On unitary representations of the Virasoro algebra*

The Virasoro algebra \mathfrak{b} is an infinite-dimensional Lie algebra with basis $L_{m}, m \in \mathbf{Z}$, and Z and defining relations:
(i) $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{m\left(m^{2}-1\right)}{12} \delta_{m,-n} Z$;
(ii) $\left[L_{m}, Z\right]=0$.

Some representations π of \mathfrak{b} of particular interest [2] are the Verma modules $(V, \pi)=$ ($V^{h, c}, \pi^{h, c}$), $h, c \in \mathbf{R}$. They are characterized by the following conditions.
(i) There is a vector $v=v_{\phi} \neq 0$ in V such that $L_{n} v=0, n>0, L_{0} v=h v, Z v=c v$.
(ii) Let A be the set of sequences of integers $k_{1}, \geq k_{2} \geq \ldots \geq k_{r}>0$ of arbitrary length, and if $\alpha \in A$ let $v_{\alpha}=\pi\left(L_{-k_{1}}\right) \ldots \pi\left(L_{-k_{r}}\right) v_{\phi}$. Then $\left\{v_{\alpha} \mid \alpha \in A\right\}$ is a basis of V.

Observe that V is just the free vector space with basis $\left\{v_{\alpha}\right\}$ and is thus independent of h and c. It is easy to see [1] that there is a unique sesquilinear form $\langle u, v\rangle=\langle u, v\rangle^{h, c}$ on V with the properties:
(i) $\left\langle v_{\phi}, v_{\phi}\right\rangle=1$;
(ii) $\langle u, v\rangle=\overline{\langle v, u\rangle}$;
(iii) $\left\langle\pi\left(L_{m}\right) u, v\right\rangle=\left\langle u, \pi\left(L_{-m}\right) v\right\rangle, m \in \mathbf{Z}$.

If this form is non-negative then the representation ρ of \mathfrak{b} on the quotient of V by the space of null vectors is unitary, in the sense that

$$
\rho\left(L_{m}\right)^{*}=\rho\left(L_{-m}\right) .
$$

Theorem FQS. The form $\langle\cdot, \cdot\rangle_{h, c}$ is non-negative only if either $c \geq 1, h \geq 0$ or there exists an integer $m \geq 2$ and two integers $p, q, 1 \leq p<m, 1 \leq q \leq p$, such that

$$
c=1-\frac{6}{m(m+1)}, \quad h=\frac{((m+1) p-m q)^{2}-1}{4 m(m+1)} .
$$

This theorem has been proven by Friedan-Qiu-Shenker [1]. The sketch of the proof that they provided was unconscionably brief, and has evoked some scepticism among mathematicians. In this

[^0]note, which grew out of a series of lectures at the Centre de recherches mathématiques that overlapped the workshop, details are worked out. In the meantime, Friedan, Qiu and Shenker have themselves provided them [3], but the present account, which turns out to diverge from theirs in some respects, may still be a useful supplement to it. Several other authors have proven that the conditions of the theorem are not only necessary but also sufficient for non-negativity, but that is not the concern here.

The proof proceeds by lemmas. I write $L v$ rather than $\pi(L) v, L \in \mathfrak{v}, v \in V$.
Lemma 1. If $\langle\cdot, \cdot\rangle$ is non- negative then $h \geq 0, c \geq 0$.
Proof. Since $L_{n} L_{-n} v_{\phi}=L_{-n} L_{n} v_{\phi}+2 n h v_{\phi}+\frac{n\left(n^{2}-1\right)}{12} c v_{\phi}$, wehave $\left\langle L_{-n} v_{\phi}, L_{-n} v_{\phi}\right\rangle=2 n h+\frac{n\left(n^{2}-1\right)}{12} c$.
Taking n first equal to 1 and then very large we obtain the lemma.

For arbitrary m we set $c=c(m)=1-\frac{6}{m(m+1)}, h_{p, q}=h_{p, q}(m)=\frac{((m+1) p-m q)^{2}-1}{4 m(m+1)}, p, q \in \mathbf{N}$. Observe that $c(-1-m)=c(m)$ and that $h_{p, q}(-1-m)=h_{q, p}(m)$.

Lemma 2.

(a) For $1<c<25, m$ is not real and neither is $h_{p, q}(m)$ unless $p=q$.
(b) As m runs from 2 to ∞, c increases monotonically from 0 to 1 .
(c) For $c>1,-1<m<0$.
(d) If $-1<m<0$ then $h_{p, q}(m)<0$ unless $p=q=1$ when $h_{p, q}(m)=0$.
(e) If $p=q$ then $h_{p, q}(m)=\frac{p^{2}-1}{24}(1-c)$.
(f) If $p \neq q$ then $h_{p, q}+h_{q, p}=\frac{p^{2}+q^{2}-2}{24}(1-c)+\frac{(p-q)^{2}}{2}$.

In addition $h_{p, q} h_{q, p}$ is equal to
$\frac{\left(p^{2} q^{2}-p^{2}-q^{2}+1\right)}{16 \cdot 36}(1-c)^{2}+\frac{\left.2 p^{2} q^{2}-p q\left(p^{2}+q^{2}\right)-(p-q)^{2}\right)}{48}(1-c)+\frac{\left(p^{4}+q^{4}-4 p^{3} q-4 p q^{3}+6 p^{2} q^{2}\right)}{16}$.

The first four parts of the lemma are clear, and the last two are straightforward calculations.

There is a second sesquilinear form on V defined by $\left\{v_{\alpha}, v_{\beta}\right\}=\delta_{\alpha \beta}$. If V_{n} is the subspace of V with basis $\left\{v_{\alpha}\left|\alpha=\left(k_{1}, \ldots, k_{r}\right)\right| \sum_{i=1}^{r} k_{i}=n\right\}$, then $V=\bigoplus_{n \geq 0} V_{n}$ and the spaces V_{n} are mutually orthogonal with respect to both forms. The first form is defined on V_{n} with respect to the second by a
hermitian linear transformation $H_{n}=H_{n}(h, c):\langle u, v\rangle_{n}=\left\{H_{n} u, v\right\}_{n}$. Let $P(n)$ be the dimension of V_{n}. It is the number of partitions of n. The Kac determinant formula (cf. [1]) is the key to the proof of Theorem FQS.

Kac determinant formula. If $c=c(m)$ then

$$
\operatorname{det} H_{n}(h, c)=A_{n} \Pi_{k \leq n} \Pi_{p q=k}\left(h-h_{p, q}\right)^{P(n-k)},
$$

where A_{n} is a positive constant.

Lemma 3. The form $\langle\cdot, \cdot\rangle_{n}$ is non-negative for $h \geq 0, c \geq 1$.

Proof. By continuity it suffices to treat pairs for which $h>0, c>1$. Since the previous lemma implies that $\operatorname{det} H_{n}(h, c)$ is nowhere zero in this region, it suffices to prove that the form is positive for one pair (h, c). If $\alpha=\left(k_{1}, \ldots, k_{r}\right), r=r(\alpha), n(\alpha)=k_{1}+\ldots+k_{r}$, set $v_{\alpha}^{\prime}=L_{-k_{r}} \ldots L_{-k_{1}} v_{\phi}$. It is generally different than v_{α}. It clearly suffices to show that for a given c and h large,

$$
\begin{gather*}
\left\langle v_{\alpha}^{\prime}, v_{\alpha}^{\prime}\right\rangle=c_{\alpha} h^{r(\alpha)}(1+o(1)), c_{\alpha}>0 \tag{3.1}\\
\left\langle v_{\alpha}^{\prime}, v_{\beta}^{\prime}\right\rangle=o\left(h^{(r(\alpha)+r(\beta)) / 2}\right), \alpha \neq \beta . \tag{3.2}
\end{gather*}
$$

This is proved by induction on $n(\alpha)+n(\beta)$. First of all $L_{k}^{a} L_{-k}^{a}$ is equal to

$$
L_{k}^{a-1}\left(b L_{0}+d\right) L_{-k}^{a-1}+L_{k}^{a-1} L_{-k} L_{k} L_{-k}^{a-1}, b>0 .
$$

Moving the single L_{k} in the second term ever further to the right, we obtain finally $L_{k}^{a} L_{-k}^{a}=L_{k}^{a-1}\left(b L_{0}+\right.$ d) $L_{-k}^{a-1}+L_{k}^{a-1} L_{-k}^{a} L_{k}, b>0$. Take $k_{1} \geq k_{2} \geq \ldots \geq k_{r}>k$. If $\alpha=\left(k_{1}, \ldots, k_{r}, k, \ldots, k\right)$, then

$$
\begin{aligned}
\left\langle v_{\alpha}^{\prime}, v_{\alpha}^{\prime}\right\rangle & =\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a} L_{-k}^{a} L_{-k_{r}} \ldots L_{-k_{1}} v_{\phi}, v_{\phi}\right\rangle \\
& =c_{k, a} h(1+o(h))\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a-1} L_{-k}^{a-1} L_{-k_{r}} \ldots L_{-k_{1}} v_{\phi}, v_{\phi}\right\rangle \\
& +\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a-1} L_{-k}^{a} L_{k} L_{-k_{r}} \ldots L_{-k_{1}} v_{\phi}, v_{\phi}\right\rangle
\end{aligned}
$$

with $c_{k, a}>0$. In the second term we move the L_{k} further and further to the right obtaining the sum of

$$
\left(k+k_{r}\right)\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a-1} L_{-k}^{a} L_{-k_{r}} \ldots L_{-k_{j+1}} L_{-\left(k_{j-k}\right)} L_{-k_{j-1}} \ldots L_{-k_{1}} v_{\phi}, v_{\phi}\right\rangle .
$$

The induction assumption together with the defining relations for \mathfrak{v} implies readily that each of these terms is $o\left(h^{r(\alpha)}\right)$ and that

$$
\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a-1} L_{-k}^{a-1} L_{-k_{r}} \ldots L_{-k_{1}} v_{\phi}, v_{\phi}\right\rangle=\left\langle v_{\gamma}^{\prime}, v_{\gamma}^{\prime}\right\rangle=c_{\gamma} h^{r(\gamma)}(1+o(1))
$$

if $\gamma=\left(k_{1}, \ldots, k_{r}, k, \ldots, k\right)$, with k repeated $a-1$ times, so that $r(\alpha)=1+r(\gamma)$.
On the other hand, if $\beta=\left(e l l_{1}, \ldots, e l l_{s}, k, \ldots, k\right)$, with k repeated $a^{\prime} \leq a$ times, $a>0, a^{\prime} \geq$ 0, ell $_{s} \geq k$ even if $a^{\prime}=0$, then

$$
\left\langle v_{\beta}^{\prime}, v_{\alpha}^{\prime}\right\rangle=\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a} L_{-k}^{a_{k}^{\prime}} L_{-e l l_{s}} \ldots L_{-e l l_{1}} v_{\phi}, v_{\phi}\right\rangle
$$

is equal to the sum of

$$
c_{k, a^{\prime}} h(1+o(1))\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a-1} L_{k}^{a^{\prime}-1} L_{-e l l_{s}} \ldots L_{-e l l_{1}} v_{\phi}, v_{\phi}\right\rangle
$$

and

$$
\Sigma_{j}(k+\underset{j}{e l l})\left\langle L_{k_{1}} \ldots L_{k_{r}} L_{k}^{a-1} L_{-k}^{a^{\prime}} L_{-e l l_{s}} \ldots L_{- \text {ell }_{j+1}} L_{-\left(e l l_{j}-k\right)} L_{-e l l_{j-1}} \ldots L_{-e l l_{1}} v_{\phi}, v_{\phi}\right\rangle .
$$

We take $c_{k, 0}=0$ if $a^{\prime}=0$. So induction yields (3.2).

Observe that if $m>0$ and $p>q$ then $h_{p, q}>h_{q, p}$. If $h \geq 0$ and $m>0$ define $M>0$ by $M^{2}=1+4 m(m+1) h$. Then $M \geq 1$. Let D be the closed shaded region in the diagram I. It is bounded by the lines

$$
m x-(m+1) y= \pm M \text { and }(m+1) x-m y=M .
$$

Diagram I

Lemma 4.

(a) $h_{p, q} \geq h \geq h_{q, p}$ if and only if $(p, q) \epsilon D$.
(b) D contains an integral point (p, q) with $q>0$.

Proof. Since $h_{p, q} \geq h$ if and only if $((m+1) p-m q)^{2} \geq M^{2}$ and $h \geq h_{q, p}$ if and only if $((m+1) q-m p)^{2} \leq M^{2}$, the first statement of the lemma is clear. For the second choose a large integer p and let $a=\frac{m p-M}{m+1}$. Then the points (p, q) with $a \leq q \leq a+\frac{2 M}{m+1}$ lie in D. So do the points $(p+1, q), a+\frac{m}{m+1} \leq q \leq a+\frac{m+2 M}{m+1}$ and so on. So we need only show that one of the intervals $\left[a+\frac{k m}{m+1}, a+\frac{k m+2 M}{m+1}\right], k \in \mathbf{Z}, k \geq 0$, contains an integer. This is clear if $\frac{m}{m+1}$ is irrational. Otherwise, increasing q if necessary, we may suppose that a is as close to its integral part as any $a+\frac{k m}{m+1}$. Then $a+\frac{m}{m+1}<[a]+1$, but $a+\frac{m+2 M}{m+1} \geq a+\frac{m+2}{m+1}>[a]+1$, and the interval $\left[a+\frac{m}{m+1}, a+\frac{m+2 M}{m+1}\right]$ contains $[a]+1$.

Let $p(h, c)=\min _{(p, q) \in D} p$ and let $q(h, c)=\min _{(p, q) \epsilon D} q$. It is clear that

$$
P(h, c)=(p(h, c), q(h, c)) \epsilon D .
$$

In the following geometrical arguments, it is sometimes necessary to recall that $h-h_{p_{0}, p_{0}}<0$ if and only if $p_{0}>M$.

Lemma 5. If $P(h, c)$ lies in the interior of D then $\langle v, v\rangle$ assumes negative values in V.
Proof. Let $(p, q)=P(h, c)$ and let $n=p q$. If $p_{0} q_{0} \leq n, p_{0} \geq q_{0}$ and $\left(p_{0}, q_{0}\right) \neq(p, q)$ then either $p_{0}<p$ or $q_{0}<q$ so that $\left(p_{0}, q_{0}\right) \notin D$. In general set

$$
\begin{aligned}
\phi_{p_{0}, q_{0}} & =\left(h-h_{p_{0}, q_{0}}\right), \quad p_{0} \neq q_{0}, \\
& =h-h_{p_{0}, q_{0}}, \quad p_{0} \neq q_{0} .
\end{aligned}
$$

If $\left(p_{0}, q_{0}\right) \notin D$ and $p_{0} \neq q_{0}$ then $\phi_{p_{0}, q_{0}}>0$.
Suppose that for some p_{0} with $p_{0}^{2} \leq p q$ we had $h-h_{p_{0}, p_{0}}<0$. Then there would be a minimum such p_{0} and if $n_{0}=p_{0}^{2}$ then

$$
\operatorname{det} H_{n_{0}}=A_{n_{0}} \prod_{\substack{p_{1} \geq q_{1} \\ n_{1}=p_{1} q_{1} \leq n_{0}}} \phi_{p_{1}, q_{1}}^{P\left(n_{0}-n_{1}\right)}
$$

Since $P(h, c)$ lies in the interior of $D, p \neq q$ and none of the pairs (p_{1}, q_{1}) that intervene here lie in D. Moreover, all terms of the products are positive save $\phi_{p_{0}, p_{0}}^{P(0)}=\phi_{p_{0}, p_{0}}$. Since this is negative, $\langle\cdot, \cdot\rangle$ assumes negative values on $V_{n_{0}}$.

If, however, $\phi_{p_{0}, p_{0}}>0$ for all $p_{0} \leq q$ then the same argument shows that $\operatorname{det} H_{n}<0$, so that $\langle\cdot, \cdot\rangle$ assumes negative values on V_{n}.

The treatment of those points (h, c) for which $P(h, c)$ lies on the boundary of D is more delicate. There are at first three possibilities for $(p, q)=P(h, c)$:
(A) $m p-(m+1) q=M$;
(B) $(m+1) p-m q=M$;
(C) $m p-(m+1) q=-M, p \neq q$;

Lemma 6. The case (C) above does not occur.
Proof. It is clear from the diagram defining D that in case (C), $p \geq M, q \geq M$. If $q=1$ then $M=1$ and $p=1$, so that we have rather case (B). If $q>1$ then $p>1$ and $(m+1)(q-$ 1) $-m(p-1)=(m+1) q-m p-1$, so that $M>(m+1)(q-1)-m(p-1)>-M$. Moreover, $(m+1)(p-1)-m(q-1)-M=(m+1)(p-1-q)-m(q-1-p)=(2 M+1)(p-q)-1$. Since $m \geq 2$ this is positive if $p \neq q$. Consequently $(p-1, q-1) \epsilon D$, and this is a contradiction.

Fix (p, q). In case (A) we have $h=h_{q, p}(m), c=c(m)$. In case (B) we have $h=h_{p, q}(m), c=c(m)$.

Lemma 7.

(a) The set of all $m \geq 2$ for which $h=h_{q, p}(m), c=c(m)$ yields case (A) is the interval $m>$ $q+p-1$.
(b) The set of all $m \geq 2$ for which $h=h_{p, q}(m), c=c(m)$ yields case (B) is the interval $m>q+p-1$ if $(p, q) \neq(1,1)$ and is the interval $m \geq 2$ if $(p, q)=(1,1)$.

It will be helpful, when proving this and the following lemmas, to keep the diagrams IIA and IIB in mind.

Diagram IIA

Proof. We first show that if $h_{q, p}\left(m_{0}\right), c\left(m_{0}\right)$ yield case (A) then so does $\left(h_{q, p}(m), c(m)\right)$ for $m \geq m_{0}$. It is clear from the diagram that it is sufficient to verify that $M, \frac{M}{m+1}$, and $\frac{M}{m}$ are increasing functions of m. But $M=m(p-q)-q, \frac{M}{m}=(p-q)-\frac{q}{m}, \frac{M}{m+1}=(p-q)-\frac{p}{m+1}$. It is also clear that

Diagram IIB

we can decrease m without passing out of case (A) so long as $M=m(p-q)-q$ remains greater than or equal to 1 and $(m+1)(p-1)-m q>m p-(m+1) q$. But

$$
(m+1)(p-1)-m q=m p-(m+1) q \Leftrightarrow m=p+q-1 .
$$

As we decrease to these points, M decreases to

$$
(p+q-1)(p-q)-q=p^{2}-q^{2}-p=(p-1)^{2}-q^{2}+p-1 .
$$

This number is greater than 1 because $p>q \geq 1$.
For case (B), $M=m(p-q)+p$ is a non-decreasing function of m, and $\frac{M}{m}=(p-q)+\frac{p}{m}, \frac{M}{m+1}=$ $(p-q)+\frac{q}{m+1}$ are decreasing functions. Since the slope of $m p-(m+1) q=M$ is $1-\frac{1}{m+1}$, it is increasing and the conclusion is the same. The minimal value of m is given by

$$
(m+1) p-m q=m p-(m+1)(q-1) \Leftrightarrow m=p+q-1 .
$$

because

$$
(p+q-1)(p-q)+p=p^{2}-q^{2}+q \geq 1,
$$

unless $p=q=1$ when m cannot go below 2 .

In case (A) the intersection of the two lines $(m+1) x-m y=M$ and $x-y=p-q-1$ is a point $(x(m), y(m))$ with $p^{\prime} \geq x(m)>p^{\prime}-1$ where p^{\prime} is an integer, $p^{\prime} \geq p$. If $x(m)=p^{\prime}$ then $y(m)=q^{\prime}=p^{\prime}-p+q+1$, and $m=p^{\prime}+q$. Thus $m \in\{2,3, \ldots\}, p^{\prime}<m, q^{\prime} \leq p^{\prime}$ and $c=c(m)$, $h=h_{p^{\prime}, q^{\prime}}(m)$.

In case (B) the intersection of the lines $x-y=p-q+1$ and $m x-(m+1) y=M$ is a point $(x(m), y(m))$ with $p^{\prime} \geq x(m)>p^{\prime}-1, p^{\prime}-1 \geq p$. If $x(m)=p^{\prime}$ then $m=p+q^{\prime}$ lies in $\{2,3, \ldots\}, q \leq p, p<m$ and $c=c(m), h=h_{p, q}(m)$.

Thus to prove the theorem it suffices to establish the following proposition.

Proposition. If case (A) or (B) obtains and $p^{\prime}>x(m)>p^{\prime}-1$ then the form $\langle\cdot, \cdot\rangle$ assumes negative values in V.

We assume the contrary and derive a contradiction. We occasionally abbreviate $c(m)$ to c and $h_{q, p}(m)$ or $h_{p, q}(m)$ to $h(m)$ or to h.

Lemma 8.

(a) Suppose $p^{\prime}>x(m)>p^{\prime}-1$. If $\left(p_{1}, q_{1}\right)$ lies on the boundary of $D(h, c)$ and $p_{1} q_{1} \leq p^{\prime} q^{\prime}$ then $\left(p_{1}, q_{1}\right)=(p, q)$.
(b) Define m^{\prime} by $p^{\prime}=x\left(m^{\prime}\right)$ and set $c^{\prime}=c\left(m^{\prime}\right), h^{\prime}=h_{q, p}\left(m^{\prime}\right)$ or $h_{p, q}\left(m^{\prime}\right)$. If $\left(p_{1}, q_{1}\right)$ lies on the boundary of $D\left(h^{\prime}, c^{\prime}\right)$ and $p_{1} q_{1} \leq p^{\prime} q^{\prime}$ then $\left(p_{1}, q_{1}\right)$ is (p, q) or $\left(p^{\prime}, q^{\prime}\right)$.

Proof. Set $(x, y)=(x(m), y(m))$ and define z, z^{\prime} as indicated by the diagrams. It clearly suffices to show that in case (A) $y-z<2, z^{\prime}-x<2$, and that in case (B), $x-z<2, z^{\prime}-y<2$. In case (A) elementary algebra yields $m=x+q, y-z=\frac{x+z}{m}=1+\frac{z-q}{x+q}$ and $\frac{z-q}{x+q}=\frac{x-p}{x+q} \cdot \frac{z-q}{x-p}<1$. On the other hand $z^{\prime}-x=\frac{x+y}{m}=1+\frac{y-q}{p+y-1}<2$. A similar argument works for case (B).

Since p, q and p^{\prime} are fixed it will be useful to let C denote the curve $c=c(m), h=h_{q, p}(m)(A)$ or $h=h_{p, q}(m)(B), m>p^{\prime}-1$.

Lemma 9.

(a) If $x(m)>p^{\prime}-1, x(m) \neq p^{\prime}$, and $n_{1} \leq n^{\prime}$, then the dimension of the space of null vectors in $V_{n_{1}}$ is $P\left(n_{1}-n\right)$.
(b) If $x(m)=p^{\prime}$ and $n_{1}<n^{\prime}$ then the dimension of the space of null vectors in $V_{n_{1}}$ is $P\left(n_{1}-n\right)$, but if $n_{1}=n^{\prime}$ it is $P\left(n_{1}-n\right)+1$.

Proof. Observe that $P\left(n_{1}-n\right)=0$ if $n_{1}<n$ and that when this is so the lemma is clear. So take $n_{1} \geq n$ and denote the pertinent dimension by $d_{n_{1}}^{0}$. We begin by showing that $d_{n_{1}}^{0}>0$ and that $d_{n_{1}}^{0} \leq P\left(n_{1}-n\right)$ unless $x(m)=p^{\prime}$ and $n_{1}=n^{\prime}$ when $d_{n_{1}}^{0} \leq P\left(n_{1}-n\right)+1$.

For $0 \leq c<1, m$ is locally an analytic function of c and we may write $h_{p, q}(m)=h_{p, q}(c)=h(c)$ or $h_{q, p}(m)=h_{q, p}(c)=h(c)$. Fix c and consider $H_{n_{1}}(h, c)$ as a function of h near $h(c)$. Its eigenvalues are the roots of a polynomial equation with real analytic, indeed polynomial, coefficients and they are all real for h real. It is easily seen that this implies that there is no ramification at $h=h(c)$ and that in a neighborhood of this point there are expansions

$$
\alpha_{i}(h)=\alpha_{i 0}+\alpha_{i 1}(h-h(c))+\alpha_{i 2}(h-h(c))^{2}+\ldots, 1 \leq i \leq P\left(n_{1}\right)
$$

for the eigenvalues of $H_{n_{1}}$. Thus

$$
\operatorname{det} H_{n_{1}}(h, c)=\Pi_{i=1}^{P\left(n_{1}\right)}\left(\alpha_{i 0}+\alpha_{i 1}(h-h(c))+\ldots\right),
$$

and the power of $h-h(c)$ that divides it is greater than or equal to the number of zero eigenvalues of $H_{n_{1}}(h(c), c)$. On the other hand, the left side is equal to

$$
A_{n} \Pi_{k \leq n_{1}} \Pi_{p_{1} q_{1}=k}\left(h-h_{p_{1}, q_{1}}(c)\right)^{P\left(n_{1}-k\right)},
$$

and $h_{p_{1}, q_{1}}(c)=h(c)$ only if $\left(p_{1}, q_{1}\right)$ or $\left(q_{1}, p_{1}\right)$ lies in boundary of D. Thus the assertion follows from Lemma 8.

Choosing $n_{1}=n$, we see in particular that the dimension of the null space of V_{n} is 1 . Thus if $m>p^{\prime}-1$ then in a neighborhood of $(h(m), c(m))$ we can find an analytic function $v(h, c)$ with values in V_{n} such that $v(h, c)$ has length 1 , is an eigenvector of $H_{n}(h, c)$, and corresponds to the eigenvalue 0 when (h, c) falls on the curve C.

Since

$$
\begin{gathered}
L_{0} v(h(m), c(m))=(h(m)+n) v(h(m), c(m)), \\
L_{k} v(h(m), c(m))=0, \quad k>0,
\end{gathered}
$$

there is a homomorphism of \mathfrak{v}-modules, $\phi: V^{h(m)+n, c(m)} \rightarrow V^{h(m), c(m)}$, taking $v_{\phi}^{h(m)+n, c(m)}$ to $v(h(m), c(m))$. If it is injective on $V_{n_{1}-n}^{h(m)+n, c(m)}$ then $d_{n_{1}}^{0} \geq P\left(n_{1}-n\right)$ because the image consists of null vectors. Since $d_{n_{1}}^{0}$ is lower semicontinuous, $d_{n_{1}}^{0}$ will be greater than or equal to $P\left(n_{1}-n\right)$ everywhere on C if it is so on a dense set. The homomorphism ϕ will be injective if $\operatorname{det} H_{n_{1}-n}^{h(m)+n, c(m)} \neq 0$ because the kernel consists of null vectors. So it is enough to show that this determinant does not vanish identically on C. However, if $h(m)+n=h_{p_{1}, q_{1}}(m)$ then

$$
((m+1) p+m q)^{2}=\left((m+1) p_{1}-m q_{1}\right)^{2}
$$

or

$$
(m p+(m+1) q)^{2}=\left((m+1) p_{1}-m q_{1}\right)^{2}
$$

This can occur for at most two values of m.
It remains to show that at m^{\prime} the dimension of the space of null vectors in $V_{n^{\prime}}$ is $P\left(n^{\prime}-n\right)+1$. For this we need further lemmas.

Lemma 10. $\operatorname{det} H_{n^{\prime}-n}^{h\left(m^{\prime}\right)+n, c\left(m^{\prime}\right)} \neq 0$.

Proof. It has to be shown that equality $h\left(m^{\prime}\right)+n=h_{p_{1}, q_{1}}\left(m^{\prime}\right), p_{1} q_{1} \leq n^{\prime}-n$ is impossible. This equality amounts to

$$
\begin{equation*}
\left(m^{\prime} p+\left(m^{\prime}+1\right) q\right)^{2}=\left(\left(m^{\prime}+1\right) p_{1}-m^{\prime} q_{1}\right)^{2} \tag{A}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\left(m^{\prime}+1\right) p+m^{\prime} q\right)^{2}=\left(\left(m^{\prime}+1\right) p_{1}-m^{\prime} q_{1}\right)^{2} \tag{B}
\end{equation*}
$$

It is not supposed that $p_{1} \geq q_{1}$.

The first equation implies that $m^{\prime} p+\left(m^{\prime}+1\right) q= \pm\left(\left(m^{\prime}+1\right) p_{1}-m^{\prime} q_{1}\right)$ or $m^{\prime}\left(p \pm q_{1}\right)=$ $\left(m^{\prime}+1\right)\left(\pm p_{1}-q\right)$. Since m^{\prime} is an integer this implies $\left(p \pm q_{1}\right)=a\left(m^{\prime}+1\right),\left(\pm p_{1}-q\right)=a m^{\prime}$. Since $n^{\prime}=p^{\prime} q^{\prime}=\left(m^{\prime}-q\right)\left(m^{\prime}-p+1\right)$ the inequality $n^{\prime} \geq n+p_{1} q_{1}$ becomes

$$
\left(m^{\prime}-q\right)\left(m^{\prime}-p+1\right) \geq a\left(m^{\prime}+1\right) q-a m^{\prime} p+a^{2} m^{\prime}\left(m^{\prime}+1\right)
$$

or

$$
\left((1+a)\left(m^{\prime}+1\right)-p\right)\left((1-a) m^{\prime}-q\right) \geq 0 .
$$

Since $m^{\prime}=p^{\prime}+q=p+q^{\prime}-1, m^{\prime}>q, m^{\prime}+1>p$. So the inequality is possible only for $a=0$, but a cannot be 0 . The case (B) is treated in a similar fashion.

For $n_{1}<n^{\prime}$ or $m \neq m^{\prime}$ we let $U_{n_{1}}=U_{n_{1}}(m)$ be the space of null vectors in $V_{n_{1}}$. For h, c close to $h\left(m^{\prime}\right), c\left(m^{\prime}\right)$ we let $U_{n_{1}}(h, c)$ be the span of

$$
\left\{L_{-k_{1}} \ldots L_{-k_{r}} v(h, c) \mid k_{1} \geq \ldots \geq k_{r}>0, \Sigma k_{i}=n^{\prime}-n\right\} .
$$

We set $U_{n^{\prime}}(m)=U_{n^{\prime}}(h(m), c(m))$, the two definitions of $U_{n^{\prime}}(m)$ coinciding when they both apply. Thus for $m>p^{\prime}-1, U_{n_{1}}(m)$ is defined and analytic as a function of m. Let $W_{n_{1}}$ be its orthogonal complement with respect to the form $\{\cdot, \cdot\}$. It follows from that part of Lemma 9 already proved that the restriction $J_{n_{1}}=J_{n_{1}}(m)$ of $H_{n_{1}}$ to $W_{n_{1}}$ is non-singular unless $n_{1}=n^{\prime}, m=m^{\prime}$. In particular, our assumption, which was made for a particular m, implies that $J_{n_{1}}(m)$ is positive for all $m>p^{\prime}-1$ if $n_{1}<n^{\prime}$.

Lemma 11. Near m^{\prime}, det $J_{n^{\prime}}(m)=\delta(m)\left(m-m^{\prime}\right)$ where $\frac{1}{\delta} \geq|\delta(m)| \geq \delta>0$.

It will follow from this lemma that the remaining assertion of Lemma 9 is true. In addition the lemma together with our assumption on the non-negativity of $\langle\cdot, \cdot\rangle$ for a particular $m, p^{\prime}>x(m)>$ $p^{\prime}-1$, will imply that the form takes negative values for $m>m^{\prime}$ because det $J_{n^{\prime}}(m)$ changes sign at m^{\prime}.

Let $v(h, c)$, defined in a neighborhood of $\left(h\left(m^{\prime}\right), c\left(m^{\prime}\right)\right)$, correspond to the eigenvalue $\alpha(h, c)$ of $H_{n}(h, c)$. All the other eigenvalues of $H_{n}(h, c)$ are bounded above and, if the neighborhood is sufficiently small, away from 0 . On the other hand, all factors $h-h_{p_{1}, q_{1}}(c)=h-h_{p_{1}, q_{1}}(m), c=c(m)$, of $\operatorname{det} H_{n}(h, c)$ are bounded away from 0 in a neighborhood of $h\left(m^{\prime}\right), c\left(m^{\prime}\right)$ except for $h-h(c)$, where
$h(c)$ is $h_{q, p}(c)$ or $h_{p, q}(c)$ according as we are dealing with case A or case B . Thus we have the following lemma.

Lemma 12. In a neighborhood of $\left(h\left(m^{\prime}\right), c\left(m^{\prime}\right)\right)$ we have $\alpha(h, c)=a(h, c)(h-h(c))$ with $\frac{1}{a} \geq$ $|a(h, c)| \geq a>0, a$ being a constant .

Here $h(c)$ is $h_{q, p}(m)(A)$ or $h_{p, q}(m)(B), c=c(m)$. More generally we have

Lemma 13. Let $K_{n^{\prime}}(h, c)$ be the restriction of $H_{n^{\prime}}(h, c)$ to $U_{n^{\prime}}(h, c)$. Then, in a neighborhood of $\left(h\left(m^{\prime}\right), c\left(m^{\prime}\right)\right), \operatorname{det} K_{n^{\prime}}(h, c)=k(h, c) \alpha(h, c)^{P\left(n^{\prime}-n\right)}$, with $\frac{1}{k} \geq|k(h, c)| \geq k>0$.

Proof. The deteriminant of $K_{n^{\prime}}(h, c)$ is that of the form $\langle\cdot, \cdot\rangle_{n^{\prime}}$, calculated with respect to a basis of $U_{n^{\prime}}(h, c)$ orthogonal with respect to the form $\{\cdot, \cdot\}_{n}$. However the basis $\left\{\phi\left(v_{\alpha}\right) \mid v_{\alpha} \in V^{h(m)+n, c(m)}, n(\alpha)=n^{\prime}-n\right\}$ is related to such a basis by a matrix whose determinant is bounded in absolute value above and below. So it is enough to consider $\operatorname{det}\left(\left\{\phi\left(v_{\alpha}\right), \phi\left(v_{\beta}\right)\right\}\right)$.

We have

$$
\begin{aligned}
\left\langle\phi\left(v_{\alpha}\right), \phi\left(v_{\beta}\right)\right\rangle & =\left\langle L_{e l l_{s}} \ldots L_{e l l_{1}} L_{-k_{1}} \ldots L_{-k_{r}} v(h, c), v(h, c)\right\rangle \\
& =\left\{L_{e l l_{s}} \ldots L_{e l l_{1}} L_{-k_{1}} \ldots L_{-k_{r}} v(h, c), H_{n^{\prime}}(h, c) v(h, c)\right\} \\
& =\alpha(h, c)\left\{L_{e l l_{s}} \ldots L_{e l l_{1}} L_{-k_{1}} \ldots L_{-k_{r}} v(h, c), v(h, c)\right\} .
\end{aligned}
$$

At $h(m), c(m)$ the value of $\operatorname{det}\left(\left\{L_{\text {ell }}^{s} \ldots L_{\text {ell }}^{1} L_{-k_{1}} \ldots L_{-k_{r}} v(h, c), v(h, c)\right\}\right)$ is

$$
\operatorname{det}\left(\left\langle v_{\alpha}, v_{\beta}\right\rangle_{n^{\prime}-n}^{h\left(m^{\prime}\right)+n, c\left(m^{\prime}\right)}\right)
$$

By Lemma 10 this is not 0. Lemma 13 follows.

In a neighborhood of $h(m), c(m)$ we decompose $V_{n^{\prime}}$ as an orthogonal sum $U_{n^{\prime}} \oplus W_{n^{\prime}}$. The linear transformation $H_{n^{\prime}}(h, c)$, or its matrix with respect to a compatible basis, then decomposes into blocks. I claim that the entries in the off-diagonal blocks are $O\left(h-h_{p, q}(c)\right)$ in a neighborhood of $h(m), c(m)$. To verify this it is sufficient, for the pertinent basis can be supposed to depend analytically on h, c, to verify that they are zero when $h=h_{p, q}(c)$, but that is clear by the definition of $U_{n^{\prime}}$.

It follows that

$$
\begin{equation*}
\operatorname{det} H_{n^{\prime}}(h, c)=\operatorname{det} J_{n^{\prime}}(h, c) \operatorname{det} K_{n^{\prime}}(h, c)+O\left(\left(h-h_{p, q}(c)\right)^{P\left(n^{\prime}-n\right)+1}\right) \tag{1}
\end{equation*}
$$

if $J_{n^{\prime}}(h, c)$ is the matrix in the diagonal block corresponding to $W_{n^{\prime}}$. Since

$$
\operatorname{det} H_{n^{\prime}}(h, c)=A_{n^{\prime}} \Pi_{k \leq n^{\prime}} \Pi_{p_{1} q_{1}=k}\left(h-h_{p_{1} q_{1}}(c)\right)^{P\left(n^{\prime}-p_{1} q_{1}\right)}
$$

we may divide the relation (1) by $\left(h-h_{p_{1} q_{1}}(c)\right)^{P\left(n^{\prime}-n\right)}$ and then set $h=h_{p, q}(c), c=c(m)$. The result clearly yields Lemma 11 because $h\left(m^{\prime}\right)=h_{p_{1}, q_{1}}\left(m^{\prime}\right), p_{1}, q_{1} \leq n^{\prime}$, only if $\left(p_{1}, q_{1}\right)$ is (q, p) or $\left(p^{\prime}, q^{\prime}\right)$ (case A) or (p, q) or $\left(q^{\prime}, p^{\prime}\right)$ (case B).

Our assumption that $H_{n_{1}}(h(m), c(m))$ is non-negative for a given $m, p^{\prime}>m>p^{\prime}-1$, has led to the conclusion that $J_{n_{1}}(m)$ is positive for large m and $n_{1}<n^{\prime}$ but that $J_{n^{\prime}}(m)$ has negative eigenvalues for large m. We show not that this is impossible.

As m approaches infinity, the point $(h(m), c(m))$ approaches $\left(h_{0}, c_{0}\right)=\left(\frac{(p-q)^{2}}{4}, 1\right)$. If $p \neq q$ a suitable coordinate on the curve is $\mu=\frac{1}{m}$. If $p=q$ we may take $\mu=1-c$. All the matrices $H_{n_{1}}(\mu)=H_{n_{1}}(m)=H_{n_{1}}(h(m), c(m))$ are analytic functions of μ. The eigenvalues of $H_{n_{1}}(\mu)$ are given by power series.

$$
\alpha_{i}=\alpha_{i}(\mu)=\alpha_{i 0}+\alpha_{i 1} \mu+\alpha_{i 2} \mu^{2}+\ldots
$$

Let $V_{n_{1}}^{1}(\mu)$ be the space spanned by the eigenvectors corresponding to α_{i} with $\alpha_{i 0}=0$; let $V_{n_{1}}^{2}(\mu)$ be the space spanned by the eigenvectors corresponding to α_{i} with $\alpha_{i 0}=\alpha_{i 1}=0$ and so on. One proves by induction that these spaces are well defined, depend analytically on μ (in the sense that we have analytic functions $v_{1}(\mu), \ldots, v_{P\left(n_{1}\right)}(\mu)$, such that $\left\{v_{1}(\mu), \ldots, v_{d_{k}}(\mu)\right\}, d_{k}=\operatorname{dim} V_{n_{1}}^{k}$ forms a basis of $V_{n_{1}}^{k}(\mu)$ for each $\left.\mu\right)$, and that $\mu^{-k}\left\{H_{n_{1}}(\mu) v_{i}(\mu), v_{j}(\mu)\right\}, i \leq d_{k}, j \leq P\left(n_{1}\right)$ is analytic for small μ. It can even be supposed that $\left\{H_{n_{1}}(\mu) v_{i}(\mu), v_{j}(\mu)\right\}=0, i \leq d_{k}, j>d_{k}$.

Let $V^{k}=\oplus_{n_{1}} V_{n_{1}}^{k}(0)$ and $X^{k}=V^{k} / V^{k+1}=\oplus_{n_{1}} V_{n_{1}}^{k}(0) / V_{n_{1}}^{k+1}(0)$. If $u=\Sigma_{i \leq d_{k}} a_{i} v_{i}(0) \epsilon V_{n_{1}}^{k}(0)$ and $v=\Sigma_{i \leq d_{k}} b_{i} v_{i}(0) \epsilon V_{n_{2}}^{k}(0)$, define $\langle u, v\rangle^{(k)}$ to be 0 if $n_{1} \neq n_{2}$, and if $n_{1}=n_{2}$ set

$$
\begin{aligned}
\langle u, v\rangle^{(k)}=\langle u, v\rangle_{n_{1}}^{(k)} & =\Sigma a_{i} \overline{b_{j}} \lim _{\mu \rightarrow 0} \mu^{-k}\left\langle v_{i}(\mu), v_{j}(\mu)\right\rangle \\
& =\Sigma a_{i} \overline{b_{j}} \lim _{\mu \rightarrow 0}\left\{\mu^{-k} H_{n_{1}}(\mu) v_{i}(\mu), v_{j}(\mu)\right\} .
\end{aligned}
$$

It is clear that $H_{n_{1}}(\mu)$ is non-negative for small μ if and only if the forms $\langle u, v\rangle_{n_{1}}^{(k)}$ are all positive.

Lemma 14.

(a) The spaces V^{k} are all invariant under $\pi=\pi^{h_{0}, c_{0}}$, so that \mathfrak{v} operates on X^{k}.
(b) The form $<\cdot, \cdot\rangle^{(k)}$ on X^{k} satisfies $\left\langle L_{m} x, y\right\rangle=\left\langle x, L_{-m} y\right\rangle, m \in \mathbf{Z}$.

Proof. Set $L_{m}(\mu)=\pi^{h(\mu), c(\mu)}\left(L_{m}\right)$ and $L_{m}=L_{m}(0)$. We have to show for each n_{1} that $L_{m} v_{i} \in V^{k}$ if $v_{i}=v_{i}(0)$ and $i \leq d_{k}$. However

$$
L_{m} v_{i}=\lim _{\mu \rightarrow 0} L_{m}(\mu) v_{i}(\mu)=\lim \Sigma_{j} c_{i j}(\mu) v_{j}^{\prime}(\mu)
$$

where the $c_{i j}$ are analytic functions of μ. It is to be shown that $c_{i j}(0)=0$ for $j>d_{k}^{\prime}$. The primes refer to $n_{2}=n_{1}-m$ rather than to n_{1}. In other words it has to be shown that $\left\{H_{n_{2}}(\mu) L_{m}(\mu) v_{i}(\mu), v_{\text {ell }}^{\prime}(\mu)\right\}=O\left(u^{k}\right)$ for all ell. Since $H_{n_{2}}(\mu) L_{m}(\mu)=L_{-m}^{*}(\mu) H_{n_{1}}(\mu)$, the adjoint of $L_{-m}(\mu)$ being taken with respect to the form $\{\cdot, \cdot\}$, this is clear. So is the second assertion of the lemma.

For any $h \geq 0$ the representation $\pi^{h, 1}$ on $V^{h, 1}$ has a unique irreducible quotient $\rho^{h, 1}$ on $X^{h, 1}$, which by Lemma 3 carries a hermitian form for which $\rho^{h, 1}$ is unitary in the sense that the adjoint $\rho^{h, 1}\left(L_{m}\right)$ is $\rho^{h, 1}\left(L_{-m}\right)$. Such a form is unique up to a scalar multiple. Take in particular $h=\frac{r^{2}}{4}, r \in \mathbf{Z}$. Then $h=h_{p_{2}, q_{2}}(c)$ if and only if $\left(p_{2}-q_{2}\right)^{2}=r^{2}$. In particular, $h=h_{r+1,1}(c)$. Thus the lowest weight for a null vector in V is $r+1$ and $h+r+1=\frac{(r+2)^{2}}{4}$, so that the kernel of $V^{h, 1} \rightarrow X^{h, 1}$ contains a quotient of $V^{h^{\prime}, 1}, h^{\prime}=\frac{(r+2)^{2}}{4}$. Thus $V^{h, 1}$ admits a sequence of invariant subspaces $V^{h, 1}=V^{h, 1}(0) \supseteq$ $V^{h, 1}(1) \supseteq V^{h, 1}(2)$ such that the representation on $V^{h, 1}(0) / V^{h, 1}(1)$ is $\rho^{h, 1}$ and that on $V^{h, 1}(1) / V^{h, 1}(2)$ is $\rho^{h^{\prime}, 1}$. In general set $h^{(e l l)}=\frac{1}{4}(r+2 \text { ell })^{2}$.

Lemma 15. $V^{h, 1}$ admits an infinite decomposition series $V^{h, 1}(0) \supseteq V^{h, 1}(1) \supseteq \ldots \supseteq V^{h, 1}($ ell $) \supseteq \ldots$ such that the representation on the quotient $V^{h, 1}($ ell $) / V^{h, 1}($ ell +1$)$ is $\rho^{h(e l l), 1}$.

Proof. If $\lambda=h+k, k \in \mathbf{Z}, k \geq 0$, let $d_{\lambda}=\operatorname{dim}\left\{v \epsilon V^{h, 1} \mid L_{0} v=\lambda v\right\}, d_{\lambda}(e l l)=\operatorname{dim}\left\{v \epsilon X^{h(e l l), 1} \mid L_{0} v=\right.$ $\lambda v\}$. The lemma follows easily from a formula of $\operatorname{Kac}([2], T h .5)$, according to which $d_{\lambda}=\Sigma_{\text {ell=0 }}^{\infty} d_{\lambda}(e l l)$. Indeed, suppose we have constructed an initial segment of the series $V^{h, 1}(0) \supset \ldots \supset V^{h, 1}(e l l)$. Then $\frac{1}{4}(r+2 e l l)^{2}$ is a lowest weight in $V^{h, 1}(e l l)$ and $\operatorname{dim}\left\{v \epsilon V^{h, 1}(e l l) \left\lvert\, L_{0} v=\frac{1}{4}(r+2 e l l)^{2}\right.\right\}=1$. Take $V^{h, 1}(e l l+1)$ to be the sum of all invariant subspaces of $V^{h, 1}(e l l)$ for which the lowest weight is greater than $\frac{1}{4}(r+2 e l l)^{2}$.

Now take $r=p-q$. It follows immediately from the preceding lemma that X^{k} is the direct sum of irreducible invariant subspaces X_{j}^{k} carrying distinct representations and that the restriction of $\langle\cdot, \cdot\rangle^{k}$ to X_{j}^{k} is either positive or negative. The assumption that we are trying to contradict implies that the form is positive if X_{j}^{k} contains non-zero vectors of weight $h+n_{1}, n_{1}<n^{\prime}$, but that for some j and k for which X_{j}^{k} contains vectors of weight $h+n^{\prime}$, it is negative.

Thus the following lemma completes the proof of Theorem FQS.

Lemma 16. The equation $\frac{r^{2}}{4}+n^{\prime}=\frac{1}{4}(r+2 \text { ell })^{2}$ has no solution ell ≥ 0 in \mathbf{Z}.

Proof. The equation may be written as $n^{\prime}=e l l(e l l+r)$. Recall that n^{\prime} is $(p+a)(q+a+1)$ in case A and $(p+a+1)(q+a)$ in case B , with $a \geq 0$. Since $r=p-q$, the equation is $(p+a+e l l)(q+a+1-$ ell $)=$ ell or $(p+a+1-e l l)(q+a-e l l)=-$ ell. Both equations are manifestly impossible.

References

[1] Friedan, D., Z. Qiu and S. Shenker, Conformal invariance, unitarity and two-dimensional critical exponents, in Vertex operators in mathematics and physics, eds. J. Lepowsky, S. Mandelstam and I. M. Singer, Springer (1985).
[2] Rocha-Caridi, A. Vacuum-vector representations of the Virasoro algebra, ibid.
[3] Friedan, D., Z. Qiu and S. Shenker, Details of the non-unitary proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys. 107 (1986).

[^0]: * Appeared in Infinite-dimensional Lie algebras and their applications, World Scientific (1988)

