both P(X) and Q(X) are divisible by X — 1
P(X) =Q(X) +p(X — D)R(X)
where R(X) is a polynomial with integral coefficients. For all z in Cy,,
Pl =1+4+w
with w = O(w}?). Then
A = (14w =1+wP =1 (modPh?)

and
AP(P—1)R(p) UE? )
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Ifa > 1and
w € P,
then |+ w? .
-~ w wP —w @
(14wt = T =1+ T w =1 (modPg*).

One then shows easily by induction that, for all zin Cr, and alln > 1,

2P~ ¢ UZ;Q.

If x lies in P x we may take y = 1. Applying Lemma 11.8 we see that
h(z) = Np,ypaeh(1) =0 (mod Pi*2).
If1<j<p-—1, zliesin Ly, and A’ lies in P,
h(zA7) = P = Q;  (mod Bp™)

with '

Pj = NLQ/F ISLl/F(NK/LlA]+1)
and '

Qj = Np,/ra Sp,r(Niyp, ).

The expression P; is congruent to

Ny, rae{Nir, A + Zg Ny, (A + €71 = Sk, Z() YT} (11.14)

1+pta

1+pta
modulo P’ I

. Since we are working modulo PB7 " we need only consider

(1= Sk, 2(&))7H! (11.15)

modulo 72", Suppose first that p > 3. Then

and
pPe—(p—2)u>p(p— 1)tz — (p— 2)u > p(p — 2)ta.
Moreover the integral part of
plp—=2)ta+(p—-1)(t+1)
p

is at least

(p — 2)t2 — t

(r—1)
p
and twice this is at least pty + ¢1. We replace (11.15) by

1—(+1)Sk/L, Z(§).
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Since _
Z(g)zzlap—lj{:p_za, £y (mod p?) (11.16)
—_— p i=1 7 A p M
and )
P’ = O(wy )
while

2pe > 2p(p — 1)t > p(pta + 1),
we may replace Z(&) by the right side of (11.16). By Lemma 11.7
Pk, (A7) = O )

ifl <:<p-2and
pe+ ity > (p— 1)tg + ity > pto + 14

if i > 2. We replace Z(&) by
pa EAPT2.

We may write (11.14) as

§

j+1
N, paNgp, At {1 + Zg Nk/r, (1 + Z) {1- SK/Ll(palpr_Q)}}.

When we expand

6 Jj+1
NK/L1 <1 + K)

and sum over £ we will obtain

J+1
s s i s (14£) )

which we write as

J\fLQ/Fﬂf{]\fk/LlNJr1 = Zg Nicjr, (A + f)j“}

plus a sum of terms of the form

1

ap Np,/paNgyp, A Eie/p <Z> Sk n, (AP7?)

where « is rational and lies in Or and 7 is at least 1. Since
. 1 .
}{/Ll <K> — O(lel)

Sk /1, (AP7?) = O(w]}?)

these supplementary terms may be ignored.

forz > 1and

Now take p = 3.*
*(1998) This is where and how the manuscript of Chapter 11 breaks off.
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Chapter 12.

The Second Main Lemma

Suppose K is a normal extension of the local field F'and G = &(K/F) is the direct product of
two cyclic groups of prime order /. Let X be a quasi-character of C'k. If o belongs to G define X7 by
the relation )

Xi(a) = Xg(a? ).

Suppose that X7, = Xk for all o in GG but that for no quasi-character Xr of Cr does X = X p. If
F C L C Kand[K : L] = ¢then Xk can be extended to a quasi-character of W 1 because WK/L/CK
is isomorphic to & (K /L) which is cyclic. If this quasi-character is X7, then X = X /.

Lemma 12.1

Suppose L, and L, are two fields lying between F and K and [K : L] = [K : Ly] = ¢. Suppose
X1, is a quasi-character of Cr,, X, is a quasi-character of C'r,,, and

Xk =X/, = XK /L,-

Then

A(X,, voye) [ A(pr,YF)

pr€S(L1/F)
is equal to

A(Xp,, v, ) [] A(pr, ).

nwr€S(La/F)

Because of the assumption on & (K /F') the field F' must be non-archimedean. To prove the lemma
in general it is enough to prove it for a given L; and all L. There are three possibilities to consider.

(i) The sequence of groups of ramification takes the form
G=G_1#Gy=...=G #Gy1=...={1}.
(i) The sequence of groups of ramification takes the form
G=G_1=Gy=G1=...=G, #Gyi1=... =G # Gy = ... ={1}.
(iii) The sequence of groups of ramification takes the form

G=G_1=Go=G1=...=G #G1=...={1}.

In the first two cases we take G* = &(K/L1) to be G;. In the third case the choice of L; is immaterial.
If the relation X7 = X, obtains for one o different from 1 in G = &(L;/F) it obtains for all
such o and X7, is of the form X,/ for some quasi-character X of Cr. Then Xx = Xg,r Which is

contrary to assumption. Thus the characters Xgi_l with o in G are distinct. They are clearly trivial on
NK/Li Ck so

(X7 Yo e Ty = S(K/L) = {pr.r | ur € S(L;/F)}.
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Here j is 2 or 1 according as ¢ is 1 or 2.

Lett; > —1 be that integer for which

G =G,
while .
Gti—i-l = {1}
Then

In the first case L;/F is unramified and L,/F' is ramified. We choose w, arbitrarily and take
wK = wr,. Also we set

wWr, = W = NL,/JFTL,-

In the second and third cases K/L; and K /L, are ramified and K/F is totally ramified. We choose
oy, first and set

wr, = Ng/1, @K

and
wr = Ng/FroK.

Letm; = m(XL,). The m(X7 ) = m; and
m(X}ji_l) < m;.
Thus m(v) < m; if v belongs to S(K/L;). If G* = &(K/L;) and if
G =G

while ‘
qu“+1 = {1}

then m(v) = u; + 1 if v is non-trivial. Thus u; + 1 < m;. Since v, is of the form A7 for all v in
S(K/L;),
m(l/XLi) = m(XLz)

Lemma 8.8 and 8.12 imply that*
m(Xx) = ¥rp, (mi—1)+ 1.
This m(Xx) = m; if K/L; is unramified and
m(Xx) = tm; — 6(K/L;)

if K/ L; is ramified. If n = n(yr) then n; = n(¢r,,r) isnif L;/F is unramified and is fn + 0; if L;/ F
is ramified.

In the first case
3(K/Ly) = 6(Ly/F) = 0.

* We are encountering once again the conflicting uses of the symbole .
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The relations

S(K/F) = 8(K/Ly) + £6(Ly JF) = 6(K/Ly) = (t + 1) (¢ — 1)

and
S(K/F) = 6(K/Ly) +8(La/F) = 6o = (t2 +1) (£~ 1)

imply that t, = t. Also
m(XK) = 1mg = Imy — 6(K/L1) ={lmy — o

so that
my + ne = €(my + ny).
Moreover
X, (@i 7)) = Xie (wp ™)
is equal to .
ey = ) (e, ([ =)}
and
ng@ X, (wr,”) = HuFeS(Ll/F) Ko/ F(TL,)
is equal to
HMFGS(le pr(wr) = (1)
If
Sz{ =S(Li/F) — {1}
then
Hsg pp (gt = (=1t
and

L, wr (o =1
2

Thus we have to show that
(—1)m =1 Ay (XL, YL, 7 wptn)
is equal to
A ( Xy, Yr, p, ™M) HS, Ay (ur, Yr, 1),

2

In the second and third cases the relations
m(Xk) =4mq — 6(K/Ly) = lmg — 6(K /L)

and
0(K/F)=0(K/Ly)+ €5y = 6(K/Lsy) + €6

imply that m; + 61 = mo + do and hence that m; + n; = mg + na. Thus

Xp, (@) = X (@' ™) = gy (™).
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Since
[L,, #r(e ) =1

we have to show that
1
A1 (XL17¢L1/F7 wzn11+n1) HS’ AI(MFv va th}-i- —i—n)
1

is equal to
mao+n 1+n
AI(XL27¢L2/F7wL22+ %) Hs' A (pr, e, w2t
2

Suppose X7} is a quasi-character of Cr. According to Lemma 10.1

/
A(XL, /ps VL /F) HuFeS(LI/F) A(pr,Yr)
is equal to
/
HMFGS(LI/F) A(MFXF7¢F) (121)
and
/
A(XL,/pVLs/F) HMFGS(LQ/F) A(pr,Yr)
is equal to
/
HIJ«FGS(LQ/F) A(MFXF7¢F) (122)

Suppose m’ = m(Xj) = 2d’ + ¢’ and d’ is greater than or equal to both 1 + ¢; and 1 + ¢5. Choose
~ in F' such that

¥Op =P "

and then choose § = 3(XFr). By Lemma 9.4 the expression (12.1) is equal to

/ Y
{A(XE, vr)} {HHFES(L1/F) 0% <B>}
and (12.2) is equal to

/ 4 1
v T, o o (3)}
Consequently
ﬁ) }
A(X] -] A
(XL, /Fs YL, /F) {HﬂFes(Ll/F) WF <V (r, ¥F)
is equal to

/ g
A(XLQ/F’wLQ/F) {HWGS(LQ/F) 13 <;> A(MFWF)}-

Suppose that both m; = m(X, ) and ma = m(X,) are at least 2 and let m; = 2d; + ;. Suppose
that
m(X X p) < d;
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for ¢ equal to 1 and 2. Then

Bix

1. r(l+2) =9, /F (#)

for z in ‘BdLifEi then, by Lemma 9.4 again,

k3

_ Bi
Thus to prove Lemma 12.1 in the present circumstances we have only to verify that
1y s gl
Xr, XLI/F ( 5 ) HH«FES(Ll/F) UE (ﬂ)
is equal to

—1 ! @ 1
XL2 XLQ/F ('Y ) HMFES(L2/F) HE <ﬂ> '

Suppose first that ¢ is odd. Then

H %53 <1> =1
ur€S(Li/F) 3

and we need only verify that

i () e (5) = (5) %or ()

According to Lemmas 8.3 and 8.4 we may take 5, = (G = 3.

L
e (5) =4 () = e ()

Since C'r is the product of Ny, ,rCp, and Np,,pCr, we may write % as a product

Certainly

= Nr,/r 01 Np,/F O2.

@[

Consider
Xp,(Np,;/réj) = Xk (5;)

where j is 1 or 2 according as 7 is 2 or 1. The right side equals

0N l1—0o
X1, (95) = X1, (Np, /7 05) Haeej(Lj/F) A2, 0;77)
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The product is equal to
HuFeS(Li/F) HLj/F(éj)

which is 1 because ¢ is odd.

Before discussing the case ¢ = 2 we consider the circumstances under which, for a given Xz, and

Xr1,, a quasi-character X'}, with the properties described above exists.

Lemma 12.2
(a) If L;/F is unramified, x belongs to U}j:“, and
Ny, /F(x) =1

then
XLi (.’IZ) =1.

(b) If L;/F is ramified, K/ L; is unramified, = belongs to UZ“, and

Np.r(z)=1

then

(c) If L;/F and K/L; are ramified, x belongs to U} ****, and
Ny, /F(x) =1

then
XLi (.’IZ) =1.

Choose some non-trivial o; in G = &(L;/F). Then

-1
o, —1

is a non-trivial character in S(K/L;) and

Since L;/F is cyclic there isa y in Cf, such that

0'7;—1

r =1

We shall show that y can be taken in U} . Then

Suppose L;/F is unramified. If we cannot choose y in Ufz}“ there is a largest integer a > —1
such that we can choose y in U, where a is of course less than u; + 1. Choose such a y. Then a is not
-1 because we can always divide y by a power of wp. If a were 0 then y could not be congruent to an



Chapter 12 118

element of Ur modulo B . Then yi~! would not be in U}. Since u; + 1 > 0 in the present situation
this is impossible. Let
y=1+cwp.

Then e cannot be congruent to an element of Or modulo P . Thus
% —e#0 (modPy,)
and
Yl =14 (% —e)wh  (mod PP
is not in U7 "', This is a contradiction.

Now suppose L;/F' is ramified and K /L, is unramified. Thent; +1 > 1and u; +1 = 0. We need
only show that y can be taken to be a unit. Write

_ b

where ¢ is a unit. If b is congruent to 0 modulo ¢ we can divide y by some power of wg to obtain an
element of Ur = U%. To see that b must be congruent to 0 modulo ¢ we suppose the contrary. Then

y = (@l = (w T (mod PY).

O'i—l

If t; = 0 the residue of wy! modulo ‘B, is a non-trivial ¢th root of unity and

(@7 1P #1 (modPr,).

If t; > 0then

0'7;—1 _ ti
wpl = l—i—awLi

where « is a unit. Thus
(wzii_l)b =1+ab thl (mod PZZ_H).
- - - ti+1
The right side is not congruent to 0 modulo P, ™.

Now suppose L;/F and K/L; are both ramified. Then ¢ = p and both w; and ¢; are at least 1.
Again suppose that y cannot be chosen in U“L‘Z,'Jrl and let a be the largest integer such that y can be
chosen in U®. The argument just used shows that a > 0. Since L;/F is ramified

U =ukut
Therefore a is not divisible by p and in particular is at least 1. Let
y=1+ewy,

where (3 is a unit. Then
y = (e (Lewg,)

Let

g% =¢+ nw}jfl
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and
0'7‘,—1 . 1 + ti

where « is a unit. Then 7! is equal to
{1+E+n=f™) Q+awp) =t} {1+ewt )

which is congruent to
“+a

i

1+ ace wﬁ-f

modulo ‘Btgf““. Therefore a > u; + 1. This is a contradiction.
Lemma 12.3

If Ly / F is unramified we can choose X}, such that
m(X Xy, ) =+ 1

and
m(X Xy, p) =t + 1.

Ifm(X,) >t + 1 then m(X}) will equal m(XL,).

By the previous lemma we can define a quasi-character X7, of
1
Ny, pUP™T

by setting
Xp(Np,/rz) = X1, (2).

We extend X’/ to a quasi-character, which we again denote by A7, of Cr. Then
m(X X p) <up+ 1
However X' Xf p, X' X  poand XM X] o satisfy the conditions of Lemma 12.1. Therefore
m(X XL p) > un 1
Since L /F is unramified u; and ¢, are both equal to t. Thus
m(X, Xy, p) =1+ 1

and
m(X521X£2/F) = €(u1 +1) =09 = €(u1 + 1) — (6 — 1) (tQ +1)=t+1.
The last assertion of the lemma is clear.

Lemma 12.4

If K/ F is totally ramified then
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There exists X}, such that
m(X XL p) =t +ui + 1

i

for i equal to 1 and 2.

In the present circumstances t; and u; are both at least 1. Choose a non-trivial o; in G and let

o7t -1
KL, = XL:
as before. Choose y in U} so that
Then
XLi(yai_l) # L.
However if

Yy = 14-6602?

where ¢ is a unit then
=1 was e (nod B

if
wﬂ_lzlr%aa@f
In particular
yo'i_l c sz-uz
so that

m(Xr,) > ti +u; + 1.
Just as in the previous lemma we can find a quasi-character X7, of C'» such that

m(X,

1

1X£1/F) = tl +U1 + 1.

We have seen that m; + §; = ms + d5. The same argument shows that
m(Xp XL p) 461 = (X X p) + 0a.

To complete the proof of the lemma we show that

t1 +uy + 01 = to + ug + do.

Since
0i=U—-1)(t; +1)

we have only to show that
up + 1+ 0t +1) =up + 1+ £(ty +1).

Multiplying the left or the right side by ¢ — 1 we obtain §(K/F'). The equality follows immediately.

Lemmas 12.3 and 12.4 together with the remarks which provoked them allow us to prove Lemma
12.1 in many, but by no means all, cases. We shall not however apply these lemmas immediately. We
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shall rather begin the systematic exposition of the proof of Lemma 12.1 taking up the cases to which
these lemmas apply in their turn.

Suppose first that L, is unramified over F'. As before m; = m(Xy,). Then
ma=mi+{—1)(m —t—1)>my
because u; = t. Since the number m isatleastt+1and ¢ > Oitisatleast1. If m; = 1thent = 0and

mo = 1. Once we have treated this case, as we shall immediately, we may suppose that my > mq > 1.

Ifmy =1let
A= OLz/"BLz = OF/EBF

and let
k=O0k/PBr =0r,/PrL,-

kK is an extension of A. The restriction of X7, to Uy, defines a character X of A* and the restriction of
X1, to Uk defines a character X, of x*. The restriction of Xk to U defines a character of * which is
equal to X,/ and to X! so that

XE =X,

. —2 _ . . . .
As o varies over GG, wZQ 1 taken modulo Pr,. varies over the /th roots of unity in A and if
Xg;l_l =v
then
Xa(@] 1) = v(wL,).

The right side is not 1 if o # 1 because v is then non-trivial. Thus the restriction of &), to the /th roots
of unity is not trivial. To every up in S(Lo/F) is associated a character i of A* which is of order 1 if
ur = 1 and of order ¢ otherwise. If ¢ is the additive character of )\ defined by

¥x(2) = ¥r (ﬁ)

F

then
Al(,UfFu ¢F7 w}?‘—i_n) =A [_T(H)n 7/])\)]

if pp is not trivial. Moreover
x

¢L2/F <$> = Y\({ )
and
A1 (XL27¢L2/F7 w%—}-n) =A [—X)\(K)T(X/\, ¢/\)]

Finally
A (XL Yp, @ ™) = A [=7( X, ).

Thus the required identity is a consequence of the relation

(X eyn) = XA (OT(Xn,00) [T . m(ias )

AL
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which we proved as Lemma 7.9.

Retaining the assumption that L, /F is unramified we now suppose that m; > 1. There are two
possibilities.

(@)
my > 2(t+1)

(b)
t+1<my <2(t+1).
The second possibility occurs only when ¢ > 0.

If m; > 2(t + 1) choose X7, so that

m(Xp, Xy p) =t +1

fori =1 and 2. Itis clear that
m(Xr,

1

"X p) < da

if m; = 2di + ;. Since my > my we also have

2

m(Xp, XL, p) < da.
Moreover
m' =m(Xp) =my

so that d' is greater than or equal to both 1+, = 1+tand 1+4¢; = 0. Lemma12.1for L, unramified
and m; > 2(t + 1), follows immediately if ¢ is odd. Suppose ¢ = 2.

If ¢ = 0 we can invoke Lemmas 8.3 and 8.7 to see that if 5 = (%) we may choose 51 = B(x 1, /r)

and (3, = 5()%2/1:) equal to g. If u%l) is the non-trivial element of S(L,/F') and ME? is the non-trivial

element of S(L2/F') we have only to show that

o () () ()
e () e ()7 )
s (2) e (2

and we need only show that if § is in Cr then

is equal to

Certainly

X, (6) u (8) = Xp, (6) 12 (6).

We may write
(5 = NLl/F(Sl NLQ/F(SQ.
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Then ‘
pi (N, i) = 1

and, if jis1 or 2 accordingasis2orl,
X1, (Np,/r 0;) = Xic(65) = X, (63)
which equals
XLj (NLj/F 5J)M(LIJ)~/F(5J) = XLj (NLj/F 5J)Mg;)(NLj/F 53')'
The required equality follows immediately.

If ¢ is positive we may still choose 81 = 5. If m; — ¢t — 1 = v then, by Lemma 8.6, we may choose
(B2 in the form

Ba=0+n
with nin g7 . Sincev > ¢+ 1

Xp, (B2) XL, p(B2) = X (B)XL, 1 ().

This observation made, we can proceed as before.

Some preparation is necessary before we discuss the second possibility. Suppose that ¢ is positive
so that 7 is equal to the residual characteristic p. The finite field \; = O, /Py, is an extension of degree
p of ¢ = OF/PF.

The map
r— P —x

is an additive endomorphism of ¢ with the prime field as kernel. Choose a y in ¢ which is not in the
image of this map and consider the equation

P —x=y.
If , in some extension field of ¢, satisfies this equation and ¢ has g elements then z? # x. However
(27— ) — (27 —2) = (2" —2)? — (a” —z) = y* —y = 0.

So
29 —x =2

where 2z is a non-zero element of the prime field. Then
20 = (x+2)=al+z=2+22

and in general
! =x+nz.

Thus the lowest power n of ¢ such that 27" = z is n = p and z determines an extension of degree p.
Consequently = may be chosen to lie in A; and then A\; = ¢(x).
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Let E”(x) be the rth elementary symmetric function of = and its conjugates. Since

2P —x+ (=1)PNy, 9z =0 (12.3)
we have
E"(z)=0 (12.4)
ifl<r<p-—u,
EPY(z) = (-1)P (12.5)
and, of course,

If \ is a non-zero element of the prime field we can replace y by A\y. Then x is to be replaced by Azx.
Also we can replace x by x + A without changing y.

Let R(L1) be the set of (¢” — 1)th roots of unity in L;. Choose a v in R(L;) whose image in \;
is x. If we are dealing with fields of power series v will also satisfy the equations (12.3), (12.4), (12.5)
and (12.6). Let us see how these equations are to be modified for fields of characteristic zero. F' and
L, are then extensions of the p-adic field Q,. Let F° and L? be the maximal unramified extensions of
Q, contained in F'and L; respectively. R(L;) is a subset of LY and p generates the ideal B0 and the
ideal P 0. Thus

Y=+ (=1’ N, ypy=0 (modp)

and
E"(y) =0 (modp)

if 1 <r < p—1while
EP(7) = (1) (modp).

Let
S = Zaees(Ll/F)7 ’

The following relations are special cases of Newton’s formulae.



Chapter 12 125

S' () = E'(v) =0

S*(y) = E*(7) S'(7) + 2E%(7) =0

S3(7) = B'() $*(v) + E*(7) S'(7) = 3E°(7) = 0

SPHY) = E' () 8PP () 4+ ()P (p - DEPT () =0

SP(y) = E' () SP7H() + ..+ (1P EP(v) = 0.

We infer that
S"(v) =0 (modp)

if 1 <r < p-—1andthat
SPHy) = (-)P(p— 1) EPH(y)  (modp).
Combining the first of these congruences with Newton’s formulae we obtain
S™(v) =r(=1)"" E"(y) (modp?)
ifl<r<p-1 Ifpisodd
SP(v) = pEP(y) = BY(7) 8" () = E*71(7) 8'(7)  (modp?).
The right side is equal to

E'(9) (8P ' (y) = EP7'(7)) =0 (modp?).

If piseven
S?(y) + 2E°(y) = {E'(1)}?
Since
FE'(y)=1 (mod2)
we have

S%(y) +2FE*(y) =1 (mod4).
If o # 1 belongs to (L, /F') there isa (p — 1)th root of unity ¢ such that

77 =~y =( (modp).

By a suitable choice of y the root ¢ can be made to equal, for a given o, any chosen (p — 1)th root of
unity.
The above relations are of course also valid when F' is a field of power series.

Choose a non-trivial character pp in S(Ly/F') and choose « so that

X
pr(l+z) =vp (m)
Wg
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if x isin Pz. Herg s is the least integer greater than or equal to % If isa (p — 1)th root of unity we
define ,u% to be 7, if j is the unique integer such that

C=j (modp).

As we observed in the proof of Lemma 8.5
alx
wWE

if zisin‘Pz.

Let m; = 2d; + ¢; as usual. If 31 in Ly is such that
afx
X, (1+x) =L,/ <7m1+n1 )
Wg

for 2 in P71 7" then, if o # 1 belongs to G' = ®(L1/F) and x belongs to P71,

Viue (M) (4
Wpg

is equal to

aly,x
YL, /F <w}7‘+t+n )

if (, is such that
X7 = i

Thus if
v=mp —1—1t

we have
BY — B =Cwh (mod P ).
It is clear that
CO'T = C; + Co‘ (mOd "BLl)'

Suppose
77—y =& (modp)

where &, is also a (p — 1)th root of unity. Then

50’7' = S; + 60 (HlOd %Ll)-

We observed that we could arrange that
50 = CO'

for one non-trivial 0. Once we do this the equality will hold for all 0. Then 4?7 —~? = ¢, (modp) and

(61 —Pwy)” = i — Pwh  (mod Ph)
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for all o because, as we observed in the proof of Lemma 8.5, p belongs to P} ifr+s=1¢+ 1and
20r+wv) >t+2v=2m; —2 -2t +1t

which is at least
(ml—l)—i—(ml—l—t)Zml—l

so that r + v > d;. Since Ly /F is unramified there is therefore a 5 in F' such that

61 —YPwpr =0 (mod‘BdLll).

We may suppose that
B =B+ wp.

Bisaunitunlessv = 0. If v = 0 then, by replacing ~ by a root of unity congruent to v + 1 modulo 33,
if necessary, we can still arrange that 3 is a unit. 3 is congruent to a norm NLQ/Fﬁ’ modulo PL. Since
di < twe*

*(1998) At the moment this is all that could be found of Chapter 12.
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Chapter Thirteen.

The Third Main Lemma

Suppose K/F is Galois and G = &(K/F'). Suppose G = HC when H # {1}, HN C = {1},
and C' is a non-trivial abelian normal subgroup of GG which is contained in every non-trivial normal
subgroup of G.

Lemma 13.1

Let E be the fixed field of H and let X be a quasi-character of Cr. If m = m(Xr) then
m(Xg/r) = Yp/p(m—1) + 1.

Set

Observe that m’ — 1 is the greatest lower bound of all real numbers v > —1 such that Xp/p is trivial
on Ug and that m — 1 is the greatest lower bound of all real numbers u such that X is trivial on Uj.
Since

Nip(Up* ™) € UR

we see immediately that
m' —1<¢gp(m—1).

To prove the lemma we need only show that

e/r(m—1 m—
Nir(Ug ") D upt,

We show this with m — 1 replaced by any v > —1.

By Lemma 6.15, 7x,r maps W};/F onto Uy.. The projection of W}Q/F on G is a normal subgroup
of G. Thus it is either {1} or a subgroup containing C. If itis {1} then

Wi/p=Wkp NCk = Uy

and
Up = Nie/p (U™ ™) = Nigyp(Nig U )

which, by Lemma 6.6, is contained in
P

Suppose the projection is not {1}. If L is the fixed field of C' the group W}é/F contains
{wow™ o™ w e Wrr,v € Wi p N Wk} (13.1)

Since C' is generated by
{opo~tp~toc@, peC}
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the group generated by the set (13.1) contains a set of representatives for the cosets of Cx in Wy .
This group clearly lies in the kernel of 7x,r. Thus every element of W}é/F is congruent modulo the
kernel of 7/ in W}é/F to an element of

u Ve r(u)

and
U U P u)

Uk = 1ie/p (Wit ) = e p (Wit ™)

which is
N W¢'E/F(u)
e/F(Tk/EWig g )
and this set is contained in I
Npp(Ug™ ).

Suppose Fy is non-archimedean, K1/ F; is Galois and F; C E; C K. Let uy be a character of
&(K1/Eq). We may also regard p; as a character of C, . Let o be an element of & (K /F}) and define
the character of uf of &(K;/EY) by

us (p) = pa(opo")
for p € & (K7 /EY) or, what amounts to the same

-1

pi(a) = pa(a )
fora € CEf- Since
0_—1
Ve (@) =Yg, p (@7 )
the next lemma is a congruence of the definitions.

Lemma 13.2

A(M?JﬂE;/Fl) = A(M17¢E1/F1)-

We return to the extension K /L and the group G. Let T" be a set of representatives for the orbits
under G of the non-trivial characters in S(K/L). If u € T let G, be the isotropy group of 1 and let £},
be the fixed field of G),. Let H, = H N G,. Since C'is contained in G\, we have G|, = H,, - C. Then p
may also be regarded as a character of C. Let 1/ be the character of G, defined by

i (he) = p(c)

if h € H, and c € C. Eventually we must show that

A(Xg/p, Ve F) H A, Yr, /) (13.2)

peT

is equal to
A(XF,YF) H AW Xp, 17, VF, /F) (13.3)

if Xr is a quasi-character of C'r. At the moment we content ourselves with a special case. The next
lemma will be referred to as the Third Main Lemma.

pneT
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Lemma 13.3
If K/ F is tamely ramified the expressions (13.2) and (13.3) are equal.

As we observed in Lemma 6.4 the extension L/F will be unramified and ¢ = [C : 1] will be a
prime. Choose a generator wy of . Since F,/F is unramified we may choose wr, = wr. Choose
wg so that N, p wp = wp. Certainly

dp/p =0g/p =0
while
5K/L =/—1.

Since
dk/Fr =0k +40L)Fr = O0Kx/E +0E/F
we conclude that

Clearly

Z [FH:F]:Z [H:H;L]:Z (G: G,

o

is just the number of non-trivial characters in S(K/L), that is £ — 1. Moreover m(y/') = 1. Let E,, be
the fixed field of H,,. Then

Ng,/r,(wEg) = Ng/r(wE) = @F.

Thus, as an element of C'r,,, wp liesin the image of Wi g, under 7k, and hence ' (wr) = 1. Also

n(Yp/r) = n(Yr) +6p/rp =In+ (L —1)

while

n(Yr, /F) = n.

If m = m(Xp) = 0 then
m(XE/F) :m(XFH/F) :O

and
XE/F(wan—F@—l):XF( In+L— 1 wF H o/ F wF )

so that the lemma amounts to the equality

Hu Aq( ¢F“/F,WF H Aq( Hﬂ/nrﬂ/F,wl;r )-

If m > 0 then, by Lemma 6.4,
m(Xg ) =tm — ({—1)

and
m(Xg,r) +n(Yg/p) = £(m+n).
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Since K/ E is unramified
m(Xg ) = m(Xp/r) = tm — (€ —1).

However
XK/F = (M/XFM/F)K/FM
so that
U /r, (MW Xp, /p) — 1) 2 m(Xg/p) — 1 =L(m — 1)
or

m(p' Xp, )p) =12 ¢xyp, (((m —1)) =m — 1.

Consequently
m(u’XFH/F) > m.

Since it is clearly less than or equal to m it is equal to m. Because
Xg/p(wpth) = XF(wf:(ern)) = Xp(wy™™) Hu Xp,/r(wp™™)
we have to show that
A(Xgp,Yp p wp ™) H Ay (i Vg, p o™

is equal to
Ay (X, pr, @) [ AW Xp, 50 F, 7y i),

Let ¢ be the field Op /Pr, let A = O, /Py, let g be the number of elements in ¢, and let
f=N:gl=[L:Fl.
Let 8 be the homomorphism of C' into A* introduced in Chapter IV of Serre’s book. Thus
0(c) =@y (modPp)

sothatifh € H o
O(h~teh) = (wh " )= (wh ) =60(c)"

Let hg be that element of H such that
alo = qad

if « € A and let ¢y be a generator of C. Then 6(cg) has order ¢ and, since the centralizer of C' in H is

1), T
O(hg "chi) = 0(co)?

is O(cp) if and only if f divides r. On the other hand, itis §(c) if and only if ¢ divides ¢" — 1. Thus the
order of ¢ modulo ¢ is f. We also observe that both C' and its dual group are cyclic of prime order so
that any element of H which fixed an element of 7" would act trivially on the dual group and therefore

on C'itself. It follows that F), = L forall p in T
Suppose first that m = 1. Let 1), be the character

Vo(z) =Yr <ﬁ>

F
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on ¢. Since Og /P is naturally isomorphic to Or/Br and the map 2 — Ny, px gives the map
x — 2* of ¢ into itself while the map z — Sg,px induces the map x — {x the required identity
reduces to the equality of

Xy ()X, o) H%T T(kas ¥a/g)

and
7( X, V) HHET (A0 Vrsg)-

This equality has been proved in Lemma 7.8.

Now let m be greater than 1. Since F}, = 1 for all . we are trying to show that

A\ Xg/p Yp/p,wp ™) H Ay (p,Ypp, @ ™™)

is equal to
M (Xp op, @it [ Aaudeyp, by i),

Since the action of H on C is not trivial £ cannot be 2. If x liesin T'and ! lies in the orbit of v
then

A1 (l/a QbL/Fv w?—&-n) = Al(u_lv QbL/Fv w?+n)

is u(—1) times the complex conjugate of

A (p, 7/JL/F7 W;ﬂ'ﬁn)'

Since the order of pis ¢, u(—1) = 1 and, if 4 # v, the product of the two terms corresponding to p
and vis 1. If

pt=pt
with 0 < r < f lies in the orbit of 4 then /¢ divides ¢ + 1. Thus ¢ divides ¢>” — 1 and 2r = f. By
Lemma 7.1

| (b, ase) | = V@ ="

and

(i, ¥ajg) = =D (p,r p p )"

if 1) /¢ has the same meaning as before and . is the character of A* induced by p. Since

§ =AM (p ) r,wp ™)

is its own complex conjugate, it is 1. If « € ¢ then
p @) = p(@®) = p(a).
Since u(«) is an ¢th root of unity itis 1. Thus

T(px, ¥asg) = T(1r)-

However it follows from Lemma 7.1 that

() =1 (modp)
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where 7 is a number in £,,s_;) which is not a unit and whose only prime divisors are divisors of /.
Thus
—0q¢" =7(px) =1 (mod¥)

and § = 1. We are reduced to showing that
Ay(Xg/p, Y p,wg ™)
is equal to
Ay (XFv Yr, w?+n) H Aq (:U'XL/Fv wL/Fv w?+n)

Let 8 = B(XFr). By repeated applications of Lemma 8.9 we see that we may take

B(Xrp) = B(Xk)r) = B(uXy p) = B.

If 3(Xg, ) is chosen we could also take

B(Xk/r) = B(Xg/F).

Thus if
m = m(XE/F) = m(XK/F) =2d + ¢

we have ,
B=06(Xp/p) (modPk).
Since both sides of the congruence lie in £

B=B(Xgr) (modPs)

and we may take

B(Xp/r) =B
Then
Ao(Xg p,hp @i ") = Yp <%> Xz (8
while
Ao(Xp, p, i ™) HMGT Ao (uXp, Yp e @)
is equal to

b (ETﬁ) X1 (),
w

F

To complete the proof of the lemma we have to show that

A3(Xp, Yp, i ™) H Ag(pXp, Yr p, @i ™) (13.4)

pneT

is equal to
AB(XE/Fa ¢E/F7 W?Jrn)

when one, and hence both, of m and m/ is odd.
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As remarked in Lemma 9.4

AS(:UJXL/F71/JL/F7W?+") = AS(XL/F7¢L/Faw?+n)'

According to Lemma 9.6 the right side is equal to
EAS(XF7 ¢F7 w}‘n—i_n)[L:F]

whereeis1if f = [L: F]isodd and -1 if itis even. Thus (13.4) is equal to
it m—+n
e f {A3(XF7'¢F7WF )}

As before
¢ =Or/PBr =O0r/PE.

Let ¢, be the function on ¢ defined by

po(z) = ¢F (%) Xyt (1 + wha)
Wp

if m = 2d + 1. Then m’ = 20d + 1 so that d' = {d. Let ¢, be the function on ¢ defined by

Bz -
pu(r) = Vp/F (W XE/lp(l‘f‘w%gﬁ)'
F

Because of Lemma 9.3, to complete the proof of the lemma we have only to show that
=1 0 /
e T Alo(pg)"] = Alo(ey)]-
Since d’ > m and

/ p—
3d" +¢ 1Zm

14

we have
NK/L(l —|—w§lpx) =1 —i—w% Sk/LT —l—w%dE%(/L(x) (mod PBT)

if E%/L(x) is the second elementary symmetric function of x and its conjugates over L. Thus
Ng/p(l+ wha) =1+ wgSp pr + w%dE?E/F(x) (mod P%).

This in turn is congruent to
(1+ w% SE/FJJ) (1+ w%dE%(/F(x)).

Thus
¢i(x) = oo (Lx)ps(—EX /4 (z))

bo(@) = o (ﬂ—f)
wWpg
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or
—L(0—1)
¢ulo) = ottty (TG a?) = ool
Suppose first that p is odd and let
2?2 — 20
Pp() =1y < 5 )
so that

() = v <€x2 —226041,') ., <€(x;a)2> o <—€20¢2>'

Referring to the observations in paragraph 9 we see that we must show that
=1 =1 —la? —la?
er ll¢(—1) 2 w(b < 5 > = V¢(€)¢¢ < 5 >

T =y (-1) T (D)

if v, is the quadratic character of ¢*. Let g be the number of elements in ¢. If ¢ is an even power of
p the right side is 1 and if ¢ is an odd power of p the right side is, by the law of quadratic reciprocity,
w(p) if w is the quadratic character of the field with ¢ elements. Thus in all cases the right side is w(q).
If f is odd then ¢/ is a quadratic residue of / if and only if ¢ is. Since

¢ —1=0 (mod¥).

or

q is a quadratic residue and both sides of the equation are 1. If f is odd the left side is (—1)12.771. Since
f is the order of ¢ modulo ¢ this is w(q).

Now suppose that p = 2. If
g (—a?) = Py (ax)
then, by the remarks in the proof of Lemma 9.7, we have to show that

£—1 £—1
2

e7 py(a) T =1

if / = 1(mod 4) and that

£— £41

T o) F =1
if £ =3 (mod4). We also saw in paragraph 9 that

{s()}? = vy(a?)
was +1 or -1 according as g is or is not an even power of p. By the second supplement to the law of
guadratic reciprocity
if =1 (mod4)and

if =3 (mod4). We have just seen that

The lemma is proved.



Chapter 14 136

Chapter Fourteen.

The Fourth Main Lemma.

In the previous paragraph we said that we would eventually have to show that

A(XE/r VE/F) H Al 4, r) (14.1)

neT

is equal to

Alxrvr) [

However we verified that the two expressions are equal only when K/F' is tamely ramified. In this
paragraph we shall show that they are equal if Theorem 2.1 is valid for all pairs K’ /F' in P(K/F) for
which [K': F'] < [K : F).

!
per A(WXF, ) r VF, /F)- (14.2)

Lemma 14.1

Suppose K/ F is wildly ramified and Theorem 2.1 is valid for all pairs K’ / F' in P(K / F') for which
pp / y p
[K': F'] < [K : F|. If xF is any quasi-character of Cr the expressions (14.1) and (14.2) are equal.

If a and b are two non-zero complex numbers and m is a positive integer we again write a ~;,, b
if, for some non-negative integer r, 7 is an m"th root of unity. Define the non-zero complex number p
by demanding that

A(XE/F7¢E/F) H A(MlﬂﬂFH/F)

peT
be equal to
PA(XF,YF) HueT A(W'Xp, /7 VF, ) F)-
We have to show that p = 1. Lemma 14.1 will be an easy consequence of the following four lemmas.
Lemma 14.2
Ifm(xr)is0or1then p=1andinall casesp ~, 1.
Lemma 14.3

If |G : G4] is a power of 2then p ~,, 1.
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Lemma 14.4

If the induction assumption is valid, if F C F' C L, if F'/F is normal, and if [F' : F| = (isa
prime thenp ~y, 1.

Lemma 14.5

Suppose H = Hy Hy where H, is a cyclic normal subgroup of H, [H, : 1] is a power of a prime ¢,
and [H; : 1] is prime to ¢. If the induction assumption is valid p ~; 1.

Grant these four lemmas for a moment and observe that if m and n are relatively prime then
p ~m land p ~, 1imply that p = 1. If £ is a prime which divides [G : G| there is a field F’
containing F and contained in L so that /' /F is normal and [F’ : F'| = ¢. Thus Lemma 14.1 follows
from Lemma 14.4 unless [G : Gy is a prime power. Lemma 14.1 follows from Lemmas 14.2 and 14.4
unless [G : Go] is a power of 2 or p. Suppose [G : Go] is a power of 2 or p. Then p ~(g.q,) 1 except
perhaps when [G : Go] = 1. If £ is a prime which does not divide [G : Gy but does divide G| : G1]
let H5 be the ¢-Sylow subgroup of G, /G1. H, is a normal subgroup of G/G; which we may identify
with H and H/H; has order prime to Hs. Thus, by a well-known theorem of Schur [7], H = H,H,
where H; N Hy = {1} and H; has order prime to Hs. It follows from Lemma 14.5 that p = 1 unless
[G:Go] =1or[G: Gy]isapowerof2orp. If [G: Go] = 1and ¢ is a prime dividing [G( : G1] there is
afield F' with F C F’ C L such that F’/F is normal and [F’ : F] = (. Thus if [G : G| = 1 it follows
from Lemma 14.4 that p = 1 unless [G : G1] is a power of 2. However if [G : G1] is a power of 2 there
certainly is an F” in L with [F” : F'| = 2. It follows from Lemmas 14.3 and 14.4 that p = 1 in this case
unless p = 2. If [G : G4] is a power of p then Gy = GG; and G /G is abelian. By assumption the abelian
p-group G /G acts on the p-group C' = G faithfully and irreducibly. This is impossible.

We prove Lemma 14.2 first. Let ¢ > 1 be such that C' = G, while G;1; = {1}. Let 6; be the
homomorphism of G; into ‘43%/‘133}“1 and 6 the homomorphism of Gy /G into UY% /U3 introduced in
Serre’s book. If 0 € Gy and v € G, then

O:(ovo 'y 71 = (65(0) — 1)6: (7).

If o is not in G then 6§(c) isnot 1 and v — oyo~ty~! is a one-to-one map of C onto itself. Thus, if
g c Go,

p(oyo ™) = p(v)
implies i = 1 or 0 € G;. Consequently if pn # 1, G, NGy = G and L/F,, is unramified. Since
=W R,
m(p') =m(p) =t+1.
Observe also that ¢t must be relatively prime to [Gy : G1]. In particular if ¢ is even [Gy : G1] is odd.

The relations
Oy = ([Ge: 1] = 1) (t+1)

5L/F = [GO : Gl] — 1
5K/E = [Go . Gl] -1

and
Or/p = 0k/L +[G1:1]0r/p = 0x/E + [Go : G1ldp/F
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obtained from Proposition 4 of Chapter IV of Serre’s book, imply that

op/r = ([G1;1] = 1) <ﬁ + 1) :
If n = n(¢r) then

n(lﬂFH/F) = [Go : Gl]n + [Go : Gl] -1
and

n' =nWgp)=[G1:1n+ ([G1:1] - 1) (m + 1) )

Choose a generator wy of PBx and a generator wgr of Pg. Then set w; = NK/LwK and
wr = Ng/pwg. Thereisaunit¢ in K such that

14+n t

wF _ (5 wK
14+n/ t
Wg wry,

Taking the norm from K to L of both sides we see that if ¢ = [G; : 1] and k£ = [G : G1] then

t(g—1)
t=
Wk
Letm = m(xr). If m — 1isequal to ﬁ then [Gy : G1] divides t and [G) : G1] is 1. Suppose
that ;
m< ———= + 1.
[Go . Gl]
Then

m(XF,/r) <YF,/F <[GotiG1]> + 1.

However lﬁF“/F = YL/F, O?/JL/F = wL/F so that
¥p,/r(u) = [Go : Gilu

if u > 0. Thus m(xr,/)r) <t+1and m(,u/XFH/F) = ¢ + 1. Moreover, by Lemmas 13.1 and 6.4,
m' = m(xg,r) = m. Choose a generator wg, of Pr, . Then

NFM/F(W%M) = ’Y/,L wF

where v, is a unit. The order of w}ﬁ”w%ﬂ inF,isl+t+ n(wpu/p). Observing that

Z [Fu:F]=q-1

M

we see that

AI(XE/F7¢E/F’WE/+RI) H Al(ﬂ,a¢Fu/Faw11:+nw%H)

neT
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is equal to

P{HH XF(%)} {A(xp, Yr, @B} {Hu Ay (W XE, /7> VF, s wll;rnwﬁ)}-

Itis now clear that p = 1 if m = 0.

If ;
m>———+1
_[GoiGl]

so that in particular m > 2, then

m' =m(xg/r) = [G1: 1m—([G1:1] - 1) <[GotiG1] i 1>

is also greater than or equal to 2 and
m' +n' =[Gy : 1] (m+n).
Since m’ > 2 and K/E is tamely ramified

m(Xr/r) = Yr/e(mxe/r) —1) +1=1Ygp(m—1) + 1.

Since

m(xr,/r) < Yp,p(m—1)+1
and

t
1/JFH/F(m_1)+1 Z¢F1L/F <E> +1 :t+1

we have

m(p'xr,/r) < Yr, (m—1) 4 1.
However

XK/F = (M/XFH/F)K/FH
so that
VYi/r,Wp,  p(m—1)) +1=9g/p(m—1)+1=m(xx/r)
is at most
Vi p(m(p'xp, /p) — 1) + 1.

Thus

m('xF, /p) = VE,p(m—1) + 1.

Consequently
m(p' xr,/r) +1(Vr, /) = [Go : G1] (m + n).

Since the range of each p’ lies in the group of ¢th roots of unity

Al(XE/Fyl/JE/EW%nJm) Hu Al(ﬂ/7¢FH/F7W?F+1w%H)
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is equal to
0A1(XF77/JF,w}n+n) HMAl(M/XFH/FﬂﬁFH/F,w?Jm)

with o ~,, p.

The next step in the proof of the lemma is to establish a simple identity. As usual let r be the
integral part of % and letr + s =t + 1. Choose (1) so that

Q/JFH/F <M> :Hl(l—l-x)

1+n
Wp WF,
s . . . ¢
for z in P3, . There isa unit oy, in L such that a, @y, = wy. Then

Yr/F <7auﬂ(u’)tx> = p(1+z)

14+n
Wp wWp,

for z in B3 . We take 3(u) = o, (). If o € G a possible choice for §(u7) is

B) =5

Let = Or/PBr = Og/Pr and let ¥, be the additive character of ¢ defined by

bo(@) = (%) |

There is a unique « in ¢ such that

Yg(ax) = g (2?).

w}{"”
w1 = SE/F A+ |-
WE

q
[T, =25 T1, Neyebte) (143)

H ad

wh
/ wt

then w; = dw in A\. We need the following lemma.

Finally let

| want to show that

in ¢.
Let A\ =0./Pr =Ok/Pk. If

Lemma 14.6

Suppose K'/F" is an abelian extension and G' = &(K'/F"). Suppose there isat > 1 such that
G' = Gy and Gy, = {1}. Letwy be a generator of Py, let wp: = N/ jp (wk), and let

wt ’

F/
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Also letq = [K' : F']. There are numbersa,. .., f in Op/ such that for all z in Op-
NK’/F’(l + l’w%’/)
is congruent to
1+(xq+ax% + .+ f2P + wz)wh
modulo P

Suppose F’ C L’ C K’ and the lemmais true for K’'/L’ and L'/ F'. The lemma for K’/F’ follows
from the relations
[K':F'|=[K':L|[L: F']

and
NK//F’(l +JJ’W§(/) = NL’/F’(NK’/L’(l —i—xwﬁ(,))

t t t
g Tk ) Z g @ g Wi
K//F/ t = L//F/ t K//L/ t .
W W W,

The lemma for extensions of prime order is proved in Serre’s book.

and

Suppose then
Ngjp(l+awl) =1+ (27 +... + w2)w;,  (mod PiH)
for x in Op,. Since

Uasp(az) = Pg(ady/e(x)) = s ((Sx/e(2))?)
which in turn equals
Vo (Sa/pr?) = thase(2?)
we conclude that .
Ua/p(y(@? + ... +wz)) = ¥y /g ((aye + ... +wy)r).

Also .
1
<o¢y5 —|—...+wy) =aoly+...+wiy?
is a polynomial Q(y) in y.
For each v in S(K/L), we choose (;(v) so that

Yr/F <%) =v(l+x)

F L

for x in P;. Since kP = kin A

o (BB () (@9 + .+ wa) = o (B () [(ka)? + ... + wha))

if z isin Op. The left side is also equal to

(s <ﬁ1(y7);1jfﬁ(xw%)> =1.

t
F WL
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Thus Q(kB1(v)) = 0. Since B1(v1) = B2(v2) (mod B ) implies 1 = v, we have found all the roots of

Q(y) = 0. Thus
ol

— = ko) =11, 01(v) (modPy).

wd v#£1

Let M, be a set of representatives for the cosets of G/, in GG. Then

1L, Nerb6) =11, 10, ., B0

is congruent to

(I (I Tt )

modulo B. To verify the identity (14.3) we have to show that

(I 10, o 5 {TL =00 Gmoam

Since

ot [F:F]
Yo = H YL E
" oceM, az F

the congruence reduces to
t(q—1)

L ___ = 6 (mod‘BK)

t(‘lgl) -
W

which is valid because the left side is N ,7,0 and

Nk =67 (modPk).
If m = 1then m(xr,,r) < 1and we can take 3(u'x g, /r) = B(1). Then

Ay (,u/, ¢FH/F7 W}ernw%u )

is equal to

Xr(Ng,/p(B(1')) Do XE, 7, YF, 7 o5 " E)-

Lemma 9.4 implies that

Ag(ulﬂﬁFu/F,w;rnw%“) = AS(,U«,XFM/Fa¢F“/Faw}:+nw%“)~

If x belongs to Og then

E

YE/F <ﬁ> = Py (wr).

If x4 is the character of ¢* determined by x  then

Av(xp, Y, @) = A[=T(xXg, Vo))
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and
AI(XE/Fv ¢E/F7 le-i-TL ) = X(]ﬁ(wg) A[_T(Xi, ¢¢)]

The right side of this expression is equal to

Xo(wia™®) Al=T(xg, ¥s)]-

The identity (14.3) now shows that p = 1 when m = 1.

Suppose that

'
1<m<7+1
[Go = G

Let 3 be a given choice of 3(xr). Then
B(xe/r) = Piyp(Bwy ™ @) (mod Bh)
if m’ = 2d’ + &’. On the other hand
Yryp(m—1)+1+n(rp) =[Go: Gil(m —1) + 1+ [G : Go|n + [Go : G1] —
which equals [Gy : G1](m + n) and Lemmas 8.3, 8.4 and 8.7 imply that

L p(Bwp T R = (mod PP)

if
1/JL/F(m — 1) +1= 2d1 +e1.
If
then / p
P};/E(ﬁ(XE/Fawg tn aw}? ! ) = ﬁ(XE/F) (mOdel)-
Thus ., p
B(xe/r) = Piyp(Boy T @i ™) (mod Py).
Let
v=t+1—(Ypp(m—1)+1) =t~ [Go:Gi](m—1).
If .
fovi v
7= L_1
Wg
and
o™ T Y
F}/ - E1+n K
Wg WL
then d

is congruent to

Y PK/L(’YﬂuwF thwK 7w11!7+nw1; ‘)
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modulo ‘13?;1.
It is clear that .,
No(xe/pVEr @y ) ~p X5 (Neyr(B(XE/F)))

and that
Do(u' Y, p @ @) ~p 1.
If we choose -
wF,
B(u'xrp,p)=BW)+p e
Wp
then
/ ntl__t 1 / w%ﬂ
Ao (p XF,L/FJ/JFH/RWF WFH) ~p XF NF“/F Bu') + 8 Zm—1 .
F
Moreover
As(xr, Y, TR ™) ~p X5 (B).
Let o
Az(XE/FﬂﬁE/F,wTEn o ) Hu Az(ulﬂﬁFu/F,w?:HWF )
equal
Ao (XF, Yr, o " {H Ao(lWXF, 7 VB, @ W, } {H XF (Y }
Since

XrF(u) ~p 1
if w € Uf, all we need do to show that 7 ~,, 1 is prove that

B Hu NF,/F (5(//)

t
Fu
-1

Ne/r(B(xE/F)) HM YV

is congruent to

modulo Br.

As before we choose () = o, (B(1'). If v = p7 a possible choice for 3(v) is

t
wr,

o nNo
af B(u') =k

We can also choose

Wg

@ , @
ﬂ(HXL/F):Oéuﬂ( N+ T T — O ﬂ(/‘)"‘ﬂw = |-

Then a possible choice for B(ux /) is

t o t t
{ﬂ( )48 it } o7 = OB e+ 8

Wg
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We apply Lemma 8.10 with F' replace by L,

0= wll;""wz
and e; = wy. Itimplies that 8 )
XE/F
N/ ( 7’/ >

is congruent to

t o t
WE w
o ! M L
’Yﬁ HLLET ngM“ {aﬂ </6(/"L ) + /6 w;}—l) wzt}
modulo B;. The last expression is equal to
@, wt
/ I o
7ﬁ{l_‘[ueT NE, /| B() + 0 wh } {HueT HUEMH Y wqt }
and we have to show that

t
) {TT, ) { Ter T, o

is congruent to 1 modulo By. First of all

(g—1)t

E

N _m'+n'—q(1+n) _—qt+v _ 1 Wp
Ni/p(v') = wp wr, (a—1)t
wr,

Since
g

a2 Y7V e
= {Le, o) =
" oc€EM,, wzt F

the required relation follows.

Define n by setting

nAs <XE/F7¢E/F77D}? o ) HueT Az (M/7¢F,L/Faw}:+nw%“)

equal to

m—+n

As(xr,Yp,@wp ") HHET Aj (H/XFH/FWFH/F,WF"W%H) -

We now know that n ~,, p. We shall show that  ~,, 1. This will prove not only the assertion of Lemma
14.2 but also that of Lemma 14.3, provided of course that

t

1< =7
m [GQZGl]

Lemmas 9.2 and 9.3 imply directly that ) ~,, 1if pis 2.
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Suppose p is odd. Lemma 9.4 implies that

14+n

Pk ) ~p Ds(WXE, s VR, p @ @)

As(ﬂla ¢FH/F7 Wp WE,) ~p
Since m’ = m all we need do is show that

As(xp/r e p @y ) ~p Aa(xr, Pr, wpt™)

when m is odd. Let ¢ = Op/Pr = Op/Pr. Let ' = B(xg/r) and let § = B(xr). If ¢, is the

character of ¢ defined by
Bx
vyte) = vr (2

WE
and wg is the character of ¢ defined by

" ﬁ,
W(x) = v (w—ﬁl>

E

and if z/Jg(x) = 1/1&,(6@ then, by Lemmas 9.2 and 9.3, all we have to do is show that ¢ is a square in ¢. If

S Ccdle
w1 =0g/F | —i7
/ wg +1

then § = w, % in ¢. To show that § is a square we show that ¢ is a square.

N /
§%= Ng/pa =9 ng.
g
We saw that .
Ng/r( wE,
/ {H ’Yu} {H N, /F (5(#’) + m_1>}
H Wr
in ¢. But
W
f——="7=0 (modPr)
Wk
because t > [G : G1](m — 1). We also saw that

(ML) {TL, ¥eseson} = &

in ¢. Since 3179 is clearly a square, we need only check that « is a square. The character
T — (27— ax)
is identically 1, so that the kernel of the map

z— 29— ax
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is non-trivial. Thus o = 29~ ! for some z in ¢.

Now suppose that
t

[Go: Gi]’

We have to show that the complex number o defined at the beginning of the proof satisfies o ~,, 1. To
prove Lemma 14.3 we will have to show that o ~,, 1if [G : G4] is a power of 2.

m—12>

Given 8 = 3(xr) we may choose 3(xr,r) = B(XF,,/r) = 3. Moreover

B(xE/F) = PE/F(ﬂ: wy " W?Jrn) (mod ‘BdE/)
if m' = m(xg/r) = 2d’ +¢'. By Lemmas 8.3, 8.4 and 8.7

m+

m-—+n

Pryp (B, @i " @) = Pryp(B(xe/r) @ wi ) = B(xe/r)

modulo 73?{,1 if
brpp(m = 1) +1= 24} +¢}.

Thus
B(xe/r) = Pl (B, @ " @i ™™)  (mod Bi).
If
Yp, p(m—1)+1=2d, +¢,
and

YF,/F (O;(f,ﬁf) =u'(1+ )

F

for x in P “+E“ we may take
B(u'xr,r) = B+ a(i).

¢L/F(m— 1)+1 =2d1 + &

u(1+2) = e (2007

F

then

for z in PLUTE 1f v = 47 then

(e

o) =g (ST

F

for  in P41, Lemma 8.2 implies that

Ng/r(B(xe/r)) = Nk/o(B(XE/F))

is congruent to

ﬂHuETHUEM (B+a(y)?)
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modulo B;. The last expression is equal to

B HMGT Np,/r(B+ a(p)).

Moreover
Ao (xr, ¥r, @) ~p x5 (B)
A2(M/,¢FH/F,W}D+”W%H) ~p 1
No(XE Ve F @R ") ~p X5 (NE/P(B(XE/F)))

No(WXF, s VE, @i ™) ~p Xp (NE, p(B+ a(i))).

Define 7 by demanding that
As(Xp/ps e/ r@wp ™) Hu A3(M/7¢FH/F,W}:+RW%H)

be equal to

TA3(XF7¢F7W?+TL) 1_‘[# A3(M/7XFH/F7¢FH/F7W?‘I+71)'

Since xr(u) ~, 1 if u € U} the preceding discussion shows that o ~, 7. Lemmas 9.2 and 9.3 show
that 7 ~5, 1. Lemma 14.2 is now completely proved. To prove Lemma 14.3 we have to show that
T ~, 1if [G : G1] is a power of 2. We may suppose that p is odd.

There are a number of possibilities.

(i.a) tisevenand misodd. [Gy : G1] must be odd and hence 1, for we are now assuming that [G : G1]
is a power of 2. Since
and

(1Gh 2 1] — 1)t

+1
[Go : Gl]

m(xg/r) = [G1:1](m—1) -

both m(xr, ,r) and m(xg,r) are odd.
(i.b) tisevenand m is even. Again [Go : G1] is 1. This time both m(xr, /r) and m(xg,r) are even.
(ii.a) tisoddand misodd. Then m(xr,  r) is odd. If

[Gy:1]—-1
[Go : Gl]

iseven m(x g, r) is odd. Otherwise it is even.

(ii.b) tisodd and m iseven. If [Go : G1] is odd, that is 1, then m(xF, /r) is odd and m(x g/ r) is even.
If [Go : G1] is even then m(xp, /r) is odd and m(xg, ) is even or odd according as

[Gy:1]—-1
[Go : Gl]

is even or odd.
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If ¢ is odd then clearly
[T, 8a(str,/m "k, ~p 1.

We are going to show that this is also true if ¢ is even. Then L/F, and hence F,/F, is unramified. Let

¢ = Op, /B, . If
ﬂ(u’)ﬂf)

14+n
Wg

Ve, (T) =YE, /¢ <
and if pg4 , is a nowhere vanishing function on ¢, satisfying

©4, (T +Y) = g, (T) 0o, (V) Vg, (TY)

then

As(mwﬂ/mwy”w%ﬂ) ~p A[_U(S%,L)]-

If o belongs to ¢}, let vy, (o) equal +1 or -1 according as « is or is not a square in ¢,,. If ¢ = Op /Pr
then

Ve, (@) = vy (Ng, jo(a)).
X
1/%(95) =Yr <W>
then, according to paragraph 9,
Ag(ulﬂﬁFu/Fawzl;rnW%“) ~p V¢(NF“/F(5(HI))) {A[_U(S%)]}[F“:F]
if 4 is any nowhere vanishing function on ¢ satisfying

Ps(T +Y) = 0p(x) () Yo (zY).

Thus if a is the number of pin T

Hu AS(MI’leu/F’w}jnw%u)

is equal to
(=1 vs ([T, N, /e (80)) Alo(ps)*™]
where n ~, 1and ¢ = [G; : 1].
We saw in paragraph 9 that

Alo(pg)?] ~p ve(—1) Allo(pe)*] = vs(=1).
Since t iseven Gy = G1 and G/G1 = G/Gy is abelian. If 0 € G

{peSK/L) | p=np"}
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is a subgroup of S(K/L) invariant under G. It is necessarily either S(K /L) or {1}. If o isnotin Gy it
isnot S(K/L). Thus G, the isotropy group of 1, is G for all 1 in T"and F), = L. Moreover

IL, e =11, 11, .6,6, 207

We may regard C' = (G as a vector space over the field with p elements. If o € G/G; and the order
of o divides p — 1 then all the eigenvalues of the linear transformation ¢ — oco ™! lie in the prime
field. Since the linear transformation also has order dividing p — 1 it is diagonalizable. Since G/G; is
abelian and acts irreducibly on C' the linear transformation is a multiple of the identity. In particular if
oy is the unique element of order 2 then 00000_1 = ¢~ ! forall c. Asaconsequence p°° = ! and

B(p')° = —=p(u') (modPyr)

if we choose, as we may since F, /F' is unramified, wr, = wp. If D isthe group {1,00} and M is a set
of representatives for the cosets of D in G/G; then

HueT HJGG/GI Blu)” =1

v = HuET I, o)

Clearly

]

1770 = (1-)"= ~* (modPy).
If x is the non-trivial character of D and
v:G/Gy — D

is the transfer then

g

77 = x(v(0))*y
for all o in G/Gy. v4(7?) = Lifand only if y(v(c))* is 1 for all o. If o is a generator of G/G, then

[G:Gg]
v(io)=0 7 =g

so that v,(y?) = (—1). Putting all these facts together we see that
H,u Ag(ul, ¢FH/F’ w?‘"w%ﬂ) ~p 1.
Observe that if we had taken wp, to be 6, then N, ,3(1') would have to be multiplied by
{NFH/F(SN}t

which is a square modulo 3 because ¢ is even. Thus the result is valid for all choices of wE, -

Eventually we will have to discuss the various possibilities separately. There are however a
number of comments we should make first. If m is odd and m(xr, /r) is odd then

AS(H/XF;L/F7/I/JFM/F7W?+”) Np V(;bp. (ﬂ—i_ Oé(lu’,)) A[_O-(gp(bu)]
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if
wu(x):zﬂpu/F( - )

1+n
Wr

m—1
Observe that, because m is odd, we may take the number § in Lemma 9.3 to be @ . Of course pg,

is any function on ¢, which vanishes nowhere and satisfies

©4, (T +Y) = s, (T) 0o, (Y)Ve, (2y).

Applying Lemma 9.1 we see that

[FH:F] [FH:F]

Al=a(ps,)) ~p —vo (K7 ) Alo(es) ]

ifk = [GO . Gl], if
T
by (@) =Y <—n>
wit
and if o4 bears the usual relation to 1,. We use, of course, the relation
k’S¢H/¢(Z‘) = SFH/F(:E)

Observe also that
Vg, (B+a(i')) = ve(Ng, /6 (8 + a('))).

If m is odd
A3(XF7 va w?—‘rn) ~p _V¢(/6) A[O—(QOQS)]

If both m and m’ = m(xg,r) are odd and if 5’ = 3(x /) then
A3(XE/F7¢E/F7w2}+n) ~p —l/qs(ﬁ/) A[U(@b)]

if @;5 bears the usual relation to the character

X
Vy(x) =vp/r | ——¢

1+n %
Wp Wg

There is a unit £ in O such that wp = ew,. If o € C then
wy = 6”_1w§?_1)q =1 (modPk)
because ¢t > 1. Thus the multiplicative congruence
w} = Ng/pwp = wp  (mod” Pg)

is satisfied and -
1 wp "
T = 1w (mod* Px).

k
Wg E
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1+n
w1 = S (wll:—n’)
WE
w1
vyl) =vr (5.
¢ wllm-&-

ve(B) = ve(B) = vs(Ng/r )

If

as before, then

Since

we have
As(xp/pYe/r, @ ") ~p —ve(Ng ') ve(wr) Alo(ps)].

Define i by demanding that
AS(XE/Fu ¢E/Fu W?Jrn)
be equal to

nAs(xp, Yp, wp*") HMAS(H/XF,L/FJ/JFM/RW?M)-

We have to show that  ~,, 1. If both ¢t and m are even this is clear. If ¢ is even and m is odd we are to
show that

vo(NE pB g(wi) ~p (1) ve(—1) T vy (k) T v4(83) HM Vy(Ng, /6B + ap')))
if a is the number of elements in T'. Since t is even k is 1. As before

811, Nowso(B+alu) =B8], 11,00, B+ o))

is congruent to Ng /3" modulo L. All we need do is show that

qg—1

vs(w1) = (—1)* ve(~1)'7".

Since t is even each vy, is a square in ¢. Applying the identity (14.3) we see that

vo(wr) = vo(wf) = vo(@)y* (IT, Ne/rBG1)) -

We have seen that « is a square in ¢ so that v4(«) = 1. We also saw that

qg—1

vo (T, Ne,/eB)) = (1) vs(-1)*7

when ¢ is even. The required relation follows.

We suppose henceforth that ¢ is odd. The discussion will be fairly complicated. Suppose first that
m is also odd. Then
[Go : Gl](m - 1) 75 t
and
t

[Go : G1]

m—1>
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so that
B+a()=p (modPr)

and

g—1 qg—1

[T, 260X, /0, 0 ™) o (<1)° v (K5 ) 0y (B7F) Alo(p0)] T

Thus if 21 is odd we have to show that

(—1)7 (k) v (—1) T +E ~ 1 (14.4)
and if ‘J;kl is even we have to show that
vp(wn) ~p (—1)" g(—1) . (14.5)

Now suppose m is even. If [G : G1] is 1 there is nothing to prove. If k£ = [Gy : G1] is even then

t
—1 >
mn [Go . Gl]
and
B+a()=F (modPyr).
If
gm—nx
Vg, (x) = Vr,/F ﬁw

and %H is a function on ¢,, which vanishes nowhere and satisfies

Po, (T +Y) = 0y (7) @y, (y) ¥y, (vY)

then
AS(H/XFH/FJZJFH/waZH_n) ~p A[_U(Sﬁﬁpu)]'

EnWp = WFH
then ¢, isa unitand

Vg, (@) = g, /6 (kPeuT)

if, as before,
x
Vo(z) = ¢r <$> :
By Lemma 9.1, A[—c (g, )] is equal to

[FH:F]

Vg <km—’“ﬂ> Vg (5%> Ve(Ng, s9eu) Alo(pg)] F

If -1 is even we have to show that

1

(—1)% vy (HM Noujoen) Vo(=1)F ~p1 (14.6)
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If ©L is odd then m’ = m(xx,r) is odd. If
12 lwg}/_lx
bo(@) = Ym/r | B —
WE

and ¢ bears the usual relation to ¢/; then

1

A3(XE/F7¢E/F7w?+n) ~p A[_U(%))]'

Now v4(8") = vg(p)? and
(8" = Ngypf’

which in turn is congruent to

ﬁHuGT HO‘GMH (/6 + OC(M/)U) = /Bq

modulo Pg. Let

erpt™ = w%(ern)

w}{"”
w1 = Sp/F | —i5w
Wg

and, as before,

then
Al=a(pg)] ~p volwr) ve(e1) vs(B) Al-o(py)]-
We saw that
wh =wr (mod” Pg)
so that

e1=1 (modPg).

Thus we have to show that

y¢(w1) ~p (—1)<l+1 V¢(k‘) l/(b(—l)q?_;l_% Vg <Hu N¢;¢/¢€H) . (147)

The four identities (14.4), (14.5), (14.6), and (14.7) look rather innocuous. However to prove them
is not an entirely trivial matter. We first consider the case that G/G; is abelian. If oy € G/G is of
order 2, the argument used before shows that aocagl = ¢~ !forall cin C. Since the representation of
G/G4 on C'is faithful G/G4 has only one element of order 2 and is therefore cyclic. In this case F), = L
forall pand a = % We may choose wp, = wr. If

Npjrpwr = v ol

then v, =+' and

HM Yo = 'Yat'
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If [Go : G1] = 1 we may choose @, = wy so that v = 1. The argument used before shows that

qg—1

2 (HM L. W)”) = (1) re(~1) T

The identity (14.3) shows that
v(wn) = (=1)"vy(~1) 7 .
The identity (14.5) which is the only one of concern here becomes

g—1 g—1

ve(=1)77 = vy(=1)7F
which is clear because k = [Gy : G1] = 1.

Now take [G : Go] = 1. We may choose wr = Nk, pwik S0 that wr = Ny, por, and v is again
1. Itis perhaps worth pointing out these special choices are not inconsistent with any choices yet made
in this paragraph. This is necessary because the arguments appearing in the functions A, must be the
same as those appearing in the functions As. We previously defined

1+n
3 wr,

§=—£ . 2L
le-i-n w%
and showed that 1)
q—
NK/L6 %(qq) :
wp ”
Observe that .
YL _ R -1 _
p——— II... 6, Tl = [T0o(0)™ =-1 (modBy)
because

{bo(o) | 0 € G/G1}

is just the set of kth roots of unity in ¢ and & is a power of 2. It is not 1 because

[GQZGl] = [GGl] > 1.

Since
07 = Ngyr,6  (mod*Pr)
we have -
ve(6) =vg(—1)"F .
If as before i)
1\V)x
¢L/F <W> =v(l+x)

for z in B3 and v in S(K/L) then, as we saw when proving the identity (14.3),

st =5 {[L,,, 60} (modpo).
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Thus

vo(wr) = ve(-1)T [, ve(Bi(w)).

We can choose Z;_} elements v; in S(K/L) so that every non-trivial element of S(K /L) is of the form

v#1
v, 0 <j <p. Then

11, (810 = vs (H:_ I, jﬂ(w)) = vy(~1)i5

because

When m is even

vole) = o (Z2) =val-1)
Since a = <! the identities (14.4), (14.5), (14.6) and (14.7) become
ve(k) ve(—1) +3 =1 (14.47)
ve(—1)FT = vy(—1) 5 (14.5)
ve(—1)7% =1 (14.6")
vo(—1) T v (—1)7 = v (k) v (—1) T T (1) T (14.7)

If p =1 (mod4) the identities (14.5") and (14.6") are clearly valid. Moreover for (14.5) and (14.6") the
number % is even. Since k is a positive power of 2, ¢ is an even power of p if p = 3 (mod4). If
q = p*f then
—1

3?1 =14p+...+p” " 1=0 (mod4)
and the left side of (14.5) is 1. If q2;kl is even (14.5") and (14.6') are now clear. If it is odd, 4 divides k
because 8 divides ¢ — 1. But {0y(c) | o € Go/G1} is the set of kth roots of unity in O /B = ¢ so-1
isasquare in ¢, v4(—1) = 1, and the relations are valid in this case too. The relations (14.4') and (14.7")
are obvious if the degree of ¢ over the prime field ¢q is even. Since ¢* contains the kth roots of unity
and k is a power of 2 the degree can be odd only if k divides p — 1. Since

g—1 q¢—1 p—1
ko p—1 k

and ‘1;—1 is now odd pT_l must also be odd and by quadratic reciprocity

Vo (k) = Vg, (k) = va, (—1) vy, <p%1> = Vg (—1) v (—1) 77 73

p—1
=1 d——|.
p <mo . )

because
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If p=1 (mod4) the two relations are now clear. If p = 3 (mod 4) and q = p/

1
——=1+4+p+...+p/!
p—1
must be odd. It is therefore congruent to 1 modulo 4. (14.4") becomes

p—1

V¢0(_1) V¢o(_1)T =1
and (14.7") becomes
V¢o(_1) = V¢0(_1)'
There is no question that both these relations are valid.

We have still to treat the case that G/G is abelian while neither [G : Gy] nor [Gy : G4] is 1. Then

k
N — /
N 000) = { T, gy, 900} (modB)
is a square in ¢ and the identity (14.3) implies that

vp(wr) = vs(7?)

C’F/NL/FC’L is cyclic of order [G : G1]. It has a generator which contains an element of the form v, .

Moreover the coset of o
(r1wp) 9 Ny popt = A Coly1

is a generator of Ur /Ur N Npr,rCpr. The order of this group is a power of 2 and p is odd so every
element of Ur N Ny, Cy, is asquare. Consequently v cannot be a square and vy (y) = —1. If m is even
and F” is the fixed field of G then

m—1 m—1 m—1
@} Ni/pwr 1o
eo= (ZL) = (B 11 =t
Wk Wk 0€Go/G1

which is congruent to
Np/roor mel
(3

modulo PB. Since [F’ : F]iseven

m—1
Np/jror 1

Nowsoeu=Neypen = < GGl ) -
wWE

and
Ve(Ng, /¢ €n) = V(7)) = —1.

Because
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is integral, ‘1;—1 is even, and we need only worry about the identities (14.5) and (14.6). They both reduce
to

qg—1

V(Zg(—l)W = 1.
To prove this we show that q2;kl iseven if v,(—1) = —1. Since
k= [UF :Up ﬂNL/FCL]

and this index must divide the order of ¢* the number v,(—1) is -1 only if £ = 2. Of course p will be
congruent to 3 modulo 4. Since 4 divides ¢ — 1, ¢ isan even power of pand ¢ = 1 (mod 8). Thus

is even.

Now suppose that G/G is not abelian. Let o — z(o) be a given isomorphism of Gy/G1 with
Z/kZ and let x — o(x) be its inverse. Let 7 — A(7) be that homomorphism of G/G| into the units
of Z/kZ which satisfies

z(tor™ ) = \(7) z(0).

There is precisely one element of order 2 in Gy/G1, namely o (%) and it lies in the center of G/Gj.
Since G/G| is cyclic, G/G is non-abelian only if £ > 2. Choose a fixed oy in G which generates G/G
and set

to = A(oo)

and e
yo = 2oy ).

We shall sometimes regard C' as a vector space over the field with p elements. If o belongs to G /G let

(o) be the linear transformation

¢ — oco .

The dual space will be identified with S(K/L) and ©* will be the representation contragredient to 7.

The relation

k
Ve 9) = {TL i, 900}
together with the identity (14.3) implies that
vg(wi) = vy (HM %) :

Moreover if m is even and F), is the fixed field of G,G

k m—1 m—1 m—1
YEFH NFM/F[LwFu 1—o
o= (2} S ERETER LT ok
wWE Wk 0€Go/G1 "

which is congruent to

wF

{ N, /@, }m_l
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modulo ‘BFH- Since _—
NFH/F/ wF } m=
13 I

wF

{Ny./s€u}’ = Nry/e {—

which equals
(—1)!1Pnd] qrn=t

and t is odd
vo(Ng, /6 €n) = vo(—1) % vy ().

These relations will be used frequently and without comment.

I want to discuss the case [G : Go] = 2 and pp = —1 (mod 4) first. Since
(—10)* = p§ = Mog) =1 (mod k)

we must have

—Uo = (mod k)
or,if k > 4,
—po==+1 (modk)
Then
or
k
Since

o —1=2 (mod4)

the centralizer of o in G /G consists of the identity and o (£). Thus z(03) is 0 or £.

Suppose 1o = —1 (modk) and z(03) = %. If o belongs to Go/G; then opoo; ' = o' and
(000)% = 03. Thus o (%) is the only element of order 2 in G/G;. If o belongs to G/G then ¢ has a
non-trivial fixed point in S(K/L) if and only if 7(0) has 1 as an eigenvalue. If o # 1 there is an integer
n such that o™ has order 2. Then 7(¢™) also has 1 as an eigenvalue. Thus if any non-trivial element of

G /G4 has anon-trivial fixed point there is an element 7 of order 2 such that (7) has 1 as an eigenvalue.

The usual argument shows that
k
— = —I

so that, in the case under consideration, only the identity has fixed points. Then

q—1
[GGl]

In particular 9—1 js even. We choose wr = wr, and let
k e

VWEE:GO] = Np/rwp.
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Only identities (14.5) and (14.6) are to be considered. (14.5) reduces to

—1

ve(7)" = (1) ve(~1)

and (14.6) reduces to
(=1)% wg(=1)4GCol yy () vy (1) =1,

Since [G : Gy] is even they are equivalent. Suppose ¢ has r elements. If z € A = O /B then
270 = 27 for some f. If o belongs to Gy /G, then

wr,
Thus ;
and
r=-—1 (mod4)
so that v4(—1) = —1. Since, in the present case,
q—1
a=——
2k
the identities become
ve(1)* =1

The map
Tr)r * Wrp — CF

determines a map of G/G onto CF/NL/FCL. The image of oy contains an element of the form v, w
where +; is a unit. The image of 03 is 1 because the commutator subgroup contains

{o((no = D)} ={o(z) [2=0 (mod2)}

and in particular contains o3. Since [G : Go] = 2 the number 7; ? lies in Ur N N, Cy. The index of
the commutator subgroup of G/G; in G/G; is 4 so

[UF : UFﬂNL/FCL] = 2.

Consequently ,Wl—z and + are both squares and v4(7y) = 1.

Now suppose 1o = —1 (mod k) and z(03) = 0. Every element of the form ogo, o € Go/Gy, has
order 2. If 7(0go) = —I then oo lies in the center of G /G which is impossible. Thus 7(ogo) has 1 as
an eigenvalue. If 7 € Gy/G; then

r Yogor = ogor?

so there are two conjugacy classes in the set 0oGo/G1. One has oy as representative and the other has
o1 = opo(1).

Let V' be a non-trivial subspace of S(K /L) invariant and irreducible under the action of Gy /G .
Suppose first that V' is also invariant under 7 (o) so that V' = S(K/L). Choose vy # 0 so that
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7*(0o9)vg = vo. Let X' be the field obtained by adjoining the kth roots of unity to the prime field.
Certainly \' C )\ and, since
Oo(0)?° = 90(061000),

A is not contained in ¢. Let ¢’ = ¢ N \'. We may regard {1,000} as &(\'/¢'). The map ¢ which sends
o in Gy/G1 to (6, '(0),1) and ooy to (65 (), 00) is an isomorphism of G/G; with the semi-direct
product of the kth roots of unity in X and &(\’'/¢’). There is a uniqgue map, again denoted by ¢, of V'
onto \' such that p(vy) = 1 while

p(m (T)v) = p(7)e(v)
for 7 in G/G,. Of course the kth roots of unity act on X by left multiplication. The Galois group acts

by oy = ac . Putting the actions together we get an action of the semi-direct product. To study the
action of G/G; on V we study the equivalent action of the semi-direct product in ..

It is best to consider a more general situation. Suppose ¢’ is a finite field with p/ elements, )’ is
an extension of ¢’ with p° elements and I' is the semi-direct product of the group of kth roots of unity,
where k divides p° — 1, and &()\'/¢'). T acts on X as before. Let £ = nf. If 0 < j; < n,j = (j1,n),
and p is the automorphism =z — 2’ of X /¢’ then the number of elements of )\ fixed by a member
of T of the form (o, p’i) where « is a kth root of unity is the same as the number of elements fixed by
some other member of the form (3, p=7). Indeed if

b j—l =1 <modz>
J J

and b is prime to the order of (a, p*) we can take
(B:p77) = (a, )"
Let 0 be a generator of the multiplicative group of \'. The equation
Bome = gm

can be solved for g if and only if Gm(p‘7f—1) has order dividing k, that is, if and only if p’ — 1 divides
Em(p?/ — 1) or, if
p' -1
k

if and only if u divides m/(p’/ — 1). Let u(3) be the greatest common divisor of u and p// — 1. u divides
m(p?/ — 1) ifand only if ﬁ divides m. The number of such m with 0 < m < p* — 1is

u =

) (4 1) = uiph

Once m and j are chosen « is determined. The number of non-zero x in X which are fixed by some
(3, p~7) where j divides n but by no (3, p~%) where i properly divides j is

2, “(%) u(i)k
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if 1u(+) is the Mobius function. The number of orbits formed by such z is

jik 2, “(%) ui)k

so that the total number of orbits of I" in the multiplicative group of X is

=2 2 %]) v
which equals
1Y\ wu(z
2 Hw!% (1 - ?) %

The product is over primes.
Lemma 14.7

If Lk‘l is odd then

(=1)" vy (k) vy (1)

The identity of the lemma is equivalent to

u—1

(_1)a+1 U¢/ (u) V¢/(—1)T =1
because
v (k) = vy (=1) vg (u).
By the law of quadratic reciprocity the left side of the identity is equal to
(=1)**L (p? [u)
if (p/|u) is Jacobi’s symbol. If u = 1 there is only one orbit so

(_1)a+1 = 1.

Of course (pf|1) = 1 so the identity is clear in this case.

We prove it in general by induction on the number of prime factors of u. Let my be a prime factor
of wand let u = v with v prime to . Let v(j) be the analogue of u(j). Then u(j) = ¥ v(j). Leb

b be the analogue of a. Then
1\ (i) _a)
1-—) —= —1).
L(1-3) Mo -y

1/:a—bzzi‘nl_[7T ;

Observe that 7y and all (i) are odd. To prove the lemma by induction we must show that

(-1)" (" | m§) =1. (14.8)

Let
n=2Yn,
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with n, odd. There are two possibilities to be considered.

(i)

mo=1 (mod2vt!).
Since the order of p/ modulo 7, divides n the quotient of 7y — 1 by this order is even and p/ is a
quadratic residue of my. Also if 7 divides n
Wg(i) -1
i

is divisible, in the 2-adic field, by 4 if 2 divides 7 and is always divisible by 2. Thus v is even and
(14.8) is valid.

(i)
g =1+ 2%

with ¢ < y and w odd. Let ¢ # n; divide n; and consider

v 1 v(2ji) z(294)
Zj:o 1_‘[7T - <1 - ;) 274 (7o —1). (14.9)

If £(2Y7) = 0 the sum is zero. If x(2Yi) # O let z be the smallest integer for which z(2%¢) # 0. If
j<zthenz(29i) =0.1fj > 2

- .. 20—7_1 .
p217,f_1: (pz zf_l) (Zdzo p2 czf) .

The residue of the sum modulo 7 is 2~%. Thus

x(274) = 2(2%)

if 7 > zand (14.9) is equal to
1 1 U(2y’i) y—1 U(Qj’i) x(2Y4)
i {Hw L (1 - %)} { TR <7r0 B 1)'

v(2Y49) n Zy—l v(2794)

We write

as

v(2%7) y v(271) — v(277 1)
3= Zj=z+1 27 '

1.

I k is replaced by 2= the number of elements of \* fixed by some (a, p~2'#) butby no (e, p=2' %)

v

pt—1
—.

{v(294) —v(277 1)}
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The collection of such elements is invariant under the group obtained by replacing k by # and ¢’ by
the field with p*/ elements. The isotropy group of each such point has a generator of the form («, p? 4
and, therefore, has order 57 and index z (p =Y Thus Z (p —U divides

‘
(@) — ot} 2

so that 27 divides ' 4
v(274) —v(29 7).

Since =* is divisible by at least one prime, the expression (14.9) is congruent, in the 2-adic field, to

I () 5

modulo 4. Since z < c and the product is not empty this is congruent, in the 2-adic field again, to 0
modulo 2. Thus v is even or odd according as

S AT (1 5) ) S (1)

is or is not divisible by 2 in the 2-adic field. Consequently
- Y 1 ’U(anl) iU(anl)
v = ijo {Hﬂ |20 (1 - ;>} —5 (7 —1) (mod?2).

Of course z(2Yny) = x # 0. Let z again be the smallest integer for z(2°n;) # 0. Then z < cand
z(27n1) = 2(2°ny)

if 7 > z. The sum above is equal to

{U@zm) Ly 0(2'm) — (2 'ny) } (n2 1),

2% j=z+1 29

As before this is congruent modulo 2 to

v(2%nq)
2Z

(5 — 1)

If z < c this is even and the order of p modulo m, divides Z5- so that (p|mg) = 1. If z = c then

5 = o0 o U (2°w)* =z (mod2)

so that v = = (mod 2). However the order of p/ modulo Ty is divisible by 27 so that it does not divide
o1 and
2

(" | 75) = (-1)".
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The relation (14.8) is now easily verified.

We return to the original problem. Since X' is a quadratic extension of ¢/ and X" is not contained
in ¢ the degree of ¢ over ¢’ is odd. Since V and )\’ have the same number of elements ¢ = p*. If q;kl is
odd the relation (14.4) follows immediately from the equality

g—1

(=) g (k) (1) = (1) g () v (-1)

and the preceding lemma.

The number of p in T" with isotropy group of order 2 is u(1) and the number of p with trivial

isotropy group is M For points of the second type [¢,, : ¢] = 2 and for points of the first type
[, : ¢] = 1. Since, as we verified earlier,

volwn) =vo (T1 )

and

[(z)u:(;b]

Ve(Ng, /6 €n) = vg(—1) Ve (V)

the identity (14.7) reduces to
w(l)=1 (mod2)

which is true because u(1) divides u = % which, when (14.7) is under consideration, is odd by
assumption.

The identity (14.5) may be formulated as

Ve (Hu %) = (—1)“%(_1)‘27

and (14.6) as
o (T1 ) we-0)Z 9 = (a1

For these two identities ‘1;—1 is even. Again

Z[Qbu c¢l =u(l) (mod2).

But

and
2a = u(l) + u(2)

so u(1) is even. It will be enough to verify (14.5).

We may choose T so that if x is in 7" then its isotropy group is trivial or contains one of gy or .
If o lies in the isotropy group of 1 and v in the orbit of i corresponds to 67 in )\ then

a29mp —gm
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for some kth root of unity «.. This is possible if and only if p* — 1 divides 2 (pf — 1) or 2u divides

m(pf — 1). This is the same as requiring that % divide m(qf{l;l). The number u is even. We have

already observed that if r is the number of elements in ¢ so that x°° = " for x in ¢ then
uor =1 (modk)

and in particular
por =1 (mod4).

Since [¢ : ¢'] isodd and iy = —1 (mod 4) the highest power of 2 dividing p/ — 1 is 2. Thus (1) and

f(l) are relatively prime so that 2(11‘) divides m(p(l) Y if and only if 2(1{) divides m. There are “(1)"“
such m with 0 < m < p’ — 1. The corresponding characters v fall into “(1)
elements in T whose isotropy group contains oy and (2 ) whose |sotropy group contains o7. Let L be
the fixed field of oy and L; the fixed field of 0. Let w,, and @y, generate P, and P, respectively

and let

orbits. Thus there are %1)

Np, /@@L, =Y @F
Np,/r@L, = Nwr

Npjpwp = yog.

We have to show that

S P @y (1)

v (Y® M’ v 3 = (=D wp(=1)7F.

First we prove a lemma, special cases of which we have already seen.
Lemma 14.8

Suppose L/ F' is normal but non-abelian and [L : F] is a power of 2. Suppose H = &(L/F') and
the first ramification group Hy is {1} but [H : Hy] > 1 and [Hy : H,] > 1. Let wy, generate the prime
ideal of Oy, let wr generate the prime ideal of O, and let

Npjpor = ’YWEVH:HO]-

Then v is a square in Up.
The hypotheses imply that the residue field has odd characteristic. Let A be the fixed field of H,
and L’ be the fixed field of the commutator subgroup of H. Then A C L’ and if

wr = Npjpwr

then F
NL’/FwL’ = wa[Fv ' ]

Of course [A : F] = [H : Hy). Since H is nilpotent but not abelian L’ cannot be a cyclic extension. If ~

is not a square in Ur then vy~ ! generates Ur/UpN Ny /pCyr. Since

S0 (mod Ny )
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wr would then generate CF/NL//FCL/ which is impossible.

Returning to the problem at hand, we observe that the quotient of G/G; by the squares in Gy /G4
is a group of order 4 in which every square is 1. The fixed field I’ of this group is the composite of all
quadratic extensions of F. Fy = F' N Ly and F;, = F’ N L, are the two different ramified quadratic
extensions of F'. Define

wr, = Niry/R @ Lo

and

wE, = NLl/Flel'
Then

Ng,/rwwr, = Yowr
and

Np, )rop, = N1@F.

o
Ve(Yom1) = Ve (I) =—1.

If not, 3—3’ is a square and thus in N, /pCr,. Then ygwr belongs to

We need to show that

Npy/pCry N Np, ypCr, = Np1jpCrr.

This is impossible because F’ contains an unramified extension.

We observed before that since
o = ANog) = —1 (mod4)

the number v,(—1) is —1. The identity (14.5) reduces to

Since ) @

u u

=Ty T
and .
q —_—
2) = ——
u(2) =
this relation is clearly valid.
We continue to suppose that 10 = —1 (mod k) and that 02 = 1 but now we suppose that V' is not

invariant under 7*(og). Since 7*(0o)V NV and 7*(0¢)V + V are both invariant under G /G, the first
is 0 and the second is S(K/L) so that S(K/L) is the direct sum V & 7*(00)V. Let V have p* elements
so that ¢ = p?‘. If )’ is again the field generated over the prime field by the kth roots of unity X has p*
elements. If ¢’ = X' N ¢ has pf elements then p’ = p?/ so that p* = 1 (mod 8). Also k divides p* — 1

so that .
q—1 p-—1
== () ot

is even.
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If o € Go/G1 the non-zero fixed points of oo are the elements of the form
v@ 1 (opo)v
with v # 0. There are (p® — 1)k of them altogether and they fall into p’ — 1 orbits. The remaining
P* =1) = (" -1k

elements fall into

o (07 = 1)~ ('~ k)
orbits. Thus ‘1 2wy
P 4P
2 2k
Since, for the same reasons as before, v4(—1) = —1 the identity (14.5) becomes
vo (T1, ) = (-0*=" (14.10)

while (14.6) becomes
12

V¢GIJM)VM—UM%M=#—UP;-

Since
Z[qbugzﬁ] =p'—1=0 (mod2)
only (14.5) need be proved. (14.4) and (14.7) are not to be considered because % is even.

We proceed as before. The points in 7' can be chosen so that their isotropy groups are either trivial

£ £
or contain o or o7. p_2—1 will have isotropy groups containing oy and p_2—1 will have isotropy groups
containing o1. The argument used above shows that the left side of (14.10) is equal to

pf-1

(1)
as desired.

Now suppose k > 8 and
k
o = Aog) = 5~ 1 (modk).

We are of course still supposing that [G : Gy] = 2. If o belongs to Gy /G then
o000 ~ = 000 2

and

Thus
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Since z(03) is0 or g we can make the sum on the right 0. Replacing o by oo if necessary, we suppose
that o2 = 1. Then (oq0)? = 1 if and only if

g z(c) =0 (modk)

which is so if and only if oy is conjugate to o.

Take V in S(K/L) as before. If V' is invariant under 7* (o) and X" with p® elements and ¢ with
p’ elements have the same meaning as before then

k

for some integer w SO that
of k k 9
g—1=p —1=k-——k+2wk| =z —-1)+ (wk)

and . L
q — = — —
=1 1 (mod?2)

is odd. Thus the identities (14.5) and (14.6) are not to be considered. The identities (14.4) and (14.7)
follow from Lemma 14.7 exactly as above.

Suppose then S(K/L) is the direct sum V @ 7% () V. If V has p® elements then ¢ = p?* and

= (P +1)

is even because k divides p’ — 1. The non-zero elements of S(/ /L) which are fixed points of some oo
with o a square in Gy /G are the elements

v@ 1" (opo)v
with v # 0. There are (p‘ — 1) £ such elements and they fall into Lz_l orbits. The remaining

k

-1 -0 -1

non-zero elements have trivial isotropy group and fall into

—{@*-1)-0"-1)

orbits. Thus

Since, as before, v, (—1) = —1 the identity (14.5) becomes

1)571

vo (IT, ) = (D% (14.11)
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while (14.6) becomes
12

vo (IT, ) (~0™99) = (-1) =

Again
-1
Z[(bumb]zp 5 =0 (mod?2)

so that it is enough to prove (14.11). The identities (14.4) and (14.7) need not be considered.

If \ and ¢’ are defined as before and ¢’ has p/ elements then A’ has p’ = p?/ elements so that
p'=1 (mod8)

and % is even. We may suppose that each p in T either has trivial isotropy group or is fixed by oy.
Lemma 14.8 shows that those p with trivial isotropy group contribute nothing to the left side of (14.11).
If L is the fixed field of o5 and

Npy/F@L, = Yo@F

the left side of K is

pl—1

vy(70) 2
which is 1. The truth of the identity is now clear.

We return to the general case so that [G : G| may be greater than 2 and py may be congruent to 1
modulo 4. Of course [G : G| is still even. Let

so that

If [G : Go] > 2then
A =1 (mod4).

If [G : Go] = 2 then \g = puo. Since the case that [G : Gy] = 2 and g = —1 (mod4) is completely
settled we may suppose that A\g = 1 (mod4). Set

1G:Ga
To = 0§ [G:Gol

Any element of G/G; which does not lie in Gy /G and whose square is 1 is of the form o(z) . If

U([)G:GO] = o(vo)

then
(0(2)70)* = (Mo + 1)) 75 = o (yo + (Ao + 1)).

Since G/ is not cyclic yg is even. Since

M+1=2 (mod4)
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there are exactly two solutions of the equation
Yo+ Ao+ 1z =0 (modk).
Let zy be one of them. Then xy + % is the other. We may suppose that k& does not divide ;. Set
po = o(xg)7p.

We observed before that if o # 1 belongs to G/G1 and 7* (o) has a non-zero fixed point then some
power of ¢ is of order 2 and has a non-zero fixed point. Since o (g) has no non-zero fixed point this

power must be pg or o( ) pg. Since o(£) lies in the center of G/G1, o must lie in the centralizer of py.

({2

is of order 4 and every element in it is of order 2 so it cannot be contained in the center of G/G;.
However it is a normal subgroup and its centralizer H* has index 2 in G/G;. G/G1 may be identified
with H. Every element o of H such that 7* (o) has a non-zero fixed point lies in H*. S(K/L) is the
direct sum of V and W where

The group

V = {o| 5 (poJo = v}
W =A{w | 7*(po)w = —w}.

If o in H does not belong to H* then 7*(0)V = W and 7* (o)W = V. The number of non-zero orbits
of H in V. U W is the same as the number a’ of non-zero orbits of H* in V. If V has p’ elements so that
q = p** the number of non-zero orbitsof HinV & W — (VUW)is

//_(p£_1)2_p£_1 p£_1

- [GGl] N k [GG()]

The action of H* on V must be irreducible although it is not faithful. However the action of H* N Hy =
H{ is faithful.

Let I/ be the fixed field of H* in L or, what is the same, of H*C in K. Let C' C C be the
orthogonal complement of V and let H' be the subgroup of H which acts trivially on V. H'C' is a
normal subgroup of H*C' and its fixed field K’ is normal over F'. If H' = H*/H' and C' = C/C"*
then G' = &(K'/F') = H'C'. Moreover H' N C" = {1} and H' # {1} because o (%) does not lie in
H'. Since the action of H' on C" is faithful and irreducible C’ is contained in every non-trivial normal
subgroup of G’. To complete the proof of the four identities (14.4), (14.5), (14.6), and (14.7) we use
induction on [K : F].

Let £’ be the order of H), and let ¢’ = Op' /Pp.. If K/F is replaced by K'/F’ the identity (14.4)
becomes ,

(—1)* vy (K ) vgr (—1) 7 +2 = 1. (14.4")
T is to be replaced by 77, a set of representatives for the non-zero orbits of H' or H* in V, which may be

identified with the character group of C’. We may suppose that 7" is a subset of 7". Because H{, # {1}
the identity (14.5) for the field K’/F’ may be written as

1)[71

vor (T1 oy ) = (<D v (D)5 (14.5")
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Of course

t[Fy:F']
t — / K/
Ng,/r(@F,) = 1@

Recall that ¢ is odd. By Proposition 1V.3 of Serre’s book, ¢ has the same significance for K’/ F’ as it had
for K/F. The identity (14.6) may be written as

(_1)a Ve <Hu€T, ,}/L) V¢/(—1)E”€T’ [Pn:9] Vd),(_l)W = 1. (146//)
and (14.7) as
’ pl-1_1 b’
(1) v (k) v (—1) 57 7% g (—1) e w9 — 1 (14.77)
Assuming (14.4"), (14.5”), (14.6"), and (14.7"") we are going to prove (14.4), (14.5), (14.6), and (14.7).

Since H{, is isomorphic to H either k' = k or k' = g Suppose first that % isodd. Then &’ = g

for if not .
qg—1 p-—1
== () ot

would be even. Thus Hy = G/G, is not contained in H* and F’/F is ramified so that ¢’ = ¢. Since

g—1 (p‘=1\ (@'+1)
k' 2

the number p[,;l is odd. To prove (14.4) we have to show that

1"

(—1)" v(2) v(—1)° =1

2k k k 2

Since G(/G1 is not contained in H*, 7y does not commute with G,/G; and the map A of G/Gj into
the units of Z /k Z is faithful. Thus

20 4 4 Vi
1 1 1 1
5P P P {p+ _1}‘

Ao Z1 (modk).

But
A =1 (mod4)

so that k£ > 8. In general if k£ > 4, the group of units of Z /k Z is the product of {1, —1} and

{a|a=1 (mod4)}.

a=1+2%

with z odd and 4 < 2 < k then
2 b+1
" =1+2"""y

with 3 odd. One shows easily by induction that the order of « is 27 %k so that

{a]a=1 (mod4)}
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%. This implies in the particular case under consideration that [G : Gy] divides %.

= (%) (dean)

2[G : Go] = K.

is cyclic of order
Write

a’" is odd if and only if

We consider various cases separately. As before o = A\(og). If ¢ has p/ elements then
pop’ =1 (mod8)
(i)
o =1 (mod8).
Then
ve(2) =vp(—1) =1
and the order of 11 in the units of Z /k Z which is equal to [G : Go] divides £. Thus a” is even.
The identity (14.4) follows.
(i)
o =3 (mod8).
Then
vg(2) = vg(—1) = —1.

Since 1y = 3 (mod8) the numbers py and )\ are different. Thus )g is a square and hence
congruent to 1 modulo 8. Then k£ > 8 and

p'=1 (mod8).

Then

Since 1o # Ao the index [G : G| is not 2. Thus the order of 1 is at least 4 and is therefore the
order of — 1. Since —p19 = 5 (mod 8) its order is £ and

[GZG()] = Z

Consequently a” is odd. Again (14.4) is satisfied.
(iii)
o =5 (mod8).
Then v4(2) = —1 while v4(—1) = 1. The order of 4, which equals [G : G| is again £ so that
is odd and (14.4) is satisfied.

(iv)
o =7 (mod8).
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Then v4(2) = 1 while v4(—1) = —1. Again k£ > 8 and
=0 (mod2).

The order of p is again at least 4 and therefore equal to the order of — i and that divides % Thus
[G : Go] divides £ and a” is even. (14.4) follows once more.

Since ¢’ = ¢ all we need to prove (14.7) once (14.4) and (14.7") are granted is show that
ZMET—T’ [qb/"‘ : ¢] =0 (mod 2)

This is clear because, for these u, F,, = L and ¢, = O /B, is of even degree over ¢.
Finally we have to assume that ‘1;—1 is even and prove (14.5) and (14.6). First a lemma.
Lemma 14.9
If 1 is even,
A <0’é [G:GO]) =1 (mod4),

and G /G| acts faithfully on Gy /G, then
(—1)*v(—1) 5 =1.

Since the action is faithful G/G is not contained in H* and k' = £. As before \g = 1 (mod 4)
and )y #Z 1 (mod k) together imply that k£ > 8 and &’ > 4. Since k' divides p* — 1,

p' =1 (mod4)

q—1 pt—1 pi+1
ko k! 2
If o belongs to H* and o acts trivially on Hj then

oy =1 (o)

[ - -
and 21 is odd. Since

pi-1 ;
the number £~ iseven.

so that
Ao?) = 1(mod k)

and o2 belongs to Hy. Thus o belongs to poHy U Hy. Since pg belongs to H! the image of o in H' lies
in Hj. Thus G’ /G}, acts faithfully on G},/G. If o belongs to H' then o acts trivially on H; because the
representation of H; on V is faithful. Thus H' is contained in py Hy U Hy and is therefore just {pg, 1}.
Thus

G Gl = [H : H)) = [H* : H H'| = % G : Gy,
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Suppose that
£_
(—1)* vy (1) 5 = 1. (14.12)

Since ¢/ = ¢ and, because k' > 4 divides p* — 1,

q—1 (p" =1\ (p"+1\ _ (p'—-1
2k :< 2k >< 2 >:< o) (wed2).

all we need do to establish the lemma is to show that

a’”=0 (mod2).

As before [G : Go] divides £. If

k
Z:TL[GGO]
then ,
/1_1 (pg_l)Q_ pe_l
“TE GG "\ K

is certainly even because 2k’ divides p* — 1.

If [G : Go] > 4 let
—i G:GO
/0 = )\ <(70 [ ]> .

Ap=1 (mod4)
we may suppose that (14.12) is true by induction. If [G : Gy] = 4 and

Ay =3 (mod4)

or if [G : Gy] = 2 we must establish it directly.
Suppose first that [G : Go] = 2. If ¢ has p/ elements then

M=p=p/ =1 (mod4)
so that v4(—1) = 1. Itis clear that in this case

/ pg_l
K

a’ is thus even and (14.12) is valid.

Now suppose [G : Gy] = 4 so that [G' : G{] = 2. If o{, generates G’ modulo Gj, then }; is the
image of o{, in the group of units of Z /&’ Z. We have already studied the case that \; = 3 (mod4)
intensively. Let

x:0 — x(o’)
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be the map of G,/G’, onto Z /K’ Z. 1f \j = —1 (mod k) and z((0})?) = % we showed, incidentally,
that (14.12) is valid. If \) = —1 (mod k'), z((c§)?) = 0, and the action of H) on S(K'/L’) is reducible
we saw that p’ is a square p?* and that the left side of (L) is

’
pY 1
2

(1)
But the field with p¢ elements must contains the k’th roots of unity and &’ = (mod4). Thus
p’' —1=0 (mod4)

and (14.12) is again valid. If &’ > 8,
AN=—=—1 (modk’)

and the action of H/,on S(K’/L’) is reducible, the left side of (14.12) is

’
p -1
1

(=1)

This time /
p’ —1=0 (mod8).

To complete the proof of the lemma we show that in the case under consideration the action of Hj,
and S(K'/L’) or, what is the same, the action of H on V is reducible. If not the field generated over
the prime field by the £’th roots of unity has p’ elements. Thus

p'=1 (mod4).

However as we have observed repeatedly, the number of elements in ¢ is congruent to 3 modulo 4.
Thus £ is even. Let ¢ = 2¢'. Either p* — 1 or p* + 1 is congruent to 2 modulo 4. If p*’ +1 = 2 (mod 4)

then &’ divides p’ — 1 because
¢ V
p-—1 p- —1 /
k! - < k! ) (pﬁ + 1)

is even. Since k' cannot divide p‘" — 1 we have

P’ =3 (mod4)

and ¢ is odd. Indeed it is 1 but that does not matter. Since k divides p’ — 1, the kth roots of unity
are contained in the field with p’ elements. Adjoining them to ¢ = Or/Pr we obtain a quadratic
extension because 4 does not divide ¢. Therefore if o belongs to Gy/G1

(90(0') = (90(0')0-0 = HO(O-)A(US)

so that
Mod)=1 (modk).

This contradicts the assumption that G /Gy acts faithfully on Gy /G .
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Returning to the proof of (14.5), we suppose first that Hy is not contained in H* so that the action
of G/Gy on Gy /G is faithful. Because of Lemma 14.9 the identity (14.5) is equivalent to

Ve (HMGT N, /7 7”) =1
If 1 belongs to 7" but not to 7" then F, = L and, by Lemma 14.8,

V¢(NFH/F 'Y,u) =1.

If 11 belongs to 7" then G, is contained in H*C so that F,, contains . Moreover we do not change F),
if we replace K/F by K'/F'. Let wp: generate B and take wr = N/ poop.. If E' is the fixed-field
of H* we may suppose that
WEr = NE’/F’wE/
and that
wWE — NE’/EWE/'
Then
wrp = Ng/FoE
as required. Let
‘ t[F:F']
NF“/FawFM =7, ¥
Then
,YM = NF//F ,y’[/j,'

Since F'/F'is ramified -, is a square in Ur and (14.5) is proved. To prove (14.6) we have to show that

v (—1)Zuetlbundl = (—1)Suer [¢n:6'] — 1.

But p[,;l is even and this follows from the simultaneous validity of (14.5") and (14.6").

We have yet to treat the case that ‘J;kl iseven and H is contained in H*. Then F’/F is unramified
£
and k£’ = k. Suppose first of all that p—k_l is also even. Then

g—1 (p'—1\ (p'+1
2k k 2
iseven. Hy is contained in H* and H is generated by o¢ and H,. Consequently o is not contained in

H* and
. k
gopo0dy =0 5 £o-

(mod k)

Since pg = o(xg) 7o

|

(o — 1)zo =

if Ho = A(O’()). If
_ ( [G:G0]>
Yo =2 | 0y
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and m is the greatest common divisor of yy and k then by the definition of x; the greatest common
divisor of zg and k is 5. Therefore % is the greatest common divisor of yg — 1 and k. In particular

m < k. The order of oy in H is

ﬁ [G : Go]

m

Therefore [G : G| divides 5= [G : Go] and H* contains a cyclic subgroup of order

k
5 (G Gol.

If o is the element of order 2 in this subgroup, then o belongs to Hy and 7* (o) does not have 1 as an
eigenvalue. Thus no non-zero element of V' is fixed by any element of this cyclic subgroup and

k
p£—1:0<mod— [G:G0]>.
2m
In particular [G : Gy] divides p* — 1 and

() ()

is even. As before v4(y,) = 1 if u belongs to 7" and F,, = L. If ), # L then . belongs to 7" and
G, liesin H*C so that F), contains F”. In the present situation F’/F is unramified and we may take
Wpr — WE. If

t[F:F']
Np,/p@p, =%,%p &
then
t[Fy:F]
Ng,)r@s, = (Npyp,) @p ©

The identity (14.5) reduces to
or

Since ¢’ is a quadratic extension of ¢ the number v4 (—1) is 1 and this relation is equivalent to (14.5").
To prove (14.6) we have to show that

vg(—1)Pner [Pudl =,
This is clear because 2 divides each of the degrees [¢,, : ¢].

Finally we have to suppose that Lk_l is odd. Since [¢’ : ¢] = 2 the relation (14.4") amounts to

Again

Ve (HueT PY“) = Ve (HMGT’ ’YL) : (14.13)
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If 1 belongs to 77 and o # 1 belongs to G, then some power of o will equal py. Since

V4 /
pt—1 [Fl : F']
k _ZMGT’ k

[F, : F]
k

is a power of 2 there is at least one y in 7" for which [F), : F'] = k. Then G, must contain an element
of the form o(z0)o2. Then

M% [G:Go] 1 Z0\ TO
po = o(x0)T0 = (0(20)03) 7 %) = ¢ ((07> ) .

is odd and

g —1
Thus L (GGl
3 1&:Go] 1
Ko 5 20 =x9 (modk).

o — 1

Let 1
Z [G : Go] = 2b.

Since

p2d =1 (mod4)

and, as before, the greatest common divisor of xy and k is 73 if the greatest common divisor of y, and
k is m, we infer that

% [GG()] +
5 —

J+1
H 1 b Py —1 b 27
— . i = 1
,U,% -1 Hj:l ,U,gj -1 Hj:l fo =+

is multiplicatively congruent to
[G . Go]
4

modulo 2 and that the greatest common divisor of z; and k is

[G . Go] '
In particular [G—QG"] divides m. zp is odd if and only if
= 2 [G: Gl
m = B : 0l-

If 1o = 1 (mod4) the order of yg in the group of units of Z /k Z is m because as we observed when
treating the case that % is even, the greatest common divisor of yg — 1 and k is % However

,ué [G:Gol _ AM19) =1 (modk)
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and in this case m divides  [G : Go]. Thus

if up = 1 (mod4).

We shall define a sequence of fields (9, L() K() 1 < < n. nisan integer to be specified. We
will have F) € L) € K and K® /F® and L® /F® will be Galois. Let G*) = & (K" /F () and
C) = & (LW /F®). There will be a subgroup H® of G such that H") # {1}, H® N C® = {1},
and GV = HOC® @ will be a non-trivial abelian normal subgroup of G(* which is contained in
every other non-trivial normal subgroup. H(™ will be abelian but H(? will be non-abelian if i < n.

Moreover k() = [H{" : 1] will be at least 4 for all i and k) will equal 2k(+1) if i < n. If z is an
isomorphism of HY” with Z /k( Z and o belongs to H(®) let
z(oro™ ) = XD (0)x(7).
Then A (o) will be congruent to 1 modulo 8 if i < n. If ¢{) is the number of elements in C') then
|
k()
will be odd.
F’" and K’ have already been defined. L' is just the fixed field of C’.

isodd. If ¢’ in H' is the image of o in H*C then

N(a")

Ao) (modk).

Since ¢ is a square modulo Hy
N(@")=1 (modk).

If FO) L), and K) have been defined and H* is not abelian we can define F(+1) | L+1),
K (+1 by the process we used to pass from F, L, K to I, L', K'. We have seen that if

¢ -1
k()

is odd then 4
q(z—l-l) -1

k(i+1)
is also odd and that
k@ = o (i+1),

We have also seen that k(9 > 8 if H(*) is not abelian. If H(®) is abelian we take n = i.
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When we pass from the ith stage to the (i + 1)th we break up T the analogue of T', into T(it1)

and a complementary set U, We may think of T®) as lying in 7. If 55" generates H® modulo H{"

then _
)\/(0(()7’)) =1 (mod8).

We saw that this implies that U(*) has an even number of elements. If x belongs to U then F, is equal
to L(¥). Thus we may suppose that

/2
Ve (HueU(i) 7“) =1
Moreover L) /F(") is non-abelian and therefore L() /() is not totally ramified. Thus p is not in U
if [F, : F'] = F.
Since L(™ /F (™) s abelian the isotropy group in H™ of any p in T is trivial so that F), = L)

for such p. Since
[F,:F] [L) : F']
ZMGT/ —— = ZueTW) T (mod 2).
There are an odd number of elements in 7(") and
L™ F') = k.

Choose zj so that o(zg)o? lies in &(L/L(™). It then fixes each y in 7).
Since L(™ /F’ must be totally ramified there is a ¢ in U such that

2
NL(n)/F Wr(n) = (5wF.

The right side of (14.13) is equal to v(6). L™ is contained in L. Choose wy in W, so that
71/ r(wo) = wr. We may suppose that o has been chosen to be o (wy). Let L be the fixed field of Hy.
Choose ug in Wy, so that o(up) = o(20) and so that 77,1, (uo) is a unit. Clearly z is even if and
only if 77, /1, (ug) or

Nro/r (Tr/2o(u0)) = 717 (u0)

is a square. Since o (zg)o? liesin &(L/L(™),
UO’U)S
liesin Wy, pc. We may take

WL = T/ (uowg).

Then
NL<n)/F (wrm) = TL/F (uowg) = TL/FW%

and 6 = 77,/ (uo) is a square if and only if z is even.

Since (—1)+1 = 1 the relation (14.5) amounts to

qg—1

0 (D)5 = ()
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(14.6) is equivalent to (14.5) because each [¢,, : ¢] = 2[¢,, : ¢'] is even. Recall that

o= () () = gy o

q—1 pt—1 pt+1 pl+1

po =1 (mod4)

and that

then v4(—1) = 1 and, as we observed earlier, z, is odd. We have to show that a” is even. We showed
before that H* has to contain a cyclic subgroup of order 5% [G : Go] and that 3£ [G : G] has to divide
p’ — 1. But % is the greatest common divisor of uy — 1 and k. Since 4 divides po — 1 and k it divides
£ and 2[G : Go] divides p* — 1. Thus a” is even.

If
Mo = 3 (mod 4)

then v4(—1) = —1. Moreover k > 2 so that p* = 1 (mod 4) and

=1 (mod2).

We have to show that a” is odd if

m =

1
516Gl
&

and even otherwise. But 1o = 3 (mod 4) so that
[G : Go] =k. If [G : Go] = k then

=2andm = . Thus [G : Go] = 2m if and only if

m

//71’%_1
Tk

is odd. Otherwise 2[G : Gy divides k and a”" is even.

(mod 2)

Lemma 14.3 is now completely proved, so we turn to Lemma 14.4. In the proof of both Lemma
14.4 and 14.5, we will combine the induction assumption with Lemma 15.1 which is stated and proved
in paragraph 15, the following paragraph. Suppose F' C F' C L and F’/F is cyclic of prime degree /.
Let (K /F’) be H'C where H' C H and let E’ be the fixed field of H'. Then E’/E is cyclic of prime
order £. If S(F'/F) is the set of characters of Cr /Ng//pCp: then

S(E'JE) = {ve/r | vr € S(F'/F)}.
From Lemma 15.1 we see that for any quasi-character y g,
Ind(Wy /e, Wk /g, XE'/E) ~ ©upes(r'/F) VE/F XE/F-

Therefore
Ind(Wg,p, Wk, XE'/E) = Ovp Ind(Wk/p, Wik /B, VE/F XE/F)
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which is equivalent to
Do { (Puer Md(Wi/p, Wi /p, 1 VE, /7 XF, /7)) ® VEXF}-
If 7" is a set of representatives for the non-trivial orbits of H' in S(K/L) then
Ind(WK/F’a WK/EHXE’/F) =0

is equivalent to
(@perInd(Wi/pr, Wi /rr W XFy /) © XF -

Moreover
Ind(Wg/p, Wk /pr,0) = Ind(Wk/r, W5/, XE'/E)-

Applying the induction assumption to L/F' we see that

{HUF A(vr, XF, 7/JF)} {HVF HMET A(W've, )p XF, 7 VF, ) 7)MF/F, ¢F)}

is equal to

{AxF /r, ¥ /p)NF'[F, )} {H AW xry e 0E ) MNEL/F dr). (14.14)

pneT’
The application is legitimate because the fields F”, F,, and F[L all lie between F and L. By Lemma 4.5

MEL/F ) = MEL/F o ) NEJE, g L

Also
AEF'JF,¢r) {HHGT/ \(F'/F, ¢F)[F,Q:F’]} = \(F'/F, ¢F)[E’:F’]'

Since the fields " and F, lie between F’ and K we can apply the induction assumption to K/F" to
see that (14.14) is equal to the product of

A(F' [ F,pp )1 EF]

and
Alxer,Ye p) ME'JF' p R).
Applying the induction assumption to K/ E we see that
A(XE’/Fy ?/JEf/F)

is equal to
{HVFes(F,/F) A(Ve/r XE/F, ¢E/F)} ME'JEpp) ™"

We conclude that the quotient

A , Ay )
H { (VF XF ¢F) H[LGT (H VF,/F XF,|F dJFu/F} (1415)

A(vg/r XE/FsVE/F)
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is independent of yr. Taking x r to be trivial we see that it equals

I {A(up,w) [Ter AW VFH/FWFH/F)}. (14.16)

A(”E/Fa ¢E/F>

It is easily seen that the complex conjugate of A(vg,r) is
vp(=1) A(p', ).

Thus
A(vp, Yp) Ay, vr) = vr(-1).

If £ is odd the right side is 1. Since

and v # vi' if £is odd, the product

HVFGS(L/F) A(VF7¢F) =1.

For the same reasons
HVFES(L/F) A(vg/r,Ye/r) = 1.

However, if / is 2
A(vp,Yr) = A(VElﬂﬁF)

has square +1 and is therefore a fourth root of unity. Thus
HVGS(L/F) A(vr,¢r) ~ Hues(L/F) A(g/p,YE/F) ~2 1.
On the other hand, m(x') =t + 1 > 2 while m(vg, ;r) < 1. Thus Lemma 9.5 shows that
A(M’VFH/FﬂﬁFH/F) ~¢ A(HlalﬁFu/F)-

Thus the expression (14.16) and therefore the expression (14.15) is equal to

n {HMET A(M/7¢FH/F)}E

where n ~y 1.

If m(xr) is 0 or 1, Lemma 14.4 is a consequence of Lemma 14.2. We suppose therefore that
m(xr) > 2. In this case Lemma 9.5 implies that

HUF A(vr XF, ¥F) ~0 Alxr,vr)"

and that
HUF AWE/r XE/FYE/F) ~0 AXE/PVE/F)"
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We also saw in the beginning of the paragraph that, in all cases, m(1/xr, /r) > 2. Thus
A(H/VFH/FXFH/FﬂﬁFH/F) ~e A(H/XFH/FJZJFH/F)-

Putting these facts together we see that if

¢
U{A(Xp,lbp) HMGT A(H/XF“/FM/JFH/F)}

is equal to
¢
!
{A(XE/F,¢E/F) HMGT A(p 7¢F“/F)}
then o ~; 1. Since o = p* we conclude that

p~y 1.

Finally we have to prove Lemma 14.5. Let F’ be the fixed field of H;C and let L’ be the fixed field of
H,C. Let E be the fixed field of H; and let K’ be the fixed field of H,. Let P be a set of representatives
for the orbits under &(L/F') of the characters in S(L/L'). If v is one of these representatives, let
H,H>C with H, and H; be its isotropy group and let F,, be the fixed field of H, H,C. Applying the
induction assumption and Lemma 15.1 to the extension L/F' we see that

A(xr/r,¥p p) p(F'[F,ipp)

is equal to
HVGP A(W'XF, /r,UF, ) F) AN(F,/F,p). (14.17)

Let
R={veP|F,=F}

and let S be the complement of R in P. R consists of the elements of S(L/L’) fixed by each element of
&(L/F). Itis asubgroup of S(L/L") and its order r must therefore be a power of /. The expression
(14.17) may be written as

{HVGRA(V,XF’wF)} {Hyes A(W'xF, /r¥E, ) 7) MF,/F, ¢F)}.

If Fis replaced by E and F’ by E’ then P is replaced by
{VK’/L’ ’ V=V € P}

Also F), is replaced by FE,,, the fixed field of H,, H,, and v/ is replaced by Z//EV/FU. Applying the induction
assumption to K/ F we see that

A(xe /r,YE p) NE'/E,VE/Fp)
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is equal to the product of
{HVEB A(Z/E/F XE/F7¢E/F}

and
{HVGS A(V/EV/FVXEU/FU71/]EU/F) A(EV/Ey/I/]E/F}

This equality will be referred to as relation (14.18).

To derive this equality we have used not only the induction assumption but also Lemma 15.1
which implies that

Ind(WK/E, WK/E’; XE’/F)

is equivalent to

{(©rId(Wk e, Wi BV p XE/F)} © {©sId(Wk)p, Wk/E, VE, )5, XE,/F)}-
Thus
Ind(Wg/r, Wk 5/, X5/ /F)

will be equivalent to the direct sum of

@RIHd(WK/F7WK/E7VIE/F XE/F)
and
Dg Ind(WK/F7WK/El,vl/El,/Fl,XEu/F)'

If visin R we can apply Lemma 15.1 to see that

Ind(WK/F,WK/EaVJIE/F XE/F)
is equivalent to
{@MGT II’ld(WK/F; WK/F‘”MIV%‘H/FXFM/F)} D V/XF'

We can obtain
Ind (Wi, Wk/F, Vg, /r, XE,/F)

by first inducing from Wi, g, to Wi, g, and then from Wi r, to Wi /p.

If T, is a set of representatives for the orbits of S(//L) under the action of &(K/F,) and F, , is
the fixed field of the isotropy group of w in T;, then, by Lemma 15.1 again,

Ind (Wk/r,, Wk/B,:VE, /5, XE, /F)

is equivalent to
@, Ind Wi/, Wi/p, 0 WVE, |5 XEy o/ F)-

Since [K : F,] < [K : F]if v belongs to S, we can apply the induction assumption to see that

A, g, XB, /P YE,/F) MEL/Fy,br, /)
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is equal to
HueTy A(H/V}V,H/FVXF,,H/Fy Vp, ) p) NFuu/Fu,Yr, 7).
This equality will be referred to as relation (14.19).

It also follows that
Ind(Wk/r, Wk /B, V5, /5, XE,/F)

is equivalent to
Ouer, Md(Wg,r, Wk/F, ., M/V%MM/FUXFV,“/F)-

The fields F, and F}, , all lie between F' and L. Thus we have expressed

Ind(Wk/r, Wk /e, XE/F) (14.20)

as a direct sum of terms of the form

where M lies between F' and L. Moreover such a representation is in fact a representation of Wy
obtained by inflating a representation of Wz, namely, by inflating

Ind(Wr,p, Wr s X )-
Thus any other expression of (14.20) as a sum of representations of the form (14.21) will lead, by an
application of the induction assumption to L/F, to an identity between the numbers A(xar, ¥ar/r)-

To obtain another such expression, we observe that the representation (14.20) can be obtained by
first inducing from Wy, to Wi, p and then from Wy g to Wi p. If T’ is a set of representatives
for the orbits of non-trivial characters in S(K/L) under the action of &(K/F') and I}, is the fixed field
of the isotropy group in &(K/F") of xin T then

Ind(WK/F’a Wk e, XE//F)
is equivalent to
{®per md(Wie)pr, Wi /rr o WX EL 5} © XFr /-

Thus (14.20) is equivalent to the direct sum of

Ind(Wg/r, Wi pr, XF'/F)
and
@MET/ Ind(WK/F7 WK/F[”M/ XF;L/F)

We shall describe the resultant identity in a moment. We first apply the induction assumption to the
extension K /F’ to see that

A(XE’/F77/JE’/F) /\(E//F/a ¢F//F)
is equal to

A(XF /psVF  F) H

This equality will be relation (14.22).

peT A(M/XF"L/FﬂﬂF[L/F))\(F/:/F/,QbF//F).
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The two expressions for the representation (14.20) lead to the conclusion that the product of

IL,., 20/xr.vr) (14.23)

and
[, 0 I1op AWV pXE, r o, ) NEW/ Frir) (14.24)

and
I HueTU AWV, 15 X Py )Py Vs P) M Eyu/ Fr) (14.25)

is equal to the product of
A(xr pYVr r) MF'F,pp)

and
HMGT’ A('U'/XF"L/F7¢F‘/L/F))\(F;‘/F’ Vr).

Applying relation (14.22) and Lemma 4.5 we see that the second of these two products is equal to
A(xe/p e p) ME'[F' p ) N(F' [ F ) E L

According to the relation (14.18) this expression is the product of

{HVGR A(V]/E/FXE/FawE/F)} {Hues A(Z//E/FXE/F’¢E/F)}
and
I1 . ME/Evsr)
and

NE'JE,g/p) Y ANE [F' g p) NF' ) F, e ) E (14.26)

Equating this final product to the product of (14.23), (14.24), and (14.25) and then making certain
cancellations by means of (14.19), we see that the product of (14.23) and (14.24) and

HVES HMGTu )\_I(FU’”/F”’ ¢FV/F) )‘(FV,;L/Fv QbF)

is equal to the product of
HVEB A(Z/E/F XE/FVE/F)

and
I . A (Bu/Foton p) NELE, byr)

and the expression (14.26).

In particular, the expression

H {A(V/XF7¢F) H;LET A(HIV%‘H/F XFN/FuwF“/F)}
veER AV p XE/F YE/F)
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is independent of y . Taking x r to be trivial we see that

0. { AW r) Ther AWV, o Xe, 0205, 15) |
veR | A(g, pXE/F¥E/F) [lyer AWVE, o ¥F, /)

is equal to

A, ¢r)
HVER A( -

V/E/Fale/F)'
The set
R ={V|veR}

is a group of characters of Cr- or of H. Regarded as characters of H the elements of R’ are just those
characters which are trivial on H;. As a group R’ is cyclic and its order is a power of £. The argument
used in the proof of Lemma 14.4 shows that

HVEB AW Yp) ~e 1

and
HVEB A(Vg pe/F) ~e L.

If m(xr)is0or 1, Lemma14.5 is a consequence of Lemma 14.2. We may as well suppose therefore
that m(xr) > 1. If v belongs to R then v/ is 1 on Ny, ,pC1. Therefore m(v'), as well as m(’/}m/F) and
m(VjE/F) is at most 1. We saw in the beginning of this paragraph that m(xz,r) would also be at least

2. We also saw that m(u'x , /) would be either ¢ + 1 or ¢ r(m — 1) + 1. In any case it is at least 2.
Also m(y') =t + 1lisat least 2. Lemma 9.5 therefore implies the following relations:

AW xF,YF) ~0 Alxr, YF)
A(Z/E/F XE/FsVE/F ~¢ A(XE/F7¢E/F)
AWV, p XF P YR, P ~0 AWWXE, /7 VR, /F)
AWV, p¥E,r) ~e AW VF, /F).

We conclude finally that

{A(XF7¢F) HueTA(H/XFH/Fﬂ/JFH/F)}T 1
AXe/r¥E/r) Ter AW, VF,/F) ‘

if r is the number of elements in R. The lemma follows.



Chapter 15 190

Chapter Fifteen.

Another Lemma

Suppose K/F is normal and G = &(K/F'). Suppose H is a subgroup of G and C'is an abelian
normal subgroup of GG. Let FE be the fixed field of H and L that of C. If u is a character of C' and h
belongs to H, define 1 by

i () = u(heh™),
The set of characters of C' may be identified with S(K/L). If « belongs to Cf,

The set of elements in S(K/L) which are trivial on H N C' is invariant under H. Let T be a set of
representatives for the orbits of H in this set. If € T let H,, be the isotropy group of u, let G, = H,,C
and let F, be the fixed field of G,. Define a character ' of G, by

' (he) = pi(c)
if h € H, and c € C. i/ may be regarded as a character of C,.
Lemma 15.1
If x is a quasi-character of C then
p=Ind(Wg/r,Wk,5,XE/F)

is equivalent to
Sper Md(Wie/p, Wic o 1 XF, /F)-

Let G’ = HC and let I’ be the fixed field of G’. F" is contained in £ and in the fields F},. Because
of the transitivity of the induction process it is enough to show that

Ind(Wgk/r, Wk/B, XE/F)

is equivalent to
®uernd(Wi/pr, Wic s X, /7)-

If /
Xrr = XF'/F
then /
XE/F = XE/F'
and

XF,/F = X/F;L/F"
Consequently we may suppose, with no loss of generality, that F’ is F.

If K" is the fixed field of H N C'and v € S(K'/L) let ¢, be the function on Wy, defined by

¢u(he) = xr(Tr/r(he)) v(Tk/L(C))
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for hin Wi g, cin Wk 1. p acts on the space of all functions ¢ on Wy, satisfying
¢(hg) = xr(Tr/r(h)) ¢(9)
forall hin Wi, g and all g in Wi . The set
{ev|veS(K'/L)}
is a basis for this space. Clearly
p(c)p, = XF(TK/F(C)) V(TK/L(C))CPV

if c belongs to Wy, and
p(h)p, = XF(TK/F(h))SDV’y

with v/ = """ if h belongs to Wy /g. Thus if Ris an orbit of H in S(K'/L)
EBVERC%, =V

is an invariant subspace.

Let 1 be the element common to 7" and R and consider

o= IDd(WK/Fy WK/F}”,U/,XFH/F)'

If Wi, r is the disjoint union

U::1 WkE,hi

w e WK/F“hi

and if p;(w) = 0 unless

while
wi(whi) = p'xr, /r(Tk/F, (W)

for win WK/FH then
{pil1<i<r}

is a basis for the space U on which ¢ acts. If v; = p/ and if X is the map from U to V which sends ¢;
to Xz (Tr/r(hi))ew, then, as one verifies easily,

for all w in Wy . The lemma follows.
The lemma has a corollary.
Lemma 15.2

If Theorem 2.1 is valid for K/ F then

A(XE/F7¢E/F) H A(M/JﬂF“/F)

neT
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is equal to
/
| |ueT A(p XF,/F> ¢FH/F)'

If Theorem 2.1 is valid
A(Xg/r,YE/p) ME/F,YF)

is equal to

H,UGT A('U/XFH/F’ wFu/F) )\(FH/Fa QbF)

Taking xr = 1, we see that

NE/Fpr) =] AW b5, r) MFu/F,vr).

peT

Substituting this into the first equality and cancelling the non-zero factor

I1,., M/ Fotir)

we obtain the lemma.
To define the A-function we shall need the following lemma.
Lemma 15.3

Suppose Theorem 2.1 is valid for all Galois extensions K,/F, with F C F; C K; C K and
[Kl : Fl] < [K : F] Then

A(XE/FsVE/F) H AW, YE, /F)

peT

is equal to
/
HMET A(p'XE, /7 VF, ) F)-

The conclusion of this lemma is the same as that of the previous one. There is however a critical
difference in the assumptions.

Let F' be the fixed field of HC. If
Vi = Y

then for all separable extensions E’ of F’

Vg = VYEr/ -

If [K : F'] < [K : F] the relation of the lemma is a consequence of the induction assumption and the
previous lemma. We thus suppose that F' = F' and G = HC.

Suppose in addition that there is a subgroup C of C', which is neither C nor {1}, whose normalizer
contains H. (] is then a normal subgroup of G. Let F} be the fixed field of HC, and L, the fixed field
of Cy. Lemma 15.1 applies to the extension K/F;. Thus there are fields 44, ..., A, lying between F;
and L; and quasi-characters x 4,, ..., x4, such that

Ind(Wgkp > Wk/E: XE/F)
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is equivalent to
®i—y Ind(Wk/p, Wk/a,, xA,)-

The induction assumption then implies that
A(xe/r,Ye/r) NE/F1,YF /F) (15.1)
is equal to
Hi:l A(xa,,Va,/r) MAi/FL, 00 F). (15.2)

Inducing the first of these two representations from Wi/, to W, we obtain

Ind(WK/F, WK/Ea ¢E/F)

Thus
Suer MdWk p, Wi /p,, W XF, /F) (15.3)
is equivalent to
@::1 Ind(WK/F7WK/A17XAz) (154)

We recall that there exist surjective homomorphisms

T/F,L JF Wk p — Wi, /Fp
TK/A; Ly jA; - WA, — WLy a,
TK/F,.L./F, * Wk, — WL, /F,

whose kernels are all equal to the commutator subgroup Wqul of Wk, Moreover the diagrams

! I
Wxrp — Wi, /r

and

WK/FM B VVLl/FH

l l
WK/F - WLl/F

may be supposed commutative. Since Wqul lies in the kernel of x 4, and //XFM/F the equivalence of
(15.3) and (15.4) amounts to the equivalence of

Cuernd(Wr, o, Wi, /5, W XF, /F)

and
@i Ind(Wr, /p, Wi, /a,, X4:)-
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The induction assumption applied to the extension L, /F' implies that

[T, Al da ) MAJE 0r)

is equal to
HueT A('U/XFH/F’ ¢Fu/F) ANFu/Fabr).
It also implies that
MA;/FYp) = MAi/F1,¢p, p) AF1/F, b ) AR
Since
Zi[Ai B =[E: F]

we infer from the equality of (15.1) and (15.2) that

A(XE/pVE/F) ME/F1L,Yp p) MFL/F, Pp) ]

is equal to
HueT A(’MIXFN/F’ ¢F;L/F) )‘(Fu/Fy Yr).

Taking xr = 1 to find the value of

NE/F1,r, r) NFy ) F,pp)E

and then substituting the result into the equation and cancelling the common factors we obtain the
assertion of the lemma.

Now suppose that H contains a normal subgroup H; # {1} which lies in the centralizer of C'. H;
is a normal subgroup of G if, as we are assuming, G = HC. Kj, the fixed field of H,, contains £ and
all the fields £,. Lemma 15.1 together with the argument just applied to L, shows that

Ind(WKl/Fa WKl/Ea XE)

is equivalent to
Suernd(Wie, ) p, Wi, /5, 1 XF, /)
In this case the assertion of the lemma follows from the induction assumption applied to K; /F'.
We have finally to suppose that G = HC, C' contains no proper subgroup invariant under H, and
H contains no normal subgroup lying in the centralizer of C. In particular H N C' = {1}. If Z is the

centralizer of C'then Z = (Z N H)C and Z N H is a normal subgroup of H. Consequently Z = C. If
D is a normal subgroup of G and D does not contain C' then

DnC ={1}.
This implies that D is contained in Z. Thus D is contained in C'and D = {1}. If H # {1} the assertion

of the lemma is that of the third and fourth main lemmas. If H = {1} then G = C and C is cyclic of
prime order so that the assertion is that of the first main lemma.
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Chapter Sixteen.

Definition of the A Functions

In this and the next three paragraphs, we take a fixed Galois extension K/ F', assume that Theorem
2.1 is valid for all Galois extensions K'/F' with F C F/ C K’ C K and [K' : F'] < [K : F], and
prove that it is valid for K/ F itself. The first step is to define and establish some simple properties of
the function which will serve as the A-function.

Lemma 16.1

Suppose
E/F' — NE/F', ¢p)

is a weak \-function on Po(K'/F"). If o € &(K'/F’) let
E? ={c"'(a) | a € E}.

Then
MNE?JF pp ) = NE/F' bp).

If 1 is a character of &(K/E) let u” be the character of & (K /E“) defined by

1’ (p) = p(opo™).

According to Lemma 13.2
A(H67¢E”/F’) = A(MﬂﬁE/Ff)-

The representation
Ind(&(K'/F'), &(K'/E), )

acts on the space U of functions ¢ on & (K’/F") satisfying
p(p7) = pu(p) (7)

forall 7in &(K'/F’)and all pin &(K'/E). The map ¢ — 1) with
$(7) = p(o7)
isa ®(K'/F") isomorphism of U with the space on which
Ind(&(K'/F'), 6(K'/E), p7)

acts. Thus the two representations are equivalent.
If
@i Ind(8(K'/F"), &(K'/E;), i)

is equivalent to
@51 Ind(&(K'/F'), 6(K'/F}), v))
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then

@i Ind(S(K'/F'), 6(K'/EY), 1]
is equivalent to

69;:1:[nd(Q5(‘[(//-F,)7 @(K//FJ‘,T)’ V]('r)

and, with the conventions of the fourth paragraph,

szl(XEf7¢Ef/F/) MNES/F' 4pp)

is equal to
H;Zl A(xry, Yre ) ME] [F' b)),
Since
A(XF;’;¢F;’/F’) = A(XFjﬂﬁFj/F/)
and

A(XEs, YEr/F) = AXE VB, /7).
We conclude that .
Hi:l A(XE, VB, ) NEY JF' pr)
is equal to
[T _, A, Yrym) MEF /F o).

In other words
E/F’ — )\(E"/F’,zpp,)

is a weak A-function on Py (K’/F"). Lemma 16.1 follows from the uniqueness of such functions.

We return to the problem of defining a A-function on Py(K/F'). Choose a non-trivial abelian
normal subgroup C of G = & (K /F') and let L be the fixed field of C. If E is any field lying between
F and K let H be the corresponding subgroup of G. Choose the set T of characters and the fields F,

as in the previous paragraph. Since F,, C L the numbers A(F),/F, 1) are defined.

Lemma 16.2

Suppose FF C E C K, gK with K1 /F normal so that \(E/F, ) is defined. Then

NE/Fve) =]

neT

A(:U’,ﬂz]FM/F) A(FLL/Fa ¢F)

Let K, be the fixed field of Hy. If H; N C # {1} we may enlarge K and replace H; by H; N C.
Thus we may suppose that either H; is contained in C' or H; NC' = {1}. In either case H; is contained

in the centralizer of C'. We saw in the previous paragraph that under these circumstance

Ind(Wg, /r, Wi, 55 1) = ®perind(Wi, /5, Wi, yp, 0 1)

Consequently

NE/Fve) =]

peT

A(:U’,ﬂz]FM/F) A(FLL/Fa ¢F)
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In general, we define

ME/F,yp) =] _ AW 5, r) MFu/F¢F)

pneT

if E/F isin Py(K/F) T is, of course, not always uniquely determined. We may replace any p in 1" by
p” with o in H. Then H, and G|, are replaced by o' H,0 and 0~ 'G 0 while F), is replaced by F7
and 1/ is replaced by (1/)?. Since

A(M/71/]FH/F) A(FLL/Fv ¢F) = A((:U’/)ovlﬁFg/F) )‘(F:/Fv ¢F)

the number A\(E/F, ) does not depend on 7. A priori, it may depend on C' but that is unimportant
since C'is fixed and, the unigueness having been proved, we are interested only in the existence of a
A-function.

We shall need only one property of the function just defined.
Lemma 16.3

IfFF C ECE' CK then

ME'/F,¢p) = XNE'/E,¢Yg/p) N(E/F, ¢F>[E’;E]'
If £ = F then
ANE'/Epgip) = ME'|F,¢F)

andif £ # F
NE'/E, bp/r)

is the value of the A-function of P(K/E), which is defined by assumption, at £’/ E. Since

the assertion is clear if E = F. Itisalso clear if £ = F'.
Let F be the fixed field of H as before and let F” be the fixed field of HC'. We suppose that H # G.
Lemma 4.5 and the induction assumption imply that

NE,/F,pr) = NEu/F' g p) N(E' [ Fy b ) P,

The relation
[E:F'|= Z[FN : F']
implies that
NE/F.br) = ME/F' b ) NE' [ F o) 7T,

There is a similar formula for A\(E' /F,¢r). If F’ # F the induction assumption implies that

NE'[E, g p) NEJF g 2)EE = N(E' [ F' g p).

Since
[E' . F'|=[E : E|[E:F|
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the assertion of the lemma is proved simply by multiplying both sides of this equation by

/\(F//F, ¢F)[E/:F/] )

Now suppose that G = HC and H N C = {1}. Let E’ be the fixed field of H' and let F’ be the
fixed field of H'C' = G’. Each character of H' may be identified with a character of Cr/ /N Ck
and each character of G’ may be identified with a character of Cr'/Nkp Ck. Any character y g of
H' may be extended to a character x - of G’ by setting

XF (Po) = XE'(p)
if pe H and o € C. Then
XE' = XE'/F'-

It follows from Lemma 15.1 that there are fields of F;(E’), 1 < i < m(E’), lying between F’ and L
and characters yp, (g such that

Ind(Wgpr, Wi /g, XE")
is equivalent to
@?i(lE/)Ind(WK/FM Wk, (B I, (B XF,(E")/F')-
If E # E’ sothat F' # F’ the induction assumption implies that

A(xe e p) ME'[F' 4pp F)

is equal to
m(E")
H A(pp, (B XF(EY ) VR ) F) NE(E)JF' Y p).

i=1

We have seen that the lemma is valid for any pair E’, E for which HC' # G. In particular, it is
valid for the pair E’, F’ and the pairs F;(E’), F’. Multiplying the equality just obtained by

)\(F,/F, Q/JF)[E/:F/]
we see that
A(xp e p) ME'/F,¢r) (16.1)
is equal to

m(E’)
H A(NFi(E’)XFi(E’)/F’a¢Fi(E’)/F) /\(Fz‘(E/)/R Vr). (16.2)

i=1
If F/ = F the equality of (16.1) and (16.2), for a suitable choice of the fields F;(E’), results from Lemma
15.1, Lemma 15.3, and the definition of

)‘(E//Fv QbF)
In any case the equality is valid for all fields lying between E and K.
Suppose Ey,...,E,., Ef, ..., E. are such fields, xg, is a character of CEi/NK/EiCKaXEJ’. is a

character of CEJ/_ /NK/E]/_ Ck,and

@::1Ind(WK/E7 I/VI(/E'Z ) XE7)
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is equivalent to
51 Ind(Wi/p, Wk/E1, XE!)-
Then

Z:Zl[Ei .E|=Y"" [E,:E] (16.3)

j=1
and, by the transitivity of the induction process,
Di_; @m( )Ind(WK/F,WK/Fk,(Ei)aMFk(Ei)XFk(Ei)/Fi)

is equivalent to

m

(B)
®i=1 By Ind(Wi)p, W/ p, (B BE.(E)) XFU(EL)/FL)-

If E; is the fixed field of H; and E; the fixed field of HJ’ then F; and FJ’ are the fixed fields of H;C and
H]’-C’. This equivalence and the induction assumption for L/ F imply that

m(E; )

[T I1, Alrs) Xemo e vn ) e) NELE)/ P )
is equal to
meE) | ,
H] 1H Alpr,59) XFo(E) /7 VE (B F) ME(E)) [ F,¥p).

This equality, the equality of (16.1) and (16.2), and the relation (16.3) imply that

[T, AGs. ¥ ) ME/ Fipp) X/ F, b))

is equal to

Hj':1 A(xe;, ¥e/r) ANE}/F,¢p) AE/F, bp) B,

Consequently
E' — NE'/F,gp) NE/F,p) 7

is a weak \-function on Py (K/E). The lemma of uniqueness implies that
NE'[F,r) NE/F )™ = X(E' B, g p).

This is, of course, the assertion of the lemma.

At this point, we have proved the lemma when various supplementary conditions are satisfied.
Before proving it, in general, we make an observation. Suppose

FCECE CE'CK
and the assertion of the lemma is valid for E” /E" and E’/E. Then
)\(E///F, ¢F> — )\(E///E/awE’/F) )\(E//F, wF)[E//;E/}

and
MNE'/F,¢p) = NE'/E, ¢E/F) ME/F, @Z}F)[EIZE].
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Moreover, by induction,

NE" |E,p/r) = ME"[E' om0 p) B B, b ) ",

The assertion for £’ /E is obtained by substituting the second relation in the first and simplifying
according to the third.

If the lemma is false in general, chose amongst all the extensions in P (K /F') for which it is false
one E’/E for which [E’ : E] isaminimum. Let E be the fixed field of H and E’ that of H’. According
to the previous discussion G = HC, H N C # {1}, and there are no fields lying between E and E'. If
H' N C = H N C, which is a normal subgroup of G, the fields F, E, and E’ are contained in the fixed
field of H N C and the assertion is a consequence of the induction assumption. Thus H’ is a proper
subgroup of H'(H N C). Because there are no intermediate fields H = H'(H N C).

As we have seen there are fields E1, . .., E, lying between E and the fixed field K; of H N C' and
characters yg, , ..., pug, such that
Ind(Wgk g, Wk /g, 1)

is equivalent to
EB;‘ZIInd(‘/VK'/E7 WK/Ez ) HE7)

Then ,
MNE'/EYp/r) = Hi:l Ape,Ye,)5) MEi/E,YE/F).

By the induction assumption, applied to K; /F,

N Ei/E,g/p) ME/F,¢p)EE = \(E;/F,¢r).

Thus )
MNE'/E,Ypp) \(E/F, Yp)EE]
is equal to
[T, Alus,vs, ) ME/EF ). (16.4)
Moreover, by the transitivity of the induction process,
Ind(WK/F,WK/E/, 1) (165)
is equivalent to
@;:11Hd(WK/F,WK/E”MEi)- (166)
On the other hand, there are fields Fi,..., F contained in L and characters vg,,...,vg, such that
(16.5) is equivalent to
©j1Ind(Wk/p, Wik, VF,) (16.7)
and such that, by definition,
NE'Fpr) =[] _ A, vr,p) AE/F,0r). (16.8)

Since the representations (16.6) and (16.7) are equivalent the induction assumption, applied to K; /F,
shows that (16.4) is equal to the right side of (16.8). This is a contradiction.
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Chapter Seventeen.

A Simplification.

We shall use the symbol €2 to denote an orbit in the set of quasi-characters of Cx under the action
of &(K/F) or, what is the same, under the action of W, on Cx by means of inner automorphisms.
If xx is a quasi-character of Ck its orbit will be denoted Q(xx ). If p is a representation of Wi, the
restriction of p to Cf is the direct sum of one-dimensional representations. Let S(p) be the collection
of quasi-characters to which these one-dimensional representations correspond.

Suppose
p=IndWgk,p, Wk/E, XE)-

Let Wi, r be the disjoint union
Ui:l WK/sz

Define the function ¢; by

pi(ww;) =0 weWgp, j#1
ei(ww;) = Xp(Tk/pw)  w € Wg/g.
{¢1,--.,¢m} is abasis for the space of functions of which p acts. If a € Ck then
wwja = w(wjawj_l)wj

and wjawj_1 belongs to C'x which, of course, lies in Wy /. Thus

p(a)pi = Xp(Tk/p(wiaw; )i = X7 5(a)p;
if o; is the image of w; in (K /F'). Thus

S(p) = Q(XK/E)-

Suppose E1, ..., E,., Ef, ..., E! lie between F' and K, x g, is a quasi-character of E;, and Xz is
a quasi-character of E§ Let '
pi = Ind(Wg/p, Wk/B,, XE,)

and let
P; = Ind(WK/Fa WK/E; ) XEJ/.)'

Suppose p; acts on V; and p; acts on Vj’. The direct sum of the representations p; acts on
V == @gzl‘/;
and the direct sum of the representations p;» acts on

r_ /
V' = @i, V).
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Let

Vo = @i|xu/m ey Vi
Vo = By et Vi

Any isomorphism of V' with V’ which commutes with the action of Wy, takes Vo, to V().

IfXk/p, € Qxx) thereisa o in 8(K/F)such that xx = X%, 5, Then

pi = Ind(Wyp, Wk /g2, XE,)

and
A(XE: Ve, p) MEi/F,¢p) = AXE, YEe /p) MET [ F,¢p).
We conclude that Theorem 2.1 is a consequence of the following lemma.
Lemma 17.1

Suppose xk is a quasi-character of Cx. Suppose E1,...,E,., E}, ..., E. lie between F and
K, xg, is a quasi-character of Cg,, x E is a quasi-character of CE]/_, and
p=@_1IndWg/p, Wk/g,, XE,;)

is equivalent to
P = @5:1 Ind(WK/Fa WK/E‘;aXE‘;)'

IfXKk/E, = XK/E; = XK foralliand j then

1, Alxe. ¥ie) ME/F.r)

is equal to

S

i A(xe;, Ve F), ME/F ¥p).
Let F'(xx ) be the fixed field of the isotropy group of k. Let pacton V and let p’ acton V’. Let
Vixg) ={veV|pla)v=xkg(a)y forall a in Cx}.

Define V' (x k) in asimilar fashion. Itis clear that any isomorphism of V" with V" which commutes with
the action of Wi, p takes V(xx) to V'(xx). The group Wi, p(y ) leaves both V(x) and V' (xx)
invariant and its representations on these two spaces are equivalent.

Let
Ind(Wg/r, Wk /5, , XE;)

acts on V; and define V;(x k) in the obvious manner. Then

Vixx) = @i Vilxx).



Chapter 17 203

Defining V/ and V//(x i) in a similar manner, we have
V'(xK) = @51V} (xx)-
It is clear that the representation of Wx/r(y ) On Vi(xx) is equivalent to

Ind(Wk/pxi), Wk /B> XE:)-
Thus
69;"‘:1Ind(I/VI(/F(XK)7 WK/EZ ’ XEz)

is equivalent to
S5 Ind(Wi/pxi)» Wi/ E > X B )-

If F(xk) # F the assertion of the lemma follows from the induction assumption and Lemma 16.3.
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Chapter Eighteen.

Nilpotent Groups.

In this paragraph we prove Lemma 17.1 assuming that F' = F(xx) and that G = &(K/F) is
nilpotent.

Lemma 18.1

Suppose D is a normal subgroup of G' of prime order ¢ which is contained in the center of G. Let
M be the fixed field of D. Suppose F' C E C K and xg is a quasi-character of C'r. Suppose also that

F(xXk/e)=F.
(@) There are fields F1, ..., F,. contained in M and quasi-characters xr,, . .., Xr, such that xg,r, =
Xk/E and such that
IndWg/r, Wk /E, XE)

is equivalent to
®i—1Ind(Wk/r, Wk /F,, XF,)-

(b) If Theorem 2.1 is valid for all Galois extensions K'/F' in P(K/F) with [K' : F'] < [K : F| then

A(xe,YE/F) ME/F,)F)

is equal to

H:=1 A(XE > Vrr) ME/ F,dp).

We prove the lemma by induction on [K : F]. Let H be the subgroup of G corresponding to E; let
G’ = HD and let F’ be the fixed field of G’. If F’ # F the induction assumption implies that there are
fields F1, ..., F. contained in M and quasi-characters xp,, ..., xr, such that xx,r, = Xk, for each
1 and such that

Ind(Wg/r, Wk /B, XE)
is equivalent to
®i— Ind(Wk /', Wk /F,, XF,)-

The first part of the lemma follows from the transitivity of the induction process. The second part
follows from Lemma 16.3 and the assumed validity of Theorem 2.1 for the extension K /F".

We suppose now that G = HD. Suppose that H contains a normal subgroup H; of G which is
different from {1} and suppose that, if K is the fixed field of Hy, F(xx,,g) = F. If M is the fixed
field of H1 D then, according to the induction assumption, there are fields F1, ..., F,. contained in M;
and quasi-characters xr, , . . ., X, such that

XK., /F; = XK1 /E

and such that
Ind(Wgk, /r, Wk, /B XE)
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is equivalent to
®i— Ind(Wg, ) p, Wk, /£, XF,)-

It follows immediately that
XK/F; = XK/E

and that
Ind(Wg/r, Wk /B, XE)

is equivalent to
®i—1Ind(Wk/p, Wk /F,, XF,)-

The equality of (b) is a consequence of the assumed validity of Theorem 2.1 for K, /F'.

We assume now that G = H D and that if H; is a normal subgroup of H different from {1} with
fixed field K the field F(XKl/E) is not F. If wy belongs to W, and w, belongs to Wi/, then

wlewfle_I € Ck.
Let xx = Xk/E- Since F(xx) = F
Xk (wiwaw  wy ) =y (wowy  wy M wy) = Xk (Wi wy T wiwe) = xi (wy fwiwawi ).

Denote the common value of the expressions by w(wy,ws). Then w(v;wy, we) is equal to

1 -1 1 1 1.1 1
Xk (Vi wawy vy Twy ) = Xk (wy T wiwawy T vy Wy T v1wa).

The right side is
w(vy, we) w(wy,ws).

In the same way w(wy, vaws) is
-1, -1 -1 -1 -1 -1 -1
Xk (W1vawew] “wy vy ) = xr (W] vy Twivawow; Twy wy)

which equals
w(wi,v2) w(wy, ws).

If either wy or wsy belong to C, we have
w(wy,wy) = 1.

Thus, for each wo,
wy; — w(wy, ws)

is a homomorphism of H = W, /Crk into C* and, for each wy,
wy — w(wy,ws)
is a homomorphism of D = Wi/ /Ck into C*. If w belongs to W, then

w(wwiw™, www™) = wlwy, ws).
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Thus there is a normal extension K; containing E such that
Wik, = {w1 | w(wi,we) =1 forall wy € Wi pr}

But F'(xx, &) Will be F' so that K; must be K.

It follows immediately that H is isomorphic to a subgroup of the dual group of D. Thus H = {1}
or H is cyclic of order ¢. In either case H must lie in the centralizer of D so that E/F is normal and
&(E/F)isisomorphicto D. If H = {1} then g may be extended from Cr, = C'x to a quasi-character
of Wi, p. In other words, there is a quasi-character xr of C'r such that xg = xg,p. Then

Ind(Wk,/r, Wk /B, XE)

is equivalent to
Curese/ryIndWg/p, Wi/, LEXF).

Suppose H # {1}. Since Wy /Cr is cyclic there is a quasi-character x»; of Cy such that
XK = Xx/m- 1fw; belongs to Wi let x,,, be the character of Wi /5, or, what is the same, of C,
defined by

Xuw: (W2) = w(w1, w2)

and if wy belongs to Wiy let
Xws (W1) = w(wy, wa).

Clearly

{Xw, | w1 € Wk g} = S(K/M)
and

{Xw, | w2 € Wy} = S(K/E).

If o1 is the image of wy in H and o5 the image of w, in D then

X7 (w1) = xp(wawiwy ' wi wr) = X! (wr) xp(w1)

and
X (w2) = XM(w1w2w1_1w2_1w2) = Xw, (w2) xar(w2).

Let Wi, r be the disjoint union
1
Ui:l Wi/ pvi

with v; in Wi /). Define the function ¢; on W, by
pi(wv;) =0
ifw € Wk, g and j # i and by
pi(wv;) = xp(w)

ifw e Wk, g. Then
{oi[1<i<t}

is a basis for the space U on which
Ind(Wg,r, Wk /e, XE)



Chapter 18 207

acts. Let¢p;, 1 <1 < £ be the function Wi, defined by

Wi (wawr) = xar(wa)x 3" (wy)

if wy belongs to Wy, g and wy belongs to Wy /. Here o(v;) is the image of v; in &(K/F). Itis
necessary, but easy, to verify that v, is well-defined. The collection

{i | 1< <t}
is a basis for the space V on which

Ind(Wgk,p, Wi jar, Xar)

acts. It is easily verified that the isomorphism of U with V' which sends x(v;); to v; is an isomor-
phism. Thus

Ind(WK/Fa Wk/E, XE) =~ Ind(WK/Fa Wk X0 )-
This takes care of the first part of the lemma.

Whether H = {1} or not,
Ind(Wg,p, Wik/E,1)

is equivalent to
Purese/r) Id(Wg/p, Wik p, ir).
If H # 1 we may apply Theorem 2.1 to E/F' to see that

AE/Fe) =] Al ).

nr€S(E/F)

If H = {1} this equality is just the definition of the left side. In this case the second part of the lemma

asserts that
A(XE,YE/F) H A(pr, Yr) (18.1)

ur€ES(E/F)
is equal to

H;LFES(E/F) Alprxr, vr)

where xg = xg,r. This is a consequence of the first main lemma. If H # {1}, Theorem 2.1 applied to
M/ F, shows that

AM/Fpr) =] A(pr, ¥r)

and the second part of the lemma asserts that (18.1) is equal to

pp€eS(M/F)

Al vayr) [ Apr, ¥r).

pr€S(M/F)
This is a consequence of the second main lemma.

A non-trivial nilpotent group always contains a subgroup D satisfying the conditions of the
previous lemma. Lemma 17.1isclear if K = F. If K # F and &(K/F) is nilpotent it is a consequence
of the following lemma.

Lemma 18.2
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Suppose K/F' is normal and Theorem 2.1 is valid for all normal extensions K'/F’ in P(K/F)
with [K' : F'] < [K : F]. Suppose F' C M;K and M /F is normal. Suppose E1, ..., E,,

Ei,..., E. lie between F and M, x g, is a quasi-character of C,, x E is a quasi-character of CE;, and

@::1Ind(WK/F7 ‘/VK'/EZ ) XE7)
is equivalent to
©j—1Ind(Wk/F, Wkyes, XE] )-

Then ,
Hi:l A(XE:, VEir) NEi/Fbr)

is equal to

S

i A(xg, Y r) MES/F ¥rp).

The representation
Ind(WK/F, I/VK/EZ ) XEz)

can be obtained by inflating the representation
Ind(War/r, Wi/, XE;)

from Wy r to Wy, . A similar remark applies to the representations induced from the XE- Thus

S Ind(Wi/p, Wa /B, XE;)

is equivalent to
5= Ind(Waiyp, Wiy, X B2 )-

Applying Theorem 2.1 to the extension A/ F we obtain the lemma.
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Chapter Nineteen.

Proof of the Main Theorem.

We shall first prove Lemma 17.1 when there is a quasi-character xr of C'r such that xx = xx/F-
Implicit in the statement of the following lemma as in that of Lemma 17.1, is the assumption that
Theorem 2.1 is valid for all pairs K’ /F' in P(K/F) for which [K’ : F'] < [K : F]. Recall that we have
fixed a non-trivial abelian normal subgroup C of G = &(K/F') and that L is its fixed field.

Lemma 19.1

Suppose F' C E C K, xr is a quasi-character of Cr, xg is a quasi-character if Cg, and x g g =
Xk/r- There are fields F1,. .., F,. contained in L and quasi-characters xr,, 1 < i < r, such that

XK/F; = XK/F»
Ind(Wg,r, Wk /e, XE)

is equivalent to
©i—1Ind(Wg/p, Wk/F,, XF;)

and
A(xe,Ye/r) ME/F,¢F)

is equal to

H:zl A(XF, VE, p) ME/F,¥r).

We prove the lemma by induction on [K : F']. Let E be the fixed field of H and let F” be the fixed
field of HC. If F’ # F then, by induction, there are fields Fi, ..., F,. lying between F’ and L and
quasi-characters xr,, . .., Xr, such that xx,r, = xx,/r and

Ind(Wgk,r,Wk/E, XE)

is equivalent to
®i— Ind(Wk/p, Wk /F,, XF,)-

In this case the lemma follows from the transitivity of the induction process, the assumed validity of
Theorem 2.1 for K/F’ and Lemma 16.3.

We suppose henceforth that G = HC'. There isacharacter 0 in S(K/E) suchthat xg = 0pxg/F.
6 may be regarded as a character of H. If H N C = {1} we may define a character 6 of G by setting

QF(hC) = QE(h)

if hisin H and cisin C. 6 may be regarded as a character of Cr and 0 = 0 ,r. Replacing xr by
0r xr we suppose that xg = xg,r. Then in the notation of Lemma 15.1, we may take

(F\,...,F,} ={F, | peT}

and if F; = F},,
XF = W XF,/F-
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The assertions of the lemma are consequences of Lemmas 15.1 and 15.3.

We suppose now not only that G = HC butalso that H NC' # {1}. Let S be the set of characters
in S(K/L) whose restriction to H N C agrees with the restriction of 6. S is invariant under the action
of H on S(K/L). If v belongs to S let ¢, be the function on Wy, defined by

pu(wv) = xe(w) xL/F (V) V(0)

if wisin Wi, g and visin W . vis a character of C and may therefore be regarded as a character
of Wk, orof C'p. Itis easy to verify that ,, is well-defined. If

p=IndWgk,r, Wk/5,XE)

then
{ov v es}

is a basis for the space of functions on which p acts. If w belongs to Wy /g
p(w)p, = XE(w)(PU’
with v/ =17 is o is the image of w in G(K/F). If vbelongs to Wy,

p(v)er = x1/p (V) V(V)Py.

Thus if R is an orbit in .S under the action of H, the space

VR - ZVER CSOV

is invariant under Wi, and p is the direct sum of its restrictions to the spaces Vg.

If 1. belongs to R let H,, be the isotropy group of x, let G, = H,C, and let I, be the fixed field of
G .. Extend p to a character 4/ of G, by setting

4 (he) = 0(h) ()

if hisin H, and cisin C. y/, which is easily seen to be well-defined, may be regarded as a character
of Wi/, of CF,. Let W, be the disjoint union

szl Wk /F, wi

with w; in W, 5 and let o; be the image of w; in & (K /F'). Let ¢; be the function of W, defined by

pi(ww;) =0 weWgk/p,, j#i
pi(ww;) = M/(W)XFH/F(U)) we Wg/p,.

The collection
{pi|1<i<s}
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is a basis for the space V), on which the representation

oy =Ind(Wk/p, WK/FW,M/XFM/F)
acts. Let
Vi = XE(Wi)p;-
If w belongs to W1,
ou(w)h; = p% (w) X/ F(w);.

If w belongs to W/ g and wjw = vw; with v in Wi, then

ou(w)Y; = xp(w)Y;.

Thus the isomorphism of V,, with Vi which takes 1); to ¢,-; commutes with the action of Wy p. If T’
is a set of representatives for the orbits in S

P = ®Bueropu-
If Ky is the fixed field of H N C then K /F' is normal and p is the inflation to Wy /r of

Ind(WKl/Fa Wk /£, XE) (19.1)
and o, is the inflation of
Ind(Wie, )7 Wi, /5, W XF, /)

Thus the representation (19.1) is equivalent to

Ouermd(Wi, ) p, Wi, /5, ' XF, /F)-

Applying Theorem 2.1 to K7 /F we see that

A(xE, Ye/r) ME/F,YF)

is equal to
HueT(N/XFM/Fy Vr, ) AEL/F,¢F).

If there is a quasi-character x r such that xx = xx/r, Lemma 17.1 follows from Lemma 18.2 and
the lemma just proved. To complete the proof of Theorem 2.1 we have to prove Lemma 17.1 when
F = F(xx), G'is not nilpotent, and there is no quasi-character xr of Cr such that xx = x k. In this
case none of the fields E, ..., E,., E',..., E. isequal to F and Theorem 2.1 may be applied to K/E;
and K/E;.

Lemma 19.2

Suppose A and B lie between F and K. Suppose x 4 and x g are quasi-characters of C4 and Cp
respectively. There are fields A4, ..., A,, lying between A and K, fields By, ..., B,, lying between
B and K, elements o4,...,0,, in G, and quasi-characters xa,,...,XA,,, XBis---:XB,, Such that
B; = A", xB, = X%, and such that the tensor product

Ind(Wgk/r, Wi ja,x4) ® md(Wk,r,Wk/5,XB)
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is equivalent to
@;’illnd(WK/F, VVK/Az ) XAi)

and to
@:lllnd(WK/Fu ‘/VK'/BI ) XB7)

Let

p=IndWg/p, Wk/a,x4)
o=IndWgk,r, Wk /B, XB)-

Let o be the restriction of o to Wi, 4 and 3 the restriction of p to Wy . By Lemma 2.3
p@o~IndWgk/p, Wk a, x4 ® )

and
p®@o~IndWgk/p,Wgk,5,XxB ® ).

Let Wi, be the disjoint union

Ui:1 Wik jawiWg .

If U, is the space of functions in U, the space on which p acts, which are zero outside of the double coset
Wi awiWg g then U; is invariant under 3. Define the field B; by demanding that

WK/Bi, = WK/B ﬂwi_lWK/Awi.

If o; is the image of w; in &(K/F) let x5, be the restriction of ' to Wg ,p,. If U] is the space of
functions on which
Ind(Wg /5, Wk/B:,XB,)

acts, the map of U; to U/ which sends ¢ to the function ¢’ defined by
¢’ (w) = p(wiw)
if wisin Wi, g is an isomorphism which commutes with the action of Wi, 5. Thus
B~ @ IndWgk/B, Wk/B,, XB,)

and, if XB; = XBi/B X/BZ,
xB ® B~ @ IndWgk/p, Wk/B,, XB,)-

Similar considerations apply if the roles of A and B are interchanged. The double coset decompo-
sition becomes m
Ui:l Wi pw; "Wk /a

and
WK/Ai == WK/A N wiWK/Bwi_l = wZWK/Ble_I

Thus B; = A7". Itis also clear that xp, = x%' .
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To complete the proof of Lemma 17.1 we use Brauer’s theorem in the following form. There are
fields F7, ..., F), lying between F' and K such that &(K/Fj,) is nilpotent for each k, characters xp, of
Cr./Nk,r,Ck, and integers my, ..., m,, such that

1~ @p_ymp Ind(Wg/p, Wk/F,, XF,)-
Since we are assuming that G is not nilpotent none of the Fj, are equal to ' and we may apply Theorem

2.1 to each of the extensions K/ Fy,.

We shall apply the previous lemma with A = E;, B = F), and with A = E’ B = Fj. m will be
denoted by m(ik) or m’(j¢). A, will be denoted by E;;, or E". "o and By will be denoted by Fj, or
F, .. Observe that

A(XEies VB 7 MEike/ Fbr) (19.2)
is equal to

A(XFer VFe/F) MEFire/ F,0F) (19.3)
and that

A(xEs,, Y, /F) N Ejre/F 0p) (19.4)
is equal to

A(xr,, ¥, /7)) A(Ejre/ F ¥r).- (19.5)

Xk, may be regarded as a one-dimensional representation of Wi, g, and as such is equivalent to

oy &7 i md(Wie/m,, Wic B s XBune)-
Therefore ’ k)
DD DA}
and
is equal to

Hk . Hm(lk) A(XEips VB r) M EBike/ Bisbp, yp) )™
Multiplying both of these expressions by \(E;/F, ¢ r), we see that
A(XE;VE, ) r) MEi/F,)F) (19.6)
is equal to
N ) R TNC S PYOC AR (197
The same argument establishes that

A(xe,, YE r) ME;/F,Yp) (19.8)

is equal to

TN , N
[T T1 A, e, ) Ay b)) (19.9)
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We are trying to show that the product over ¢ of the expressions (19.6) is equal to the product over
7 of the expressions (19.8). It will be enough to show that the product of the expressions (19.7) is equal
to the product of the expressions (19.9).

The representations
m(ik
D1y Dy ( ) Ind(WK/Fka WK/Fikg7XFik:£)

and
D Dyey il o )Iﬂd(WK/Fk.,yWK/F;MXF;M)

are equivalent. Therefore

Z’L 1Zm(1k) Zkz Fk Z] 1Z£ 1]k3) F],kg Fk]

Denote the common value of these expressions by N (k). Moreover

m(zk)
Hz . H A(XFiper VFup/F) MEike/ Fro, Vr, F)

is equal to
(J’f) .
H] 1H (XF7,, YF, 1 P) M Eje/ FyYr, F)-
Multiplying both of these expressions by

A(Fy/ Fybp) N )

we see that ’ k)
l_IZ . H A(XFipes VFie/F) AN Fike/ Fybr) (19.10)
is equal to

(Jk)
H] . H (XFt,,» ¥F, 7)) A F k) FoF ). (19.11)

Because of the equality of (19.2) and (19.3) the product over ¢ of the expressions (19.7) is equal to the
product over k of of the mth powers of the expressions (19.10). The product over j of the expressions
(19.9) is equal to the product over k of the myth powers of the expressions (19.11). Lemma 17.1, and
with it Theorem 2.1, is now completely proved.
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Chapter Twenty.

Artin  L-functions.

Suppose w is an equivalence class of representations of the Weil group of the non-archimedean
local field F'. Let K be a Galois extension of /" and let o be a representation of Wi, in the class w.
Suppose o acts on V. Let VV° be the subspace of V fixed by every element of WIO(/F. Since WIO(/F isa
normal subgroup of Wy, the space V0 is invariant under Wk, r and on V0 we get a representation
o0, Since W}’(/F = TI;}F(U%) the class of o depends only on w. ¢ breaks up into the direct sum of
1-dimensional representations corresponding to unramified generalized characters py, ..., u, of Cp.

We set
T 1

L(s,w) = Hi:l 1 — pi(mp) e |

This we take as the local function. It is clear that when w is one-dimensional the present definition
agrees with that of the introduction and that of w = w; ® wy. Then

L(s,w) = L(s,w1) ® L(s,ws).

Suppose F'C E C K, pisarepresentation of Wg g, and
o =IndWk,r, Wi/, p)-
We have to show that if 4 is the class of p then
L(s,w) = L(s,0).
Let pacton V. Then V is the space of functions f on Wi, r with values in W which satisfy

fuww) = p(u) f(v)

for uin Wi, g and vin Wi, p. If f liesin Vp and u lies in WIO{/E then

p(u)f(v) = fuwv) = fvv™ uv) = f(v)

because v~ ! lies in WIO(/F. Thus f takes values in W°. In other words, we may as well assume that
W = WY, Indeed we may as well go further and assume that W = W° has dimension one.

Let Ng/pmp = Eﬂ; where ¢ is a unit and choose wy in W, so that 7, pwo = 7r. Then
wl = ugvy with g in W}’(/F and vy in Wi g such that 7 gvg = mg. Clearly, VO consists of the
functions f with values in W which satisfy f(uw) = f(w) foruwin W10</F and f(uw) = u(tx/pu) f(w)
if p is associated to the generalized character u of C;. Take as basis of V° the functions ¢y, . . . yPf—1
defined by

(pi(uvwg) = M(TK/EU)(ng‘
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where z is a non-zero vector in W, u belongs to WIO(/F, v belongs to Wy, 0 < j < f, and &7 is
Kronecker’s delta. The matrix of o(wy) with respect to this basis is

0 - w(Tr/EV0)
1 0 .
A= 1
0 1 0
and
1 1

L == = = L
(S,W) det([ - A|7TF‘S) 1 . H(WE) ‘7TF fs (879)

since |rp|f = |7g|.

For archimedean fields we proceed in a different manner. If we write w, as we may, as a sum of
irreducible representations the components are unique up to order. If w = Zle bw;, we will have to

have .
L(S,Cd) = H4_1 L(S7wi)'

Thus it is a matter of defining L(s,w) for irreducible w. If w is one-dimensional this was done in the
introduction. Ifw isnotone-dimensional then F' mustbe R. Let o be arepresentation of /g intheclass
w. W/ is an extension of the group of order 2 by C*. Let W /g = C* UwC*. If o actson V thereisa
non-zero vector x in V and ageneralized character p of C* suchthato(a)z = p(a)zforallain C*. Then
the space spanned by {x,o(wg)x} is invariant and therefore all of V. Since V' is not one-dimensional
o(wo )z is not a multiple of z. Notice that o (a)o(wp)z = o (wo)o(wy Lawe)z = u(@)o(wo)z. If

withm +n > 0, mn = 0 we set

m4n

L(s,w) = 2(2m) (+r+25%) 1 <5—|—T+ m+”>.

2

The initial choice of y is of course not uniquely determined. However if 1 is one choice the only other
choice is the character a — po(@). Thus the resulting local L-function is independent of the choice.

The only point to be checked is that the local L-function behaves properly under induction. We
have to verify that if p is a representation of C* = W¢ c in the class ¢ and

o = Ind(We¢ g, Wec, p)

is in the class w then L(s,w) = L(s,0). We may as well assume that p is irreducible and therefore
one-dimensional. Let it correspond to the generalized character v. If o is irreducible we could choose
the generalized character 1 above to be v and the equality of the two L-functions becomes a matter
of definition. If o is irreducible it breaks up into the sum of two one-dimensional representatives. It
follows easily that v(a) = v(a) for all a. Thus v is of the form v(a) = |a|" and

L(s,0) = 2(2n) =) T(s+r).
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If ur = p is the generalized character x — |z|” of R* then v = ¢ r and, as we saw in chapter 10, the
representation o is equivalent to the direct sum of the one-dimensional representations corresponding
to . and to i/ where p/(x) = sgnzu(x). Thus

s e (5 e (2529}

The required result is thus a consequence of the familiar duplication formula

227D (2) (2 + 1/2) = 7/2T(22).

If F'is a global field and w is an equivalence class of representations of the Weil group of F', we
define as in the introduction, the global L-function to be

L(s,w) = Hp L(s,wy).

| repreat that the product is taken over all primes, including those at infinity. It is not difficult to see
that the product converges in a half-plane Re s > c¢. One need only verify it for w irreducible. Choose
a Galois extension K of I’ so that there is a representation o of Wy, ¢ in the class w. The restriction of
o to C is equivalent to the direct sum of 1-dimensional representations corresponding to generalized
characters u(", ..., u(") of Ck. For each i and j there is a o in &(K/F) such that 17 (a) = p(o(a)).
Then |t (a)| = |u*(a= o (a))| = 1 because a~'o(a) belongs to the compact group of i idéle classes
of norm 1. Let |¢/(a)| = |a|". Let vp be the generalized character a — |a|” of C'r. Replacing o by
vt ® o we replace L(s,wy) by L(s — r,wy) and p® by [u®|~1u(). Thus we may as well suppose
that all () are ordinary characters. Since C is of finite index in Wk r the eigenvalues of o(w) will
all have absolute 1 for any w in W, and at any non-archimedean prime the local L-function will be

of the form .
Hi:l 1 —aj|nr,[*

with s < dimw and |o;| = 1, 1 < i < s. The required result follows from the well-known fact that

I
1—‘7TFp’S

converges from Re s > 1. This product is taken only over the non-archimedean primes.
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Chapter Twenty-one.

Proof of the Functional Equation.

Choose a non-trivial character 1) of A/ F. Before we can write down the factor appearing in the
functional equation of the global L-function we have to verify that (s, w,, 1r, ) = 1 for all but a finite
number of ~.

Letw be realized as arepresentation o of Wi, - and let the restriction of o to Cc be equivalent to the
direct sum of 1-dimensional representations corresponding to the generalized characters ;1) ..., u(").
All but finitely many primes p will satisfy the following conditions.

(i) p is non-archimedean.
(ii) n(¢r,) = 1.
(iii) p does not ramify in K.
(iv) m(uy)) = 0 for all g dividing p and all i.
Choose one such p and let B divide p. Corresponding to the map K/F — Ky /F, is a map
op : Wi /r, — Wkyp. wy isthe class of o, = o o ¢,,. The kernel of o, contains Ug,, . Since Ky /F,,

is unramified the quotient of Wy, /r, by Uk, is abelian and oy, is the direct sum of one-dimensional

representations. Let them correspond to the generalized characters V,S”, e u,g’") of CF,. Since 7k, /F,

takes U, Ky ONto Up, each of these characters is unramified. Thus
11 s—3 (i) _
E(SuwFHQ/JFP) _Hi:1A<an2ypz 777Z}Fp> =1

If 4% is another non-trivial character of Ap/F there is a 5 in F™* such that ¢/ (z) = ¢¥r(Bx).
According to Lemma 5.1

e(s,w,05,) = i 2 (B)detwy(B) e(s,w, ¥, )-

Since

[T, e, (8 detn(8) = B1*# detw(@) = 1

the function
e(s,w) = Hp (s, wp,Yr, )
is indeed independent of .
We can infer from Tate’s thesis not only that L(s,w) is meromorphic in the whole complex plane
if w is one-dimensional but also that it satisfies the functional equation

L(s,w) =¢(s,w) L(1 — s,w)

if W is contragredient to w. As is well-known, Lemma 2.2 then implies that L(s,w) is meromorphic in
the whole complex plane for any w. In any case, Theorem B is true for one-dimensional w and, granting
this, we have to establish it in general.
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First we need a lemma.
Lemma 21.1

Suppose F' is a global field, K is a Galois extension of I, E is a field lying between F' and K, x is
a generalized character of C'r, and

o =Ind(Wg,r, Wk /g, X)-

If w is the class of o and, for each prime q of E, x, is the restriction of x to Cg, then for each prime p
of I

5(8,&Jp,'¢pp) = H{€(87Xq7¢Eq/Fp) p(Eq/va¢Fp)}'

alp

Let 3 be a prime of K dividing p. The first step is to find a set of representatives for the double
cosets Wi/ g w Wk, /F,. Since Cx C Wi, is a normal subgroup of Wi, we can factor out C'x and
merely find a set of representatives for the double cosets

(K/E)o &(Kp/Fy).

Let Py, ..., P, be the primes of K dividing p and let 33; divide q; in E. &(K/F) is the disjoint union

U._ 06Ky /F)

where o; () = P;. If o, and o; belong to the same double coset q; = q;. Conversely, if g, = q; there
isa pin (K/E) such that p(*;) = B,. Then po;(P) = 0;(P) and

poi €0y QS(Ksp/Fp)

Thus we may write &(K/F') as the disjoint union

U, 8(K/B)r 6 (Ky/Fy)

so that if B divides q in E the collection {7(q) | 7 € S} is the collection of distinct primes in £ dividing
p.

For each 7 in S choose a representative w(7) in Wi, p. For each 7 in S the restriction of o
to Wk, /r, leaves invariant the space of functions f on the double coset I/I/K/Ew(r)WKmump which
satisfy f(vw) = x(7x/e(v))f(w) for all v in Wi, . The representation of Wi/, on this space is
equivalent to

Ind(WKq} JFy s Wy /Bl X/qT

if E" =771(F) and
Xq (@) = x(7(a)).

Thus
e(s,wq, VF,) = H

which is of course equal to

TGSE(S’ X;77¢E;T/Fp)p(EZ]—"/Fpﬂ/JFp)

HTGSE(87Xq7¢Eq/Fp)p(Eq/va¢Fp)'
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We set

E/F H Hq‘p q/Fpa¢Fp)'

The preceding discussion together with Lemma 5.1 shows that it does not depend on yr. However
that does not really matter since we are about to show that for any choice of ¢ it is 1. Observe first of
all that the previous lemma implies immediately that if w is the class of

o=IndWgk,r, Wk/E,X)

then
e(s,w) = e(s,X) p(E/F).
Given an arbitrary class w realizable as a representation of W, we can find fields E4, ..., E,
lying between F’ and K, generalized characters xg, , ..., xE,, and integers m;, ..., m, such that

Zi:l ®m; Ind(Wg/p, Wik/E,, XE,)

is in the class w. Then

e(s.0) = [T, {elsxm)™ p(EL/F)™).

On the other hand

w) = Hi:l L(Sv XEi,)mi

and
Hz_ L(s XE
Since
L(s, xm,) = (s, xz,) L(1 = 5, x5.)
we have

L(s,w) = H::1 e(s,xg;)™ L(1 —s,w)

because w contains ,
Zi:l @m; md(Wi/p, Wi B, X5, )-

Consequently
-
H, 5(87 XEJTN‘Z
=1

depends only on w and not on the particular way it is written as a sum of induced representations.

Thus -
IT_, etEi/Fym

also depends only on w. We call it H(w). It is clear that to prove Theorem B we have to show that
H(w) = 1 for all w or, what is the same, that p(E/F') = 1 for all E and F'.

Suppose F' C E C E’. Denote the primes of F' by p, those of E by g, and those of £’ by ¢’. Then

o'/ F) =11 11, P(Bar/ Foom,)-
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Apply Lemma 4.5 to see that the right side equals

Hp Hq\p Hq/|q {p(E;//Eqﬂ/JFq/FP)p(E'q/Fpﬂ/]Fp)[Eg:Eq}}'

Since

this may be written as

(BB
{Hq Hq/qp(Ea//Emqu/Fp)} {Hp Hq\p p(Eq/Fpu¢Fp)}

which is of course )
p(E'/E) p(E/F)EE, (20.1)

Suppose £/ F is an abelian extension and w is the class of the representation of W,/ induced from
the trivial representation of Cp = Wg,g. Then H(w) = p(E£/F). On the other hand, w is the direct

sum of [E : F] one-dimensional representations; so H(w) = p(F/F)Z*Fl = 1. It follows immediately
not only that p(E/F') = 1if E/F is abelian but also that p(F/F') = 1 if E can be obtained from F' by
a succession of abelian extensions. In particular if ¥ C E C L and L/F is nilpotent p(E/F) = 1.

Observe that (20.1) together with Lemma 2.2 and the transitivity of induction imply that if w is the
class of
o =IndWg/r,Wk/E,p)

and @ is the class of p then .
H(w) = H(0) p(E/F)"™ .

To complete the proof we will show that H(w; ® wy) = H(wy)™« for all w; and w,. Taking
we = 1 we find H(w;) = 1. Itis enough to prove the equality when w; and ws are both realizable as
representations of Wy and there is a field £ lying between E and K with &(K/E) nilpotent and a
generalized character x g such that w, is the class of

IndWg/r, Wk /B, XE)-

Then H(wz) = p(E/F). If p is a representation in the restriction of w; to Wy g then, by Lemma 2.3,
w1 ® wy is the class of

Ind(Wg/p, Wk /B, p @ XE)-
Let 6 be the class of p ® xg. H(#) is of the form

[1_, rE/E)™
where F C E; C K and is therefore 1. Thus
H(w1 & w2) = H(Q)p(E/F)dim 0 _ p(E/F)dimwl.

as required.
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Chapter Twenty-two.

Appendix.

There is clearly not much to be said about the functions e(s,w, ¥r) when F' is archimedean.
However for non-archimedean F' their properties are more obscure. In this appendix we shall describe
and prove some properties which were not needed in the proofs of the main theorems and so found no
place in the main body of the paper but which will be used elsewhere.

The first step is to define the Artin conductor of w. We follow a well-trodden path. If K is a
finite Galois extension of the local field F' then WIO(/F contains Uy as a subgroup of finite index and is
therefore compact. Itis, in fact, a maximal compact subgroup of Wy, . Choose that Haar measure dw
on W, r Which assigns the measure 1 to W}’(/F. If f isalocally constant function on Wx,r and u is a
non-negative real number set

fo={[ al [ - sy

K/F K/F

Since W};/F is an open subgroup of Wi it is meaningful to restrict dw to it. f(u) is bounded,
continuous from the left, and 0 for u sufficiently large. Since Wy . = W?(/F for 1 < u < 0 we have

f(u) = f(0) for such u. The integral
| it
-1
is well-defined.
There are some simple lemmas to be verified.

Lemma 22.1

Suppose F' C K C L and L/F is also a Galois extension. Define g on Wp/p by g(w) =

A~

feryywic/p(w)). Then g(u) = f(u) for all u.
This is immediate because by Lemma 6.16, 71/ i/ Maps WE/F onto W};/F for every w.

When we want to make the roles of K and F explicit we write f(u) = fK/F(u).
Lemma 22.2

Suppose F' C E C K and g is a function on Wy satisfying g(wzw™t) = g(z) forall z and w in
Wk E. Regard Wy i as a subgroup of Wy, and set

f(w) - ZZGWK/E\WK/F g(z_lwz)'

If Ng,p 7 is a unit times 7P/ and POE/" s the different of E/F

/1 frp(u)du = fE/F/ Jx/p(u)du+ fe/rdp/rg(l).

-1
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Let dwg,r be the normalized Haar measure on Wy, r and let dwg,r be the normalized Haar
measure on Wy g. On Wi /g

Suppose at first that g(1) = 0. Denote also by g the function on W, which equals the given g on
Wy i butis 0 outside of Wi, . Then

fK/F(U) = Wk/r : Wk/B) Gr/r(u).

since Wi, N1 Wi/p = Wi pifv=vg,r(u)

Ix/r(w) = =[Wi/p Wit/ p) /u g(w)dwg
K/F
[WI%/F : WI%/F]
=g [ s

K/F K/E 1
1 [WIO{/F : W%/F] .
_ WL o] (7%p Wi ) Jr/E(v).
Recall that
fE/F = [WIS/F : Wi){/E]'
[WK/F : WK/E]
Moreover

[WIO</F : WI%’/F] _ [WIO</F : Iqé'/F Ux| ' [Ug = Ug N WI%/F]

[W?(/E : W;)(/E] [W%/E : W[”{/E Ugl Uk :UgN W;)(/E]

and UY N Wgp= Udn Wi p- By Lemma 6.11 the first term in this product is equal to

(GO : GY]
[HO : HV]

if G = 6(K/F)and H = 6(K/E). But

[G°: G = %K/F(U)

and
[H® - H*) = ¢y (v)
while
Vi p () = Vi p (V)Y p(u).
Thus

/_1 fr/p(u)du = fp/p /_1 Ik p(Ve/r (W) ¥y p(u)du

:fE/F/ Jx/p(v)dv.
-1
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To complete the proof of the lemma, we have to show that if g(w) = 1 so that gx g (u) = 0 then

/ fK/F(U)dU = fE/F 5E/F-
-1

In this case
[G:H] [G°:GY]

fK/F(u) = [G : H] - [GO . HO] [HO . H”]

if v =1, p(u). After some simple rearranging this becomes

G : H]
[Gv : 1]

G : H]
[Gv : 1]

{I[GY:1]—-[H" : 1]} =

The factor G G- GO]
Gt mey Vel

and, from paragraph IV.2 of [ ],

oo

A?W%u—m@mwm=/<wwu—mn:%m

-1

while - -
[ =0 = [ 0= 1) b ) = b,
Thus - Q. e
/_1 fr/p(u)du = [[ﬁ: 1]] (0x/r —0Kx/E) = fE/FOE/F
because

Suppose w is an equivalence class of representations of the Weil group of F'and ¢ is a representation
of Wk, r in the class of w. Let f, be the character of . It follows from Lemma 22.1 that the value of

/_ O: fo(u)du

depends only on w and not on o. We call it the order of w and denote it by m(w). Since fa(u) is clearly
non-negative for all 4 and vanishes identically if and only if WIO(/F is contained in the kernel of o, the
order m(w) is always non-negative and equals zero if and only if the kernel of each realization o of w
contains WIO(/F.

Lemma 22.3

(@) Ifw =w; ®ws thenm(w) = m(wy) + m(ws).

(b) If
w=IndWgk/r,Wk/g,v)
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then
m(w) = fE/Fm(l/) = fE/F 5E/F dim v.
(c) m(w) is a non-negative integer.

The first property is immediate. The second is a consequence of Lemma 22.2. To verify the third
we merely have to show that m(w) is integral. If w = 1 @ v and the assertion is true for any two of x, v
and w it is true for the third. This observation, together with part (b) and Lemma 2.2, shows that it is
enough to verify (c) when w is the one-dimensional class corresponding to a generalized character yz
of Cr. To do this we show that m(w) = m(xr).

If f(a) = xr(a)forain Cr = Wg/p then f(u) = f(m)form —1 < u < mand
fm) =[Ug : UR] {1 —xr(a)}da.
Ug
The right side is 1 if m < m(xr) and 0 if m > m(xr). Thus

m(xr)—1
m(w) = / du =m(xF).

—1
The function w — m(w) is characterized by (a) and (b) together with the fact that m(w) = m(xr)
if w is the class of xp.
Lemma 22.4

If w is an equivalence class of representations of the Weil group of the non-archimedean local field
F and v is a non-trivial additive character of ' setm/(w) = m(w) +n(¢r) dimw. There isa non-zero
complex constant a(w) such that, as a function of s,

(s, w, ¥r) = a(w) |mp|™ ).

If w = pu ® v and the lemma is true for any two of u, v, and w, it is true for the third. Applying
Lemma 2.2 we see that it is enough to verify it when w contains a representation

Ind(WK/Fa Wk/E, XE)-

Then )
e(s,w,vp) = Alay >xE.¥E/r) p(E/F,)F).
Clearly
A(OCSE_%XEanE/F) = 04;;_% (WE(XE)JF(;E/FW;WF)) A(xE,VE/F)-
But

ap (WTEn(XE)JF(SE/F?T;;('wF)) —ap (NE/F (WTE’L(XE)‘HSE/F?T;;@#F)))
and the argument on the right is the product of a unit and

fesr(m(xe)+0s,F)+n(Yr) dimw m’ (w)
7TF = 7TF .
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The lemma follows.

The next lemma is rather technical and to prove it we will have to use the notations and results of
paragraphs 8 and 9.

Lemma 22.5

Let w be an equivalence class of representations of the Weil group of the non-archimedean local
field F' and m; a positive integer. There is a positive integer ms such that if g and p1, . .., u, with
r = dimw, are generalized characters of Cr and m(xr) > ma, m(p;) < mq, 1 <i <r, while

-
H‘ i = detw
i=1

then for any non-trivial additive character g
-

5(87 XF & 0o, QbF) = Hi:l 5(87 HiXF, QbF)

Choose, as a start, my > 2my + 1. If up is a generalized character of Cr and m(pr) < my while
m(xr) > ma then m(upxr) = m(xr) = m. Letn = n(r) and choose v so that Opy = PLT". If
B = B(xr) we may choose S(urxr) = (. Appealing to Lemmas 8.1 and 9.4 we see that

5(8, HEXF, ¢F) = A(QSF_§MFXF7 7/JF)

:(aSF_%uF) (%) A(xF,YF).

In particular

H:Zlg(SaMiXF7¢F):a;(S_%) <%> detw <%> {A(xr.¥p)}t"

Ifw=pu & vthen

e(8,XF @w,VYp) = (s, XFr @ 1, Yr) (s, XFr @V, VF)

and all three terms are different from zero. Thus if the lemma is true for two of u, v and w it is true for
the third. Using Lemma 2.2 once again, we see that it is enough to prove the lemma when there is an
intermediate field £ and a generalized character ug of C'r such that w is the class of

Ind(Wk/r, Wk, LE)-
Then xr ® w is the class of
IndWgk/r, Wk /E, bE XE/F)

and
(s, XFr ®@w,bp) = Alay 2upXe/r Ye/r) p(E/F ¥F).

There are two simple lemmas which we need before we can proceed further and we digress to
prove them.
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Lemma 22.6

Let E be a separable extension of F'. If m is sufficiently large

Yep/p(m—1)+1=meg/r —0p/r

if e, r is the index of ramification of F' in E.

Suppose F' C E' C K where K/ F is Galois and the assertion is true for K/ F'and K/ E. Subtracting
1 from both sides of the equation, applying ¢k, , and then adding 1, we obtain the equivalent equation

Yrp(m—1)+1=vYg/p(meg/p —0p/p — 1)+ 1.
By assumption, the left side equals
mek/rF — 5K/F

and the right side equals
(meg/r —0p/r) ex/E — OK/E-

Since ex/r = ex/pep/rand 0 = 0k /E + €x/E0E,/F these two expressions are equal and we have
only to prove the lemma for Galois extensions.

Suppose F' C K C Land L/F and K/F are Galois. Suppose also that the lemma is true for L/ K
and K/F. Then

Y p(m—1)+1=v¢rp(Yg/p(m—1))+1
=Yrr(meg/p —Ox/p—1) +1
= (meg/r —Ok/r)er/k —OL/K
=mer/rF — 5L/F
as before. Thus, if we use induction, we need only verify the lemma directly for a Galois extension

K/ F of prime degree.

We apply Lemma6.3. If K/ F is unramified, e/ = 1and dx/p = Owhile Y/ p(m—1) = m—1;
so the relation follows. If K/ F is ramified there is an integer ¢ such that éx/p = ([K : F] —1)(t + 1)
while Y /p(m —1)+1=[K : Fim — ([K : F] = 1)(t+1)form —1 > t. Since e /p = [K : F| the
relation follows again.

If n = n(¢r) then
n' =n(Yg/p) =neg/r+0g/p.

Thus if m is sufficiently large and m’ = ¢ /p(m — 1) + 1
m' +n' =(m+n)eg/p
and if Oy = P77 then Oy = P . We define

w/r(%) = Pryp(2:7,7)

as in paragraph 8.

Lemma 22.7
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If m4 is a given positive integer then for m sufficiently large

PE/F(x) =z (modPL').

As in paragraph 8, let d be the integral part of %, d' the integral part of %/ and let m =

2d+e, m' =2d +¢. PE/F(x) depends only on the residue of 2 modulo 3% and is only determined

modulo P%. Recall that if
Pg/p(y) = Ngp(1+y) —1

YE/F <E/+y> =F (Ef/f’(yd

for y in P&+’ then

To show that P, () = x (mod P%') when m is sufficiently large, we have to show that

o (2220) o (2

for y in i]:?g/_ml. To do this we show that

Pg/p(y) = Se/r(y)  (mod PF)

m’ —mq
E .

when m is sufficiently large and y is in 3

To put it another way, we have to show that if K/F is any Galois extension the assertion is true
for all intermediate fields E. For this we use induction on [K : F] together with Lemma 3.3. There are
three facts to verify:

(i) If E/F is a Galois extension of prime degree then
Pp/r(y) = Spyr(y) (modPFE)

when m is sufficiently large and y is in q:vg’—ml.

(i) Suppose FF C E C K and K/F is Galois. Let G = &(K/F) and let E be the fixed field of
H. Suppose H # {1} and G = HC where H N C = {1} and C'is a non-trivial abelian normal
subgroup of G which is contained in every other non-trivial normal subgroup. If the induction
assumption is valid

Pg/r(y) = Spyr(y) (modPR)

m’ —mq
B .

when m is sufficiently large and y is in 3
(iii) Suppose FF C E C E' C K and m"” = ¢/ p(m — 1) + 1. If, for any choice of m;,

Pg/p(y) = Sgyr(y)  (mod PE)
when m is sufficiently large and y is in ‘BYE”’_W and, for any choice of m/,

Priyp(y) = Spp(y)  (mod PR
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when m, or m/, is sufficiently large and y is in ‘BE,N_m/l then, for any choice of m/,
Pgyp(y) = Spyr(y)  (mod PR)

if m is sufficiently large and y is in B, .

We first verify (i) for £/ F unramified. By paragraph V.2 of [12]
Prir(y) = Np/r(l+y) —1=Sg/r(y) (modPF)

if y belongs to ‘13%/*5/. In this case m = m’ and we take m > 2m; sothat m’ —my > d' +&. If E/F'is
ramified and of degree ¢ we again choose m sufficiently large that m’ > 2m;y. If m >t

2m —my) + (= D(E+1) _ m + (= 1)(E+1)
¢ = ¢

so that by Chapter V of [12],
Pe/r(y) = Se/r(y) + Ne/r(y) (modPF)

if y belongs to ng’—ml. t of course has its usual meaning. Since Ny, (y) belongs to &]3?/_”“ all we
have to do is arrange that m’ — mq > m. Since

m —my=Im—(L—-1)(t+1)—my

and ¢ > 2, this can certainly be done by choosing m sufficiently large.

To verify the second fact let L be the fixed field of C'. We can assume that the required assertion is
true for the extension K/L. Let{ = ¢y ,p(m — 1) + 1and ' = Yg,p(m — 1) + 1. If m is sufficiently
large and Hj is the inertial group of H

¢=1[Hy:1lm— ([Hy:1] —1)

and
¢ =[Hy:1m' — ([Ho: 1] —1).

Thus
PLNF =PF
and if ¢ = [Hy : 1]m4 then
BB -,

If m and therefore £ is sufficiently large
Prr(y) = Ngjp(14+y) — 1= Sk/r(y) (modPY)
if y belongs to ‘I}f{_“. Thus if y belongs to qyg’—ml

Pg/p(y) = Px/(y) = Sk/(y) = Sgyr(y)  (mod PF).
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To verify the third fact we choose, once m/ is given, m; so that

—(5 ’ —m’l —m
Se'/E (ZBE/E " ) =P

If m is sufficiently large
m" E m' eE”/E' — 5E//E

and if y belongs to &]37;;/_”1,1
Spyp(y) € Py ™.

Taking in even larger if necessary, we have

Pgiyp(y) = Pe/r(Pee(y))
= Pg/r(Se/e(Y))
= Se/r(Se/E(Y))
= Spyr(y) (modPE).

Returning to the proof of Lemma 22.5, we choose

B'=B(xe/r) = Pp/p(B).

If m(xr) and therefore m(x g, r) is sufficiently large,

Alay 2pE XB/FbE/F) = o 2 <%> UE <%> A(XE /P, VE/F)-

Both /3 and /3’ are units and therefore

& (3) -t ()= (or ()57 ()
If m(x ) is sufficiently large
g=8 (modpp®)

and pg(5') = ur(B). In paragraph 5 we saw that

s (3) o0 (3) s (3)

if ./ is the representation of Wy, induced from the trivial representation of Wi, . We are reduced
to showing that

g

if m(xr) is sufficiently large. Of course r = [E : F].

det tp/r <1> {A(xr: ¥r)}" = Alxe/r Ye/r) p(E/F,{F) (22.1)
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What we do is show that for each Galois extension K /F the relation (22.1) is true for all fields
E lying between K and F'. For this we use induction on [K : F]. Let G = &(K/F) and let C be a
non-trivial abelian normal subgroup of G. Let L be the fixed field of C'. We saw in Chapter 13 that there
are fields Iy, ..., F; lying between F' and L and generalized characters py,...,us of Cg,,...,CF,
respectively such that

vg/p =~ @i Ind(Wg/p, Wi/, i)

Then
XF @ tp/p ~ i Ind(Wk/p, Wik /B, 1ti XF,/F)

and by Theorem 2.1, the Main Theorem, the right side of (22.1) is equal to

H:Zl A(ps X7y )7y ¥V 7) POF ) FobE).

We just saw that if m(x ) is sufficiently large this is equal to

{H::H” (%)} {szlA(XFi/F7¢Fi/F),O(Fi/F,QbF)}.

Since

S R F]=[E:F]

we see upon applying the induction assumption to L/ F' that this equals

{H;ui <%> det Ly, /5 <%>} N

We complete the proof of (22.1) by appealing to Chapter 5 to see that

detig/p = Hi:l pidetip, /p.



References 232

w

10.

11.

12.
13.

14.

15.
16.

References
Artin, E., Zur Theorie der L - Reihen mit allgemeinen Gruppencharakteren, Collected
Papers, Addison-Wesley

Artin, E., Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahl-
korper, Collected Papers, Addison-Wesley

Artin, E. and Tate, J., Class Field Theory, W.A Benjamin, NY
Brauer, R. and Tate, J, On the characters of finite groups, Ann. of Math. 62 (1955)

Davenport, H. and Hasse, H., Die Nullstellen der Kongruenzzetafunktion in gewissen
zyklischen Féllen, Jour. far Math. 172 (1935)

Dwork, B., On the Artin root number, Amer. Jour. Math. 78 (1956)
Hall, M., The Theory of Groups, Macmillan, N.Y. (1959)

Hasse, H., Artinsche Flihrer, Artinsche L - Funktionen und Gauss’sche Summen
Uber endlich-algebraischen Zahlkérpern, Acta Salmanticensia (1954)

Lakkis, K., Die galoisschen Gauss’schen Summen von Hasse, Dissertation,
Hamburg (1964)

Lamprecht, E., Allgemeine Theorie der Gauss’schen Summen in endlichen kommutativen
Ringen, Math. Nach. 9 (1953)

Mackenzie, E. and Whaples, G., Artin-Schreier equations in characteristic zero, Amer.
Jour. Math 78 (1956)

Serre, J.-P., Corps locaux, Hermann. (1962)

Tate, J., Fourier Analysis in Number Fields and Hecke’s Zeta-functions, Thesis,
Princeton (1950)

Weil, A., Numbers of solutions of equations in finite fields, Bull. Amer. Math.
Soc. 55 (1949)

Weil, A., Sur la théorie du corps de classes, Jour. Math. Soc. Japan, 3 (1951)
Weil, A., Basic Number Theory, Springer-Verlag, (1967)



