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Group-representation theory is a broad topic which impinges on many domains of mathematics.

The characters of abelian groups are of course central to Fourier analysis and entered at an early stage

the theory of numbers, one of several spurs to the study of representations of finite nonabelian groups.

Finite-dimensional representations of continuous groups, the groups with which the work of Harish-

Chandra is largely concerned, arose in invariant theory. Interest in representation theory was stirred in

the twenties and thirties by its utility in quantum mechanics, which probably encouraged the emphasis

on unitary representations and, the Lorentz group having no interesting finite-dimensional unitary

representations, led to the investigation of infinite-dimensional representations, whose mature theory

has in turn profoundly influenced our thinking about zeta-functions.

Harish-Chandra’s principal contributions were to the theory of infinite-dimensional representa-

tions of continuous groups, and it is a subject — a branch of analysis with algebraic prerequisites and

geometric consequences — which still bears his imprint more than anyone else’s. He was trained in

India and England as a physicist and his papers on physics come to more than two hundred pages,

almost half of the first of the four volumes of his Collected Papers. Nonetheless the last of them was

written when he was only twenty-five and already turning to mathematics in Princeton, where he was

exposed to the mathematical traditions of representation theory in which, following Cartan and Weyl,

who had woven together Lie theory and invariant theory, the groups to be represented were arbitrary

semisimple groups.

Specific semisimple groups or algebras are familiar, indeed everyday, objects, but not every math-

ematician is able to assimilate the general theory. Harish-Chandra, however, had great strength as a

formal algebraist, and considerable experience, and from the very beginning worked not with concrete

but with abstract semisimple algebras and groups. This is justified on all grounds but that of accessi-

bility. As mathematics grows and sprawls, less and less of it can be regarded as common knowledge,

and if it is not to break apart into several distinct sciences, it is best not to erect unnecessary obstacles

to communication,. There is little in the papers of Harish-Chandra which is not as important for the
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symplectic group as in the general case, and it is to be regretted that those who are persuaded of

the significance for number theory of the existence of the discrete series or who could appreciate the

spectral theory of his later papers, but who are chary of roots and weights, will not be able to refer

easily to the master.

Nonetheless, Harish-Chandra was one of the leading mathematicians of recent decades, with a

difficult style but unique gifts, and some notion of the contents of his eighty-odd published papers is

probably indispensable to an understanding of what mathematics has achieved in our time.

It is best when describing these contents to leave aside at first the papers in physics, the early

papers on Lie algebras and the later papers on p-adic groups, and to consider only the work on real

semisimple (later reductive) groups which began about 1950, reached a high point with the proof of

the existence of the discrete series in the early sixties, and was completed toward 1970 with the proof

of the explicit Plancherel theorem.

We can take the reductive group to be G = GL(n,R). It has a Lie algebra g, the algebra of n× n

real matrices with bracket product [X,Y ] = XY − Y X , and the maximal compact subgroup K of

orthogonal matrices. The first thing to notice, or rather to prove, is that the essential features of an

irreducible representation π of G on a Banach space are captured by a representation, again denoted π,

of the pair (g,K) on a sense subspace V0 of V , which consists of those v ∈ V such that {π(k)v|k ∈ K}
spans a finite-dimensional space. Thus V0 is a sum over the classes δ of irreducible representations

of K of isotypical subspaces Vδ , and it is basic that dim Vδ ≤ dim2 δ, for from this follows easily that

for any smooth function f of compact support on G the operator π(f) =
∫

G
f(g)π(g)dg, defined by a

Bochner integral, is of trace class and that Tπ: f �→ traceπ(f) is a distribution on the manifold G. It

characterizes π (up to equivalence).

The universal enveloping algebra A of g is the associative algebra generated by g and subject to

the relations X · Y − Y · X = [X,Y ], X , Y ∈ g, the multiplication on the left being that in A and not

matrix multiplication. It is impossible to study representations of g without considerable information

on A, of which the most important piece is perhaps that its centre Z is isomorphic to the algebra of

symmetric functions in n variables.

The algebra g is also an algebra of vector fields onG and the elements of A are differential operators,

and if π is irreducible Schur’s lemma implies easily that Tπ is a simultaneous eigenfunction of all z ∈ Z,

so that zTπ = λ(z)Tπ , λ(z) ∈ C.
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The distributions Tπ are clearly invariant under conjugation and one form of an explicit Plancherel

formula would be a relation

f(1) =
∫
Q

Tπ(f)dπ =
∫
Q

traceπ(f)dπ,

valid for smooth compactly supported f , whereQ is a collection of irreducible unitary representations

and dπ a measure on it. Thus our problem is to expand the invariant distribution δ: f �→ f(1) as an

integral of eigendistributions of Z. So formulated it is a somewhat unusual problem in spectral theory,

and it is to be stressed that the methods used by Harish-Chandra to solve it are on the whole elementary

— curvilinear coordinates, Fourier transforms, variation of parameters — although they are heaped up

in elaborate logical progressions.

The character is the simplest invariant attached to π but the matrix coefficients are also important.

For simplicity take π to be unitary. If δ and ε are two classes of irreducible representations of K and if

{xi}, {yi} are bases of two subspaces of V , one transforming under K according to δ and one according

to ε, the functions fij(g) = (π(g)xi, yj) are matrix coefficients of π. Since every element of G may

be written as a product k1expHk2, where H is a real diagonal matrix with descending coefficients

h1 ≥ . . . ≥ hn, and since the matrix of spherical functions (fij) transforms in a prescribed way under

K , it is determined by the restriction (Fij(H)) = (fij(exp H)). Each fij is an an eigenfunction of each

z in Z with eigenvalue λ(z). Writing these equations in terms of F = (Fij) we see that it satisfies a

maximally overdetermined system of linear differential equations ∆zF = λ(z)F , for as we observed

there are n independent operators in Z. Such equations have a finite-dimensional space of solutions

and behave in many respects like ordinary differential equations.

The problem of obtaining an explicit Plancherel formula can also be formulated as the problem of

obtaining (for each ε and δ) the spectral decomposition of the commuting family of operators ∆z on

the domain h1 ≥ . . . ≥hn, and those who are familiar with the spectral theory of ordinary differential

equations will be pleased to see the theory reappear intact in higher dimensions and fascinated by the

interplay between the two formulations. They may not be too surprised to discover that the spectral

measure dπ is obtained from the asymptotic behavior of the functions F , although they may not easily

follow the group theory that leads to the final explicit formula; but they will probably be startled to see

how one passes to the invariant problem to determine the spectrum precisely.

Harish-Chandra discovered quite early the principles which allowed him to do this but he over-

came the obstacles to their proof only slowly. The critical notions are those of a Cartan subgroup, of a

parabolic subgroup, of an induced and of a square-integrable representation.
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For G = GL(n,R) a typical parabolic subgroup P is obtained from a partition n = n1 + . . . + nr

by embedding M = GL(n1,R) × . . .× GL(nr,R) in G by diagonal blocks and then multiplying it by

the group N of matrices with ones along the diagonal and zeros below the blocks to obtain P = MN .

A typical Cartan subgroup T of G or of M is obtained by fixing 1 × 1 and 2 × 2 blocks along the

diagonal and taking matrices which are zero outside the blocks, invertible in the blocks, and in a 2 × 2

block of the form (
a b

−b a

)
.

In the context of reductive groups an induced representation of G is obtained from one of M by

extending it to P , making it trivial on N , and then inducing to G in a manner familiar from the theory

of finite groups, taking just a little care to ensure that unitary representations remain so upon induction.

The group M is the direct product of its connected centre A and the group M0 of those matrices

whose blocks have determinant ±1. An irreducible unitary representation σ of M is the product

of a character χ of A, which depends on r parameters, and a unitary representation σ0 of M0. The

representation σ0 is said to be square-integrable if its matrix coefficients are square-integrable functions

on M0. The square-integrable representations of M0 clearly form a discrete family or, in the jargon of

the subject, series. The first principle is that the representations of G induced from those σ for which

σ0 is square-integrable suffice for the Plancherel formula. The second is that M0 has square-integrable

representations if and only if there are Cartan subgroups T such that M0 ∩ T is compact.

For G = GL(n) this forces the connected component of M0 to be a product of several copies of

SL(2,R), a group which illustrates much of the general theory but for which it is not necessary. It is,

however, for the symplectic group, which also plays a role in algebraic geometry denied GL(n). The

two facts are linked. We continue nonetheless with GL(n,R), overlooking the simplifications possible

for it.

The central problem now becomes the existence of the discrete series of square-integrable repre-

sentations. The proof of existence is elaborate, and is tied to uniqueness results which flow from basic

but unforeseen properties of the distributions Tπ . On the open subset G′ of G formed by matrices with

distinct eigenvalues we can use the eigenvalues as radial coordinates. The angular coordinates are

irrelevant since Tπ is invariant. So it is a distribution in the n radial coordinates. The n independent

equations which it satisfies force it to be a function Fπ, indeed (when the algebra is worked out) a

simple elementary function, which becomes infinite as one approaches the singular set G − G′. It

turns out, although difficult to prove, that Fπ is nonetheless locally integrable on G, so that it defines a

distribution. The difference Tπ −Fπ of the two distributions is thus supported on the singular set. The
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astonishing fact, which takes a long series of papers to prove and on which the whole theory turns, is

that it is zero. So Tπ − Fπ is not only a distribution but a true function.

Simple experiments with the δ-function and its derivatives show that whether a differential equa-

tion admits singular distributions as solutions depends upon its delicate numerical properties. To

deal with Tπ and show it is a function one has to exploit not only the differential equation but also

the invariance. It is not possible to designate any result in a theory with the elaborate architecture of

Harish-Chandra’s harmonic analysis as the fundamental one, but the theorem that the character is a

function is as important as any, and in addition, so far as I know, an unprecedented result in partial

differential equations.

Although it is the individual achievements which are the striking, perhaps even the lasting, part of

the theory, it was the goal of an explicit Plancherel formula that shaped it. Harish-Chandra maintained

a certain rhythm as he proceeded, which of course slowed as he grew older — a quick burst of

announcements, followed by a long series of papers providing the details, and then another burst of

announcements, and so on. The announcements are remarkably clear, and can be recommended to

those who want to see the theory being formed but not necessarily to master it.

The first papers on physics, some written in collaboration with Bhabha, treat from a classical

standpoint interactions between particles and fields, and are followed by a series of papers in which

the form taken by the most general relativistic wave equation for a simple particle is discussed. Traces

of these papers can be found in the physics literature, but most readers of the Collected Papers will look

at them, and are urged to do so, to see the young algebraist developing his skills. There are two papers

written under the influence of Dirac, one on the irreducible representations of the Lorentz group, whose

part in preparing him for his later career is evident, and another, very short, little more than an exercise,

a quantum-mechanical treatment of the motion of an electron in the field of a monopole, in which it is

touching to see the classical techniques, spherical coordinates and the method of Frobenius, which are

applied so relentlessly and carried so far in the later papers, being exploited by him for the first time.

In Princeton, Harish-Chandra took courses from Artin and Chevalley. The influence of Chevalley

is manifest in his first mathematical papers, on finite-dimensional representations and on the structure

of the universal enveloping algebra; that of Artin, because it did not correspond to a natural bent,

was more subtle. Harish-Chandra’s encounter with class-field theory awakened in him ambitions

which he was first able to satisfy toward 1960 when, benefiting from his experience with representation

theory, he proved a general finiteness theorem for automorphic forms and, in collaboration with A.

Borel, extended the classical reduction theory to arbitrary groups. These are important papers, but the
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influence of Harish-Chandra on the theory of automorphic forms goes far beyond them. Automorphic

forms can be viewed in several contexts, and one of them is now representation theory, which has

blown away a lot of must.

The relation between representation theory and automorphic forms is indeed very close. One

notion from automorphic forms of which Harish-Chandra was very fond was that of a cusp form. He

expressed the results of his last papers on harmonic analysis on real groups in terms of it, and exploited

it brilliantly in a brief but influential paper on representations of finite groups of Lie type.

It dominated his thinking on p-adic groups, a topic to which many papers in the final volume

are devoted. There are sound mathematical grounds for studying the representations not merely of

GL(n,R) or GL(n,C) but of GL(n,F ) where F is any local field, or of the F -valued points on any

reductive group. These representations are known to reflect the structure of the set of Galois extensions

of F , and for that reason the theory over a nonarchimedean field is quite different from that over the

real or complex field, and is still incomplete. What appears in these last papers is that from one point

of view it is possible to go a long way in the harmonic analysis on p-adic groups — as far as a concrete,

if no longer completely explicit, Plancherel formula — without any consideration whatsoever of the

arithmetic of the field, in which Harish-Chandra was perhaps not much interested, or of the structure

of the discrete series.

Often the publication of collected or selected works is no more than a tribute paid to the achieve-

ment and influence of a friend, teacher or colleague, springing from affection and respect but with

no claim on time. However, occasionally they are to be a monument, to endure and remind coming

generations that our age did not lack all greatness. So it should be with Harish-Chandra. The editor, V.

S. Varadarajan, has understood this, has overcome difficulties caused by Harish-Chandra’s final illness

and untimely death, and has prefaced the papers with an account of his achievement, to which all

readers will turn with profit, and a moving homage to the conviction that sustained him.

It is supplemented by comments by Nolan Wallach on individual papers and by an essay on

Harish-Chandra’s work on p-adic groups by Roger Howe which perhaps errs on the side of modesty.

Some critical ideas are due to Howe himself.

The volumes also contain three important but previously unpublished papers and are accompanied

by expressive, and revealing, photographs. It is a pity that those papers which appeared in camera-

ready form were not set in type. They detract considerably from the appearance of the later volumes.


